
Abstract—This paper addresses the impact of load dynamics, 
and in particular induction motor loads, on voltage recovery 
after disturbances. The paper proposes a methodology that is 
based on load flow techniques with advanced modeling 
capabilities, augmented by a simplified induction motor dynamic 
model. The objective is to realistically capture the dynamic 
characteristics of voltage recovery phenomena, avoiding, 
however, the full scale transient simulation. The approach uses 
the quadratized power flow model with explicit induction motor 
representation. The paper describes the modeling approach and 
the overall methodology for evaluating the load dynamics on 
voltage recovery. Preliminary results of the application of the 
method on a simple power system with load dynamics are also 
included in the paper. 

Index Terms— Dynamic load modeling, Induction motor 
model, Load flow analysis, Voltage recovery 

I.  INTRODUCTION

HE paper addresses the issue of voltage recovery 
following a disturbance in the presence of load dynamics 

arising from several classes of electric loads, such as induction 
motors. It is well known that the voltage recovery after a 
disturbance in a power system is delayed by load dynamics 
(such as the dynamics of induction motors, etc.), especially 
when not enough fast reacting reactive resources (dynamic 
VAR sources) exist [1-9]. The phenomenon is well known to 
utilities and it is typically studied either using static load flow 
techniques or with full scale dynamic simulations. Studies are 
performed usually off-line, but on-line analysis is also 
desirable and possible. 

Most off-line studies are based on traditional power flow 
analysis that does not take into account the dynamics of the 
load, while dynamic off-line studies that take into 
consideration the dynamics of the loads are relatively few and 
depend on assumed data for the dynamics of the electric load. 
Real time tools are almost exclusively based on traditional 
power flow models and they are not capable of capturing the 
dynamic nature of voltage recovery phenomena. This practice 
leads to a disconnect between system analysis and reality 
because the load behavior, the majority of which is electric 
motors, is not modeled properly. 

The issue of load modeling and the effects of dynamic 
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loads on voltage phenomena have been studied to a significant 
extent in literature [1-17]. In [1] the issues of voltage dips in 
3-phase systems after symmetric or asymmetric faults and the 
accurate modeling of voltage recovery are addressed. In [2,3] 
the voltage recovery phenomena and the effect of induction 
motor loads are studied from a practical point of view, based 
on actual events from utility experience. References [4,5] 
study the voltage recovery of wind turbines after short-
circuits. The issue of mitigating the delayed voltage recovery 
using fast VAR resources is addressed in [6-8]. The impact of 
induction motor loads on voltage phenomena has also been 
studied on a more general research basis. Reference [9] 
addresses the topic of voltage oscillatory instability caused by 
induction motors, in particular in isolated power systems, 
while [10] refers to the impact of induction motor loads in the 
system loadability margins and in the damping of inter-area 
oscillations. Finally, references [11-18] are indicative of 
current research approaches and issues in induction motor 
load modeling in power systems. 

This paper introduces a new approach to the study of 
voltage recovery phenomena that can take into consideration 
the dynamic characteristics of the load, while avoiding the 
task of performing time-demanding, full-scale dynamic 
simulations. The approach uses load flow techniques with 
advanced modeling capabilities that allow a more realistic 
representation of load dynamics. While the methodology is 
capable of handling various classes of electric loads, we focus 
our attention to induction motor loads which represents the 
majority of electric loads. 

The induction motor nonlinearities depend on the slip and 
cause singularities as the slip approaches zero. To avoid 
numerical problems, the proposed solution method is based on 
quadratization of the induction motor model. This model is 
interfaced with the quadratized power flow model to provide a 
robust solution method for a system with induction motors. In 
addition, this model is a more realistic representation of a 
power system without increasing the complexity of the power 
flow equations. 

The paper is structured as follows: Section II elaborates on 
the voltage recovery problem and the issues associated with it. 
Section III presents a brief overview of the main features of 
the quadratized power flow model, along with an induction 
motor model for power flow studies. Section IV introduces the 
simplified motor dynamic model that is used in this approach 
and illustrates the proposed methodology for the study of 
voltage recovery using load flow with dynamic load 
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representation. Section V presents some preliminary results 
with an example test system that comprises induction motor 
loads. Finally, section VI concludes the paper. 

II.  PROBLEM STATEMENT

The problem of transient voltage sags during .disturbances 
and recovery after the disturbance has been removed is quite 
well known. The importance of the problem has been well 
identified; its significance is increasing especially in modern 
restructured power systems that may frequently operate close 
to their limits under heavy loading conditions. Furthermore, 
the increased number of voltage-sensitive loads and the 
requirements for improved power system reliability and power 
quality are imposing more strict criteria for the voltage 
recovery after severe disturbances. It is well known that slow 
voltage recovery phenomena have secondary effects such as 
operation of protective relays, electric load disruption, motor 
stalling, etc. Many sensitive loads may have stricter settings of 
protective equipment and therefore will trip faster in the 
presence of slow voltage recovery resulting in loss of load 
with severe economic consequences. A typical situation of 
voltage recovery following a disturbance is illustrated in Fig. 
1. Note there is a fault during which the voltage collapses to a 
certain value. When the fault clears, the voltage recovers 
quickly to another level and then slowly will build up to the 
normal voltage. The last period of slow recovery is mostly 
affected by the load dynamics and especially induction motor 
behavior. 

The objective of the paper is to present a method that can 
be used to study voltage recovery events after a disturbance. 
More specifically the problem is stated as follows: Assume a 
power system with dynamic loads, like, for example, 
induction motors. A fault occurs at some place in the system 
and it is cleared by the protection devices after some period of 
time. The objective it to study the voltage recovery after the 
disturbance has been cleared at the buses where dynamic or 
other sensitive loads are connected and also determine how 
these loads affect the recovery process. 

This paper proposes a hybrid approach to the study of 
voltage recovery that is based on static load flow techniques 
taking also into account the essential dynamic features of the 
load. This approach provides a more realistic tool compared to 
traditional load flow, avoiding however the full scale transient 
simulation which requires detailed system and load dynamic 
models. 

III.  SINGLE-PHASE QUADRATIZED POWER FLOW (SPQPF)
WITH INDUCTION MOTOR REPRESENTATION

A.  Overview of Single Phase Quadratized Power Flow 
The proposed system modeling is based on the single phase 

quadratized power flow.  The idea of this power flow model is 
to have a set of power flow equations of degree no greater 
than two, i.e. have a set of linear or quadratic equations. This 
can be achieved without making any sort of approximations, 
so the power system model is an exact model. Since most of 

the equations turn out to be linear and the degree of 
nonlinearity for the nonlinear equations is restricted to at most 
two, this results in improved convergence characteristics in 
the iterative solution and therefore improved execution speed 
at no expense in the accuracy of the solution. 
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Fig. 1. Possible behavior of voltage recovery during and after a disturbance. 

The first step in expressing the power flow equations in 
quadratic form is to avoid the trigonometric nonlinearities. 
This can be achieved by utilizing rectangular coordinates 
instead of the traditionally used polar coordinates for 
expressing the voltage phasors. Therefore, the system states 
are not the voltage magnitudes and angles, but instead the real 
and imaginary parts of the voltage phasors. This results in a 
set of polynomial equations. If the degree of nonlinearity of 
these equations is more than two, then quadratization of the 
equations can be achieved by introducing additional state 
variables. Note that the quadratization is performed without 
any approximations, and the resulting quadratic model is an 
exact model.  

The system modeling is performed on the device level, i.e. 
a set of quadratic equations is used to represent the model of 
each device. A generalized component model is used, 
representing every device, which consists of the current 
equations of each device, which relate the current through the 
device to the states of the device, along with additional 
internal equations that model the operation of the device. The 
general form of the model, for any component k , is as in (1) 
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where ki is the current through the component, kx is the 
vector of the component states and kb the driving vector for 
each component. Matrix kY  models the linear part of the 
component and matrices k

iF  the nonlinear (quadratic) part. 
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Application of the connectivity constraints (Kirchoff’s current 
law) at each bus yields the quadratized power flow equations 
for the whole system:  
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where
X  : system state vector, 
Y  : linear term coefficient matrix (admittance matrix), 

iF  : quadratic term coefficient matrix, 

b  : driving vector. 

The solution to the quadratic equations is obtained using 
the Newton-Raphson iterative method: 

)()( 1
1

11 nnnn XGXJXX  (3) 

where
n  : iteration step, 

)( 1nXJ  : Jacobian matrix at iteration 1n .
The Iterative procedure terminates when the norm of the QPF 
equations is less than a defined tolerance. 

Therefore, the SPQPF equations 0)(XG  comprise a 
different mathematical system of nonlinear algebraic 
equations compared to the traditional power flow equations. 
The state vector consists of the real and imaginary part of the 
voltage at each bus and of additional internal state variables 
for each device. Some of these internal states are the 
additional variables introduced for the quadratization of the 
equations. The system 0)(XG  consists of the current 
balance equations at each bus, plus additional internal 
equations for each one of the nonlinear devices that exist in 
the system. Most of the equations are linear equations. All the 
nonlinear equations are of order at most quadratic. 

B.  Induction Motor Model 
Typically induction motors are represented in power 

system studies as constant power loads. Although this is a 
valid representation for steady state operation, induction 
motors do not always operate under constant power, 
especially when large deviations of voltage occur. In reality 
induction motors in steady state operate at a point where the 
electro-mechanical torque of the motor equals the mechanical 
torque of the electric load. As the voltage at the terminals of 
the induction motor changes, the operating point will change, 
the motor will accelerate or decelerate and during transients 
the operating point will not be at the intersection of the 
electrical torque curve and the mechanical load torque curve. 
We present a model here that can accommodate this behavior. 
The model is in quadratic form and it is integrated into the 
single phase quadratized power flow. In addition, the model 
can be used to determine the operation of the system at a 
specific instant of time assuming that the speed of the 
induction motor is fixed (for example, after a disturbance). 

The significance of this modeling capability is described with 
an example. 

The importance of including the load dynamics into the 
power flow solution is illustrated in Figures 2 and 3. The 
IEEE 24-bus reliability test system (RTS) is used. Fig. 2 
shows the voltage profile after a line contingency, assuming 
constant power load representation. Green indicates voltage 
magnitudes within 5% of the nominal voltage; yellow 
indicates a voltages deviation of more than 5%, but less than 
10% of the nominal voltage; and red indicates a voltage 
deviation of more than 10%. Fig. 3 illustrates the same 
condition assuming that half of the electric load at each bus 
has been replaced with induction motor loads. The difference 
between the two figures (i.e. Figures 2 and 3) is that the 
induction motors in Fig. 3 operate at different slip (or speed) 
as dictated by the solution – at the solution the electro-
magnetic torque equals the mechanical torque of the load. The 
reactive power absorption of the induction motors is different 
at different slip values and therefore they affect the voltage 
profile of the system. This behavior cannot be captured by a 
simple, static, constant power load model. 

Fig. 2. Voltage profile of the 24-bus RTS after a line contingency, with 
constant power load representation. 

Fig. 3. Voltage profile of the 24-bus RTS after line contingency, with 
induction motors assuming 2% slowdown. 

The induction motor model is easily included in the SPQPF 
formulation without increasing the degree of nonlinearity and 
thus further complicating the equations. A quadratic induction 
machine model has been developed [18] based on the typical 
steady state equivalent circuit of the induction motor, shown 
in Fig. 4. The model input data include typical motor nominal 
(nameplate) data, plus electrical parameters, and mechanical 
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load data.  The model supports two mechanical loading 
modes: (a) Torque equilibrium (steady state), and (b) Constant 
Slip. 
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Fig. 4. Induction motor equivalent circuit. 

Circuit analysis of the induction motor equivalent circuit 
yields the equations: 
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An additional equation links the electrical state variables to 
the mechanical torque produced by the motor.  This equation 
is derived by equating the mechanical power (torque times 
mechanical frequency) to the power consumed by the variable 
resistor in the equivalent circuit of Fig. 4. 
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where
nS  : induction motor slip, 

emT  : mechanical torque produced by motor, 

s  : synchronous mechanical speed. 

Two compact models are defined from the above equations: 

(a) Constant Slip Model (Linear): 
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In the constant slip mode the motor operates at constant speed. 
The value of the slip is known from the operating speed and 
therefore the model is linear. The terminal voltage kV~  and the 

internal rotor voltage nE~  are the states of the model. Note that 
the equations are given in compact complex form. In real 

form, separating real and imaginary parts yields a system of 
four linear equations. The state vector is defined as 

nrnikikr
T EEVVx , where the subscripts r and

i denote real and imaginary parts respectively. 

 (b) Torque Equilibrium  Model (Nonlinear): 
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In the torque equilibrium model the slip is not constant and 
thus it becomes part of the state vector. Note that this model is 
nonlinear and not quadratic since the second and third 
equations contain high order expressions of state variables.  In 
order to quadratize the model equations, we introduce three 
additional state variables, namely nY~ , nW~ , nU defined as 
follows: 
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The state vector in this mode is defined as: 
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The quadratic model equations are: 
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The first equation gives the stator current of the motor; the 
second equation comes from the equivalent circuit analysis; 
the third equation specifies the torque produced by the motor. 
The last three equations introduce the new variables for the 
quadratization. Note again that the state vector and the 
equations are given in compact complex format. They are to 
be expanded in real and imaginary parts to get the actual real 
form of the model. Note also that the third and fourth 
equations are real, and, therefore, the model has ten real 
equations and states. 

The described motor model, in both operating, modes, can 
be immediately expressed in the generalized component form 
of (1) and therefore incorporated in the SPQPF formulation. 
The model equations are linear in the constant slip mode and 
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quadratic in the torque equilibrium mode, resulting in no 
additional complexity in the power flow equations. 

After the solution of the power flow is obtained, additional 
internal motor quantities (rotor voltage and current, electrical 
torque, motor losses, etc) can be directly calculated, providing 
a detailed description of the motor state. 

IV.  METHODOLOGY FOR VOLTAGE RECOVERY STUDY

The proposed approach for voltage recovery with dynamic 
load representation is based on appending the presented 
constant slip motor model with a dynamic equation describing 
the motor rotor dynamics. This is the rotor motion equation:  

Lem
m TT

dt
d

J , (13) 

where
J  : rotor-load moment of inertia, 

m  : rotor mechanical speed, 

emT  : electrical motor-torque, 

mT  : mechanical load-torque. 

Alternatively, this equation can be expressed in terms of the 
inertia constant H :

Lemm
s

TT
H2 , (14) 

where
H  : inertia constant (s), 

m  : rotor mechanical speed (rad/s), 

s  : synchronous mechanical speed (rad/s), 

emT  : electrical torque in p.u., 

LT  : mechanical load-torque in p.u.. 

This simplified transient model can capture the effects of 
the motor in the voltage profile of the power system. The 
electrical transients in the motor are neglected, as they do not 
have significant effect in the network solution, especially for 
the time scales of interest, which are very long compared to 
the time scales of the electrical transients. Phasor 
representation is therefore used for the electrical quantities. 
The elimination of stator electrical transients makes it possible 
to interface the motor with the network that is assumed to 
operate in quasi steady state conditions. 

Therefore, following a disturbance the electrical torque 
produced by the motor will change, due to the terminal 
voltage variation, causing a deviation in the torque balance 
between motor torque and load torque. The rotor speed will 
transiently change. Since there is an imbalance between the 
load torque and the motor torque, the rotor speed of the 
induction machine will change in accordance to the equation 
of motion.  

The approach is based on solving the system of power flow 
equations, with the motor model at constant slip mode, along 

with equation (14) at discrete time steps, following the 
disturbance. We refer to this procedure as the time-
continuation single phase quadratized power flow.  

More specifically a typical scenario consists of the 
following phases: 
1) Pre-fault phase: The system is operating at steady state 
condition. The solution is obtained by load-flow analysis 
using the motor at torque equilibrium mode. 
2) During-fault phase: When a fault (or a disturbance in 
general) takes place the motor enters a transient operating 
condition. Typically, the motor is supplied by a considerably 
reduced voltage resulting in a decrease in the motor electro-
mechanical torque. Subsequently the motor decelerates since 
the mechanical load will be higher than the electro-magnetic 
torque. Depending on the voltage level and on the mechanical 
load characteristics (the load may be constant torque, which is 
the worst case, or it may depend on the speed) the motor will 
decelerate and most likely will stall unless the fault is cleared 
and the voltage is restored in time. The deceleration of the 
induction motor is computed with the time-continuation single 
phase quandratized power flow as described earlier. 
Specifically at each time step the electromechanical torque 
and the mechanical load torque are computed and the 
deceleration of the motor over the time step is computed. Then 
the process is repeated at the new operating point. The time-
continuation procedure is applied throughout the fault 
duration. The final operating condition at the end of the fault 
period provides the initial conditions for the post-fault period. 
3) Post-fault phase: The time-continuation single phase 
quadratized power flow approach is also applied to the post-
contingency system. The procedure provides the voltage 
recovery transient at each bus without using full-scale 
transient simulation during the longer post-fault period. As 
mentioned before, the final operating condition at the end of 
the fault period is the initial conditions of the post fault 
system. 

The proposed approach is illustrated with an example test 
system that will help demonstrate the methodology and clarify 
the concepts. The example is kept relatively simple; however, 
the methodology is applicable to more realistic systems and 
scenarios, as well. 

V.  PRELIMINARY RESULTS

The proposed approach is illustrated with a simple 
example. The power system of Fig. 5 is assumed with 
induction motors connected to three buses (BUS03, BUS04, 
BUS05). The system consists of two generating units with 
their step-up transformers. The rest of the system loads, except 
for the motors, are constant power and constant impedance 
loads. The system data are given in the Appendix. A bolted 
three phase fault takes place in the middle of the line 
connecting BUS03 and BUS04. The fault is cleared after 0.2 
sec by removing the faulted transmission line. 

The motor mechanical loads are modeled as speed 
dependent loads. Their mechanical torque depends 
quadratically on the speed according to the (15). During the 
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pre-fault phase, each load torque is equal to 1 p.u. 
2cbaTL  (15) 

where
LT  : mechanical load torque (p.u.), 
 : angular velocity (p.u. of s ),

cba ,,  : model coefficients. 
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Fig. 5. Single-line diagram of the example system. 

The load of motor 1, connected to BUS03, has a strong linear 
dependence on speed; the load of motor 2, connected to 
BUS04, has a strong quadratic dependence, and, finally, the 
mechanical load of motor 3, connected to BUS05, has a 
constant torque load. The mechanical load models for each 
motor are given in the appendix. The combined motor-load 
inertia constants for each motor are sec5.11H ,

sec5.02H  and sec5.13H , for motors 1, 2 and 3 
respectively.

The problem is approached based on the presented 
methodology. More specifically, the following phases are 
defined: 
1) Pre-fault phase: The system is operating at steady state 
condition and it is easily solve by load-flow analysis. The 
motor is modeled at torque equilibrium mode, supplying a 
constant mechanical load. 
2) During-fault phase: A three phase line fault takes place in 
the middle of the line between BUS03 and BUS04, at time 0t .
The motor terminal voltage and its electrical torque are 
reduced due to the fault. The three motors decelerate based on 
(14) at a rate depending on their inertias and the terminal 
voltage. The fault initiation time can be assumed equal to zero 
without loss of generality. The fault clearing time is 0.2 sec, 
i.e., 12 cycles (on 60Hz period). It is important to emphasize 
that each motor will decelerate at different rates. 
3) Post-fault phase: The fault is cleared by the removal of the 
faulted line. Based on the initial post-fault condition (obtained 
at the end of the fault period) and on the voltage recovery 
process the motor may reach a new steady state condition, or 

it may stall. During the post-fault period the analysis is again 
performed using the time-continuation single phase 
quadratized power flow. At each time step the motor 
accelerates based on (14), where the electrical torque 
produced by the motor is calculated by the solution of the 
power flow equations with the motor operating at constant slip 
mode. 

Results from the test case are presented in Figures 6 
through 9. Fig. 6 shows the motors speed for the three motors 
throughout the period of study. Note that the deceleration rate 
is different for each motor. Fig. 7 illustrates the voltage 
recovery at the motor terminal buses, for the three motors. 
Figures 8 and 9 present the motor active and reactive power 
during the pre-fault, fault and post-fault phases. Due to the 
different electrical and mechanical characteristics of the 
motors 2 and 3 compared to motor 1, and due to the system 
topology the recovery is considerably slower at BUS04 and 
BUS05, compared to BUS03. 
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periods. 

VI.  CONCLUSIONS

A practical method for realistically studying the effects of 
load dynamics and especially induction motor loads on 
voltage recovery phenomena was presented in the paper. The 
approach is based on load flow techniques with realistic 
modeling of induction motor loads. The dynamic induction 
motor model is solved along with the load flow equations. The 
single phase quadratized power flow model was used for the 
analysis. This method models the power system as a set of at 
most quadratic equations, reducing thus the degree of 
nonlinearity. Similarly, the induction motor loads are modeled 
as a set of quadratic equations that are solved simultaneously 
with the power flow equations. The quadratization approach 
provides a good approach for avoiding the stiffness of the 
problem when the slip approaches zero. 

The trajectory of the voltage recovery (or collapse) is 
computed with the time-continuation single phase quadratized 
power flow. At each time step the motors at the various busses 
of the system accelerate or decelerate depending on whether 
the electro-mechanical torque is greater than the mechanical 

load torque.  
The proposed methodology combines the simplicity of the 

standard power flow methods and the load dynamics that can 
be found only in full-scale time-domain simulation models. 
Preliminary results from several test cases on a simple power 
system were presented to demonstrate the process and to 
establish the feasibility of the approach. 

VII.  APPENDIX

The appendix contains the data of the test system. 

Table I. Line Data (values at 100 MVA base) 
From 
BUS

To
BUS

Nom. V 
(kV)

R
(p.u.) 

X
(p.u.) 

B/2  
(p.u.) 

01 03 115 0.012255 0.161871 0.038661 
01 03 115 0.024335 0.210308 0.030095 
03 04 115 0.024335 0.210308 0.030095 
02 04 115 0.024335 0.210308 0.030095 
04 05 115 0.012255 0.161871 0.038661 
04 05 115 0.012255 0.161871 0.038661 
01 02 115 0.012255 0.161871 0.038661 

Table II. Transformer Data (values at 100 MVA base) 
From To Ratio 

(kV/kV) 
R

(p.u.) 
X

(p.u.) 
Core 

conductance
Core 

susceptance 
SOURCE

01
BUS
01

15/115 0.00467 0.05467 0.0075 0.0075 

SOURCE
02

BUS
02

15/115 0.00467 0.05467 0.0075 0.0075 

Table III. Induction Motor Data 
Power 
Rating 
(MVA) 

Nominal 
Voltage

(kV)

Stator Rotor Magnetizing 
Reactance

(p.u.) 
  R 

(p.u.) 
X

(p.u.) 
R

(p.u.) 
X

(p.u.) 
20 115 0.01 0.06 0.02 0.06 3.50 
20 115 0.01 0.06 0.01 0.08 3.50 
20 115 0.01 0.06 0.01 0.08 3.50 

Generator Data: 
SOURCE01: Slack generator, Voltage 1.02 p.u. 
SOURCE02: PV controlled, Volatge 1.02 p.u., P=50 MW. 

Load Data: 
BUS03: 
 Constant power: 10 MW, 7 MVAr 
 Constant impedance: 15 MW, 5MVAr at nominal voltage 
BUS04: 
 Constant power: 10 MW, 3 MVAr 
BUS05: 
 Constant power: 9 MW, 9 MVAr 

Constant impedance: 15 MW, 5MVAr at nominal voltage 

Mechanical Load Data: 
Motor 1: 207234.085.01.0LT  (p.u.) 

Motor 2: 266926.03.005.0LT  (p.u.) 
Motor 3: 0.1LT  (p.u.) 
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