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Abstract— Heavily loaded power systems are susceptible to
Hopf bifurcations, and consequent oscillatory instability. The
onset of instability can be predicted by small disturbance (eigen-
value) analysis, but the ensuring behaviour may depend strongly
on nonlinearities within the system. In particular, physical limits
place bounds on the divergent behaviour of states. This paper
explores the situation where generator field-voltage limits capture
behaviour, giving rise to a stable (though non-smooth) limit cycle.
It is shown that shooting methods can be adapted to solve for such
non-smooth limit-induced limit cycles. By continuing branches of
limit-induced and smooth limit cycles, the paper established the
co-existence of equilibria, smooth and non-smooth limit cycles.
Furthermore, it is shown that when branches of limit-induced
and smooth limit cycles merge, the limit cycles are annihilated
at a grazing bifurcation.

Index Terms— Limit cycles, piecewise smooth dynamics, hy-
brid systems, shooting methods, Hopf bifurcations, continuation
methods.

I. INTRODUCTION

Automatic voltage regulators (AVRs), coupled with power
system stabilizers (PSSs), play a fundamental role in the
dynamical behaviour of power systems. A simple example of
an AVR/PSS/exciter model [1] is provided in Figure 1. To
achieve good voltage regulation, the AVR gain KA should
have a high value. However it is well known that as KA

increases, a Hopf bifurcation may occur at a critical value K∗
A,

resulting in the system equilibrium point losing local stability
[2].

Local stability properties are well described by small dis-
turbance analysis, where the nonlinear system equations are
linearized about the equilibrium point. At a Hopf bifurcation, a
conjugate pair of eigenvalues of the linearized system migrate
across the imaginary axis. Such bifurcations may be either
subcritical or supercritical [3]. In the former case, when KA <
K∗

A, the stable equilibrium point generically coexists with an
unstable limit cycle. At KA = K∗

A, this limit cycle merges
with the equilibrium point, resulting in an unstable equilibrium
point for KA > K∗

A. In the latter case, when KA > K∗
A, a

stable limit cycle coexists with the unstable equilibrium point.
The limit cycle and equilibrium point merge at KA = K∗

A,
with no limit cycle existing (locally) for KA < K∗

A.
Many systems, including power systems, have limiters that

place restrictions on large excursions of state variables. This
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Fig. 1. Simple PSS/AVR/exciter model.

is illustrated in the AVR/PSS/exciter model of Figure 1. The
PSS output VPSS is limited by clipping limits, whilst the
field voltage Efd is restricted by non-windup limits [4]. Small
disturbance stability assessment cannot predict the effects of
such limits.

It has been shown previously [5], [6] that stable limit
cycles may be induced by state limits. Furthermore, these
limit-induced limit cycles can coexist with other stable and
unstable attractors, for values of KA both above and below
K∗

A. However prior investigations have been restricted by a
lack of numerical methods for directly locating non-smooth
limit cycles. Such techniques have recently been established in
[7], [8]. This paper exploits these newer numerical techniques
to further explore limit-induced limit cycles.

The paper is organized as follows. A generic dynamic model
is introduced in Section II, along with trajectory sensitivity
concepts. Section III provides background to limit cycle analy-
sis, and an example is explored in Section IV. Conclusions are
presented in Section V.

II. SYSTEM DYNAMIC BEHAVIOUR

A. Model

The dynamical behaviour of continuous-time systems, such
as power systems, can be expressed in terms of the flow,

x(t) = φ(x0, t), (1)

which describes the evolution of dynamic states x over time,
starting from the initial condition x(t0) = x0. In general, φ
cannot be expressed in closed form, and so must be obtained
by numerical integration [9].

The flow may well describe behaviour that involves interac-
tions between continuous dynamics and discrete events [10].
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Systems that exhibit such behaviour are known as hybrid or
piece-wise smooth dynamical systems. Power systems exem-
plify such systems. Referring to the AVR/PSS of Figure 1,
an event occurs when VPSS or Efd encounters a limit. The
outcome of such an event is a change in the description of
subsequent system behaviour.

Along smooth sections of the flow, away from events,
dynamics are driven by the tangent vector field

ẋ =
∂φ

∂t
≡ f. (2)

At an event, the tangent vector field f may switch and/or the
state undergo a reset

x+ = h(x−), (3)

where x− and x+ refer to the pre- and post-event values of x
respectively. (The event is assumed to take zero time.)

For power systems, the dynamic states must generally
satisfy algebraic constraints,

g(x, y) = 0 (4)

that introduce algebraic variables y. However it will be as-
sumed that the Jacobian Dyg is globally nonsingular, effec-
tively allowing the elimination of y. Therefore, for notational
clarity, (4) will be disregarded in later analysis.

This model is a simplification of a more complete hybrid
system model presented in [10], [11]. This simplification
favours clearer development of limit cycle analysis. However,
details of the full model can be found in [8].

B. Trajectory sensitivities

Algorithms for locating limit cycles require the sensitivity
of a trajectory (flow) to perturbations in initial conditions [12].
To obtain the sensitivity of the flow φ to initial conditions x0,
the Taylor series expansion of (1) is formed. Neglecting higher
order terms gives

∆x(t) =
∂φ(t)
∂x0

∆x0 ≡ Φ(x0, t)∆x0 (5)

where Φ is the sensitivity transition matrix, or trajectory
sensitivities, associated with the x flow [13]. Equation (5)
describes the change ∆x(t) in a trajectory, at time t along
the trajectory, for a given (small) change in initial conditions
∆x0.

Space limitations preclude the inclusion of the variational
equations describing the evolution of Φ. Full details are given
in [10], [11]. It should be emphasized that Φ does not require
smoothness of the underlying flow φ. Trajectory sensitivities
are well defined for the non-smooth and/or discontinuous flows
associated with realistic power systems.

Furthermore, the computational burden of generating Φ is
minimal. It is shown in [11], [14], [15] that when an implicit
numerical integration technique such as trapezoidal integration
is used, trajectory sensitivities can be obtained as a by-product
of computing the underlying trajectory.
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Fig. 2. Poincaré map.

III. LIMIT CYCLE ANALYSIS

A. Poincaré maps

Limit cycles and their stability can be determined using
Poincaré maps [3], [16]. This section provides a brief review
of these concepts, and establishes a connection with trajectory
sensitivities.

A Poincaré map effectively samples the flow of a periodic
system once every period. The concept is illustrated in Fig-
ure 2. If the limit cycle is stable, oscillations approach the limit
cycle over time. The samples provided by the corresponding
Poincaré map approach a fixed point. An unstable limit cycle
results in divergent oscillations. For such a case the samples
of the Poincaré map diverge.

To define a Poincaré map, consider the limit cycle Γ shown
in Figure 2. Let Σ be a hyperplane transversal to Γ and defined
by

Σ = {x : σT (x− x̃) = 0} (6)

where x̃ is a point anchoring Σ, and σ is a vector normal to Σ.
The trajectory emanating from x∗ will again encounter Σ at x∗

after T seconds, where T is the minimum period of the limit
cycle. Due to the continuity of the flow φ with respect to initial
conditions, trajectories starting on Σ in a neighbourhood of x∗

will, in approximately T seconds, intersect Σ in the vicinity
of x∗. Hence φ and Σ define the Poincaré map

xk+1 = P (xk) := φ(xk, τr(xk)). (7)

where τr(xk) ≈ T is the time taken for the trajectory to return
to Σ. Complete details can be found in [3], [16].

B. Shooting method

From (7), it can be seen that a point x∗ on the limit cycle can
be located by using Newton’s method to solve the nonlinear
algebraic equations

Fl(x∗) = φ(x∗, τr(x∗))− x∗ = 0. (8)

The solution process therefore has the iterative form

xi+1 = xi − (
DFl(xi)

)−1
Fl(xi). (9)
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It is shown in [8] that the Jacobian DFl is given by

DFl(xi) =

(
I − f |τr(xi)σ

T

σT f |τr(xi)

)
Φ(xi, τr(xi))− I (10)

where f is given by (2). Notice that because the flow φ
and associated sensitivities Φ are well defined for non-smooth
systems, solution of (8) is also well defined for such systems.

It can be seen from (8) that evaluation of Fl(xi) at each iter-
ation requires numerical integration. This process is therefore
referred to as a shooting method [12].

C. Limit cycle stability

Stability of the Poincaré map (7) is determined by lineariz-
ing P at the fixed point x∗, i.e.,

∆xk+1 = DP (x∗)∆xk. (11)

From the definition of P (x) given by (7), it follows that

DP (x∗) =
(

I − f |x∗σT

σT f |x∗
)

Φ(x∗, T ) (12)

where τr(x∗) = T .
The matrix Φ(x∗, T ) is exactly the trajectory sensitivity

matrix after one period of the limit cycle, i.e., starting from
x∗ and returning to x∗. This matrix is called the Monodromy
matrix. It is shown in [16] that for an autonomous system, one
eigenvalue of Φ(x∗, T ) is always 1, and the corresponding
eigenvector lies along f |x∗ . The remaining eigenvalues of
Φ(x∗, T ) coincide with the eigenvalues of DP (x∗), and are
known as the characteristic multipliers mi of the periodic
solution. The characteristic multipliers are independent of the
choice of cross-section Σ.

Because the characteristic multipliers mi are the eigenvalues
of the linear map DP (x∗), they describe the (local) stability
of the Poincaré map P (xk). Hence the (local) stability of the
periodic solution is determined by:

1) All mi lie within the unit circle, i.e., |mi| < 1, ∀i. The
map is stable, so the periodic solution is stable.

2) Some mi lie outside the unit circle. The periodic solution
is unstable.

Interestingly, there exists a particular cross-section Σ∗, such
that

DP (x∗)ζ = Φ(x∗, T )ζ (13)

where ζ ∈ Σ∗. This cross-section Σ∗ is the hyperplane
spanned by the n − 1 eigenvectors of Φ(x∗, T ) that are not
aligned with f |x∗ . Therefore the vector σ∗ that is normal to
Σ∗ is the left eigenvector of Φ(x∗, T ) corresponding to the
eigenvalue 1. The hyperplane Σ∗ is invariant under Φ(x∗, T ),
i.e., Φ(x∗, T ) maps vectors ζ ∈ Σ∗ back into Σ∗.

D. Continuation methods

It is often useful to explore the changes in limit cycle
structure and stability properties that result from parameter
variations. This can be achieved by introducing a free para-
meter θ into (8), giving

Fl(x∗, θ) = 0. (14)
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Fig. 3. Single machine infinite bus system.

As shown earlier, the point x∗ given by (8) fully specifies the
associated limit cycle. Therefore, the 1-manifold, or curve,
defined by (14) describes the variation of x∗, and hence the
associated limit cycle variation, with changes in parameter θ.

The curve given by (14) can be traced using a homotopy
method [17]. A predictor-corrector process is presented in [8].
Note that even when the underlying dynamic behaviour is non-
smooth, curves given by (14) are generally smooth. Curve
smoothness may be lost at grazing bifurcations though [8],
[18]. The details are beyond the scope of this paper, though
an illustration is provided in Section IV.

IV. EXAMPLE

A. Model

A single machine infinite bus system was used to explore the
existence and nature of limit-induced limit cycles. This system
is shown schematically in Figure 3, and parameter values are
provided in the appendix. The generator was represented by a
sixth order machine model [19], and the AVR/exciter by the
model given in Figure 1. (The PSS was disabled for these
studies.) This resulted in 9 dimensional state space, that is
x ∈ R9.

The non-windup limits on Efd introduce non-smoothness
into the model. It will be shown that these limits restrict
growing (unstable) oscillations in a way that gives rise to stable
limit cycles.

This example illustrates that the efficient computation of
trajectory sensitivities for large-scale non-smooth systems al-
lows, 1) the use of shooting methods for locating limit-induced
limit cycles, and 2) assessment of their stability properties.

B. Hopf bifurcation

For the parameter values given in the appendix, a Hopf
bifurcation occurs at an AVR gain of K∗

A = 208.22. The
equilibrium point is unstable for KA > 208.22. To illustrate,
for a gain of KA = 212, linearization around the equilibrium
point gave an unstable eigenvalue pair of 0.0053± j5.86. The
behaviour of the field voltage Efd is shown in Figure 4. The
initial growth in oscillation magnitude reflects the instability
of the operating point. But notice that behaviour stabilizes to a
limit cycle, from around 70 seconds. This is a consequence of
the field voltage encountering its maximum limit Efdmax =
5.4.

The shooting method was used to locate this stable limit
cycle. Convergence was obtained in 3 iterations, with the
Vt − Efd projection of the limit cycle shown in Figure 5.
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Fig. 4. Response of field voltage Efd for KA = 212.
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Fig. 5. Stable limit-induced limit cycle for KA = 212.

It was found that all characteristic multipliers lay within the
unit circle, with the largest having a magnitude of 0.83. This
confirmed the limit cycle was indeed an attractor.

Further investigation of the Hopf bifurcation revealed that it
was in fact supercritical. The bifurcation diagram of Figure 6,
produced using the continuation process of Section III-D,
shows a branch of stable limit cycles emanating from the Hopf
bifurcation.1 This branch of limit cycles undergoes a cyclic
fold at KA = 209.9, beyond which the branch comprises
unstable limit cycles.

As shown in Figure 6, the stable non-smooth limit cycles,
induced by the Efdmax limit, coexist with the smooth limit
cycles that result from the Hopf bifurcation. Over the range
208.22 < KA < 209.9, the system exhibits an unstable
equilibrium point, an unstable limit cycle, and two stable limit
cycles (one smooth and one non-smooth). These limit sets are

1The limit cycles are represented in Figure 6 by the extreme values of Efd.
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Fig. 6. Bifurcation diagram.
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Fig. 7. Co-existing limit cycles and equilibrium point, KA = 209.

shown in Figure 7, for a gain KA = 209.

The shooting method of Section III-B was used to obtain
the limit cycles of Figure 7. In all cases, convergence was
obtained in three iterations, with each iteration requiring a
single simulation of one period of the oscillation. On the other
hand, reliance on time-domain simulation would be futile.
The unstable limit cycle has characteristic multipliers both
inside and outside the unit circle, so time reversal would not
achieve convergent behaviour. Furthermore, transient behav-
iour is poorly damped in the vicinity of the Hopf bifurcation.
Therefore lengthy simulation would be required for adequate
convergence to the stable limit cycles. Shooting methods are
however unaffected by the stability properties and damping
associated with a limit cycle.
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C. Grazing bifurcation
As the gain KA is reduced, the branches of limit-induced

and smooth limit cycles converge, finally merging at KA =
206.26. At that point, the smooth limit cycle becomes tangen-
tial to (grazes) the Efdmax limit surface, as shown in Figure 8.
Furthermore, the figure shows that as KA reduces, the limit-
induced limit cycle spends less and less time on the limit
surface, until it also just grazes that surface. The two limit
cycles coalesce at the grazing case. As KA is further reduced,
the limit cycles cannot continue to deform as they did prior
to grazing. It follows that the limit cycles must vanish, with
structural stability being lost due to a grazing bifurcation [18].

V. CONCLUSIONS

Power systems form an important application area within
the general class of hybrid (non-smooth) systems. The non-
smooth nature of behaviour exhibited by such systems com-
plicates computation and stability analysis of limit cycles.
Those complications are overcome through generalization of
trajectory sensitivity analysis to non-smooth systems.

Standard Poincaré map results extend naturally to hybrid
systems. The Monodromy matrix is obtained by evaluating
trajectory sensitivities over one period of the (possibly non-
smooth) cyclical behaviour. One eigenvalue of this matrix is
always unity. The remaining eigenvalues, i.e., the character-
istic multipliers of the periodic solution, determine the local
stability properties of the limit cycle.

Restrictions imposed by limiters on state excursions can
help prevent instability. For systems that exhibit underlying
oscillatory response, limiters tend to induce periodic, (non-
smooth) limit cycle behaviour. A case of this form has been
explored in the paper. It has been shown that such limit-
induced limit cycles can co-exist with other, more traditional,
limit sets.

APPENDIX

The following per unit parameter values fully describe
the single machine infinite bus system of Section IV. All

parameters are given on a 100 MVA base, with ω in rad/sec.
• Machine parameters: ra = 0.0006, xd = 0.588,

x′d = 0.0913, x′′d = 0.075, T ′d0 = 6.59, T ′′d0 = 0.0386,
xq = 0.588, x′q = 0.1, x′′q = 0.075, T ′q0 = 1.0,
T ′′q0 = 0.0419, xl = 0.049, M = 0.0667, D = 0.005,
Tm = 2.5.

• AVR parameters: TR = 0.04, TA = 0.04, TB = 12,
TC = 1, Vsetpoint = 1.05, Efdmax = 5.4, Efdmin = −5.

• PSS is disconnected.
• Infinite bus parameters: V∞ = 1.
• Line parameters: r = 0.01, x = 0.25, b = 0.4.
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