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Abstract: This paper addresses quantity risk in the electricity market and explores several ways of managing such risk. The paper
also addresses the hedging problem of a load-serving entity, which provides electricity service at a regulated price in electricity
markets with price and quantity risk. Exploiting the correlation between consumption volume and spot price of electricity, an optimal
zero-cost hedging function characterized by payoff as a function of spot price is derived. It is then illustrated how such a hedging
strategy can be implemented through a portfolio of forward contracts and call and put options. © 2006 Wiley Periodicals, Inc. Naval
Research Logistics 53: 697–712, 2006
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1. INTRODUCTION

Over the past decade, electricity markets in the United
States and worldwide have undergone a major transition. Tra-
ditionally, the process of delivering electricity from power
plants via transmission and distribution lines to the end-users
such as homes and businesses was done by a regulated utility
company with a regional monopoly. However, recent dereg-
ulation and restructuring of the electricity industry vertically
unbundled the generation, transmission, and distribution and
introduced competition in generation, wholesale procure-
ment, and, to a limited extent, retail supply of electricity.
Electricity is now bought and sold in the wholesale market
by numerous market participants such as generators, load-
serving entities (LSEs), and marketers at prices set by supply
and demand equilibrium. As a consequence of such restruc-
turing, market participants are now exposed to price risk,
which has fueled the emergence of risk management practices
such as forward contracting and various hedging strategies.

The work described in this paper was coordinated by the Con-
sortium for Electric Reliability Technology Solutions (CERTS)
on behalf of the Department of Energy. The second and third
authors were also supported by NSF Grants EEC 0119301 and ECS
0134210 and by the Power Systems Engineering Research Center.
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The most evident exposure faced by market participants
is price risk, which has been manifested by extremely high
volatility in the wholesale power prices. During the summer
of 1998, wholesale power prices in the Midwest of the
United States surged to a stunning amount of $7,000 per
MWh from the normal price range of $30–$60 per MWh,
causing the defaults of two power marketers on the east coast.
In February 2004, persistent high prices in Texas during an ice
storm that lasted 3 days led to the bankruptcy of a retail energy
provider that was exposed to spot market prices. In California
during the 2000/2001 electricity crisis wholesale spot prices
rose sharply and persisted around $500 per MWh. The dev-
astating economic consequences of that crisis are largely
attributed to the fact that the major utilities who were forced
to sell power to their customers at low fixed prices set by the
regulator were not properly hedged through long-term supply
contracts. Such expensive lessons have raised the awareness
of market participants to the importance and necessity of risk
management practices in the competitive electricity market.

Volumetric risk (or quantity risk), caused by uncertainty in
the electricity load, is also an important exposure especially
for LSEs who are obligated to serve the varying demand of
their customers at fixed regulated prices. Electricity volume
directly affects the company’s net earnings and, more impor-
tantly, the spot price itself. Hence, hedging strategies that
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only concern price risks for a fixed amount of volume cannot
fully hedge market risks faced by LSEs. Unfortunately,
while it is relatively simple to hedge price risks for a spe-
cific quantity (e.g., through forward contracts), such hedging
becomes difficult when the demand quantity is uncertain,
i.e., volumetric risk is involved. When volumetric risks are
involved a company should hedge against fluctuations in
total cost, i.e., quantity times price, but unfortunately, there
are no simple market instruments that would enable such
hedging. Furthermore, a common approach of dealing with
demand fluctuations for commodities by means of invento-
ries is not possible in electricity markets where the underlying
commodity is not storable.

The non-storability of electricity combined with the
steeply rising supply function and long lead time for capac-
ity expansion results in strong positive correlation between
demand and price. When demand is high, for instance due to a
heat wave, the spot prices will be high as well and vice versa.
For example, the correlation coefficient between hourly price
and load for 2 years from April 1998 in California1 was 0.539.
Li and Flynn [20] also calculated the correlation coefficients
between normalized average weekday price and load for 13
markets: for example, 0.70 for Spain, 0.58 for Britain, and
0.53 for Scandinavia. There are some markets where this
price and load relationship is weak but in most markets load
is the most important factor affecting the price of electricity.

The correlation between load and price amplifies the expo-
sure of an LSE having to serve the varying demand at fixed
regulated prices and accentuates the need for volumetric risk
hedging. An LSE purchasing a forward contract for a fixed
quantity at a fixed price based on the forecasted demand quan-
tity will find that when demand exceeds its forecast and it is
underhedged, the spot price will be high and most likely will
exceed its regulated sale price, resulting in losses. Likewise,
when demand is low below its forecast, the spot price at which
the LSE will have to settle its surplus will be low and most
likely below its purchase price, again resulting in losses.

Because of the strong causal relationship between electric-
ity consumption and temperature, weather derivatives have
been considered an effective means of hedging volumet-
ric risks in the electricity market. The advantage of such
practices stems from the liquidity of weather derivatives
due to their multiple applications. However, the specula-
tive image of such instruments makes them undesirable
for a regulated utility having to justify its risk manage-
ment practices and the cost associated with such practices
(which are passed on to customers) to a regulator. In some

1 During this period, all the regulated utilities in the California mar-
ket procured electricity from the spot market at the Power Exchange
(PX). They were deterred from entering into long-term contracts
through direct limitations on contract prices and disincentives due
to ex post prudence requirements.

jurisdictions, the regulators (e.g., the California Public Util-
ity Commission (CPUC)), who are motivated by concerns
for generation adequacy, require that LSEs hedge their load
serving obligations and appropriate reserves with physi-
cally covered forward contracts and options for power. That
is, the hedges cannot just be settled financially or subject
to liquidation damages but must be covered by specific
installed or planned generation capacity capable of physi-
cal delivery. In California, the CPUC has explicitly ordered
phasing out of financial contracts with liquidation damages
as means of meeting generation adequacy requirements by
2008 [7, 8].

In this paper we propose an alternative to weather deriva-
tives that involves the use of standard forward electricity con-
tracts and price-based power derivatives. This new approach
to volumetric hedging exploits the aforementioned correla-
tion between load and price. Specifically, we address the
problem of developing an optimal hedging portfolio consist-
ing of forward and options contracts for a risk-averse LSE
when price and volumetric risks are present and correlated.
We derive the optimal payoff function that maximizes the
expected utility of the LSE’s profits and determine the mix
of forwards and options that replicate the optimal payoff of a
hedging portfolio in a single-period setting. While at present
the liquidity of power derivatives is limited, we expect that
better understanding of how such instruments can be used
(which is the goal of this paper) will increase their utilization
and liquidity.

Electricity markets are generally incomplete markets in the
sense that not every risk factor can be perfectly hedged by
market traded instruments. In particular, the volumetric risks
are not traded in electricity markets. Thus, we cannot naively
adopt the classical no-arbitrage approach of constructing a
replicating portfolio for hedging volumetric risks, and the
volumetric risk cannot be eliminated. Since there are a lot of
portfolios of existing derivative contracts that can partially
hedge a given exposure to volumetric risks, the problem is to
select the best one according to some criterion. Our proposed
methodology is based on an alternative approach offered by
the economic literature for dealing with risks that are not
priced in the market, by maximizing the expected utility of
economic agents bearing such risks [10, 16, 17].

Our mathematical derivation is based on the utility function
representation of the risk preference of an LSE. We derive an
optimal payoff function that represents payoff as function of
price and with zero expected value. We then show how the
optimal payoff function can be synthesized from a portfo-
lio of forward contracts, European call and put options. We
then provide an example for an LSE considering two alter-
native forms of its utility function: (1) constant absolute risk
aversion (CARA) and (2) mean-variance utility risk prefer-
ence, under bivariate normal assumptions on the distribution
of quantity and logarithm of price.
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Hedging problems dealing with non-traded quantity risk
have been analyzed in the agricultural literature; farmers also
face correlated price and quantity uncertainty. But the anal-
ogy is imperfect since LSEs have different profit structure,
higher price volatility due to non-storability, and positive
correlation between price and quantity.2 Furthermore, stor-
age provides an alternative means for handling quantity risk.
Nevertheless, the farmer’s problem provides some useful ref-
erences that are relevant to the LSE’s hedging problem. In a
pioneering article, McKinnon [21] shows that the correla-
tion between price and quantity is a fundamental feature of
this problem and calculated the variance-optimizing hedge
ratio of futures contracts. He shows that the optimal forward
sale cannot completely eliminate a great deal of uncertainty
that was introduced to the farmer’s income from output
uncertainty. The individual farmer can deal with such output
variability by investing in buffer stocks, and McKinnon shows
that buffer stocks can reduce part of quantity uncertainty.
Such storing is not an economical option to consider for the
participants in the electricity market, so LSEs will have to rely
more on financial derivatives. Some articles consider farmers
who find it infeasible to carry buffer stocks from one period
to another [22, 24]. For example, Moschini and Lapan [22]
shows that quantity uncertainty provides a rationale for the
use of options. They derived exact solutions for hedging deci-
sions on futures and options for a farmer with a CARA utility
under multivariate normally distributed price and quantity,
assuming that only one option strike price is available.

With CARA utility function and bivariate normal distri-
bution for price and quantity, Brown and Toft [3] derives
the optimal payoff that should be acquired by a value-
maximizing non-financial production firm facing multiplica-
tive risk of price and quantity. Instead of assuming the
existence of certain instruments, they derive the payoff func-
tion that the optimal portfolio will have. We use their idea
of obtaining the optimal payoff function and solve an LSE’s
problem under different profit, utility, and probability distri-
butions. Moreover, we extend this approach by replicating
the optimal payoff function using available financial con-
tracts. Determining the optimal number of contracts from
a set of available options requires solving a difficult opti-
mization problem, even in a single-period setting, due to
nonlinearity of the option payoff. In this paper we tackle the
problem by first determining a continuous optimal hedging
function and then developing a replicating strategy based on
a portfolio of standard instruments.

Our result shows that we can construct an optimal hedging
portfolio for the LSE that includes forwards and options with

2 Brown and Toft [3] show that firms with the positive price-quantity
correlation should hedge more in most price states to compensate
for the increased exposure associated with the positive correlation
than firms with the negative price–quantity correlation.

various strike prices. The idea of volumetric hedging using a
spectrum of options was also proposed by Chao and Wilson
[6] from the perspective of a regulator who could impose
such hedging on the LSE as a means of ensuring resource
adequacy and market power mitigation.

The remainder of the paper is organized as follows. In
Section 2, we provide some background about the electric-
ity market that is relevant to the understanding of volumetric
risks and contracts that can be used to manage volumetric risk.
We also discuss alternative approaches to volumetric risk
management. In Section 3, we explore a way of optimally
utilizing European call and put options in mitigating price
and volumetric risks together. Section 4 concludes the paper.

2. VOLUMETRIC RISKS IN THE
ELECTRICITY MARKET

In electricity markets, an LSE is uncertain about how much
electricity a customer will use at a certain hour until the
customer actually turns a switch on and draws electricity.
Furthermore, the LSE is obligated to provide the customer
with electricity whenever it turns the switch on. In other
words, unlike telephone service, there is no busy signal in
electricity supply. Consequently, the electricity demand is
uncertain and thus results in volumetric risks.

Uncertainty or unpredictability of a demand quantity is a
traditional concern for any commodity, but holding inventory
is a good solution to deal with quantity risk for those com-
modities that can be economically stored. However, electric-
ity is non-storable,3 which is the most important characteristic
that differentiates the electricity market from the money mar-
ket or other commodities markets. Since electricity needs to
be purchased at the same time it is consumed, the traditional
method of purchasing an excess quantity of a product when
prices are low and holding inventories cannot be used by
the firms retailing electricity. Moreover, unlike other com-
modities, LSEs, which are typically regulated, operate under
an obligation to serve and cannot curtail service to their
customers (except under special service agreement) or pass
through high wholesale prices even when they cannot procure
electricity at favorable prices.4 Consequently, volumetric
risks in the electricity market require special handling.

In the next subsection, we discuss why volumetric risks are
significant in the electricity market. The following subsection
explains financial contracts that can be used to mitigate such
risk.

3 The most efficient way of storing electricity produced is to use
the limited pump capacity installed in some hydro storage plants.
The efficiency of this method is only around 70% [27]. There-
fore, it is generally assumed that electricity is non-storable (at least
economically).
4 In fact, most US states that opened their retail markets to
competition have frozen their retail electricity prices.
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2.1. Why Volumetric Risks Are Significant to LSEs

Electricity demand is highly affected by local weather con-
dition; for example, increased need of air conditioners (or
heaters) due to hot (or cold) weather increases electricity
demand. As a result, the load process is volatile, having occa-
sional spikes caused by extreme weather condition or special
events.

On the other hand, electricity demand is inelastic to price
levels. Currently, most electricity users don’t have incentives
to reduce electricity consumption when spot prices are high
because they face guaranteed fixed prices and LSEs have
an obligation to meet the demand. This price inelasticity
of electricity demand combined with the non-storability of
electricity makes sudden spot-price changes more likely than
in any other commodity markets.5 Consequently, electricity
spot prices exhibit extraordinarily high volatility compared
to financial and commodity markets. For example, the typ-
ical volatility of dollar/yen exchange rates is (10–20%),
LIBOR rates (10–20%), S&P 500 index (20–30%), NASDAQ
(30–50%), natural gas prices (50–100%), while the volatility
of electricity is (100–500% and higher) [12].

Because profits are a function of quantity multiplied by the
price that is extraordinarily volatile and spiky, small uncer-
tainty in demand volume may become very high uncertainty
in LSEs’ profits. Furthermore, volumetric risks in the elec-
tricity market become severe due to adverse movements of
price and volume: the sales volume is small when the profit
margin is high, while it is large when the margin is low or
even negative. This is due to the price inelasticity of demand
and the resulting strong positive correlation between price
and demand.

2.2. Contracts for Volumetric Risk Management

Due to the non-storability, electricity must be produced
exactly at the same time it is consumed, and electricity supply
and demand must be balanced on a real-time basis; however,
market transactions should occur before the demand and sys-
tem constraints are fully known. For this reason, electricity
spot markets have several settlement processes for physical
delivery.

Initial settlement is done in the day-ahead market. The
prices and quantities in the day-ahead market are determined
by matching offers from generators to bids from LSEs by
supply and demand equilibrium, usually for each hour of the
next day. As time approaches to the delivery hour and more
information is revealed on supply and demand conditions,

5 Boisvert et al. [2] and Caves et al. [5] support this argument and
state that price spikes can be mitigated by introducing voluntary
market-based pricing in retail markets. However, regulators have
not been persuaded to adopt market-based real time pricing at the
retail level [15].

additional settlement processes occur in the day-of, hour-
ahead, and ex post markets, at different prices.6 However, the
underlying spot price of electricity derivatives is usually the
day-ahead price, because the other markets transacted closer
to delivery than the day-ahead market are designed primarily
for balancing of real-time supply and demand fluctuations.

To manage risks against volatile spot prices for volatile
loads, electricity markets have developed various financial
instruments that can be settled in advance before the spot
market. In this section, we describe various instruments
that can be traded to mitigate volumetric risks: fixed-price
fixed-volume contracts, vanilla options, swing options, inter-
ruptible service contracts, and weather derivatives.

2.2.1. Forward and Futures Contracts
(Fixed-Price Fixed-Volume Contracts)

A simple solution to volumetric risks would be to just settle
a fixed price agreement in advance for a significant amount of
volume. Then, only the remaining amount of demand would
be exposed to the volatile spot prices, resulting in reduced
volumetric risks. This is what forward contracts do.

A forward contract in the electricity market is an agreement
to buy or sell electricity for delivery during a specified period
in the future at a price determined in advance when the con-
tract is made. In the electricity forward markets, the products
are sold as blocks such as on-peak, off-peak, or super-peak.7

Forward contracts are over-the-counter (OTC) products.
They need not be standardized; instead, they can be struc-
tured in the most convenient way to the counterparties: they
could be for the delivery to any location during a certain hour,
on-peak or off-peak of a day, week, month, season, or year.
Because of their flexibility, forward contracts are more pop-
ular than futures and are the most liquid and widely used risk
management tool in the electricity market.

Futures contracts are of the same type as forwards, but
they are standardized. In 1996, the New York Mercantile
Exchange (NYMEX) started to trade electricity futures for

6 A day-of market is for the delivery of electricity for the rest of the
day, and an hour-ahead market is for the next couple of hours. Ex
post (or real-time) markets transact for reconciling deviations from
the predicted schedules.
7 On-peak power is the power for peak-load period. In the western
regions of the United States, standard on-peak power in the forward
market is 6 by 16, which means electricity for the delivery from
6:00 to 22:00, Monday through Saturday, excluding North American
Electric Reliability Council (NERC) holidays. On the other hand, in
the eastern and central regions, on-peak power is defined as 5 by 16,
which means electricity for the 16-hour block 6:00 to 22:00, Monday
through Friday, excluding NERC holidays. Super-peak power is the
power for the super-peak period. In the western region, the super-
peak power is 5 by 8, which is for delivery from 12:00 to 20:00,
Monday through Friday. Off-peak power is the power during low-
demand period, which is the complement to on-peak.
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several regions of North America, followed by other ex-
changes such as Chicago Board of Trade (CBOT) and the
Minnesota Grain Exchange (MGE) in the United States and
International Petroleum Exchange (IPE) in London. Unfor-
tunately, for a variety of reasons, after the initial burst of
trading activities, markets in the United States lost their inter-
est in electricity futures and turned to forward contracts in
OTC markets. As a result, NYMEX, CBOT, and IPE have
stopped their trading of electricity futures. Although MGE is
still trading them, the trading volume is small.

2.2.2. Plain-Vanilla Options

An option in the electricity markets obligates the issuer
to reimburse the option holder for any positive difference
between the underlying market price and the strike price.
Compared to a contract that specifies a fixed quantity, an
option has the advantage of reducing quantity risks by
enabling an LSE to purchase electricity at the strike price
only when it is needed and the spot price exceeds the strike
price. In particular, a portfolio of call options with many dif-
ferent strike prices would allow the holder to exercise more
options the higher is the spot price, thus obtaining more elec-
tricity when the spot price is higher, which usually occurs
precisely when its load is greater [6].

The electricity options are diverse in contract terms like
products, delivery period, and location. Products could be
on-peak, off-peak, or round-the-clock. The delivery period
could be a month, a quarter, or a year.

The first category of options consists of calendar year and
monthly physical options, which are forward options. The
exercise of the December 2004 call option at the end of
November allows the holder to receive the specified quantity
of electricity (in MWh) during the specified hours (such as
on-peak, off-peak, or round-the-clock hours) of December at
the strike price. In electricity markets, forward options are not
widely traded [11]. The second category of options used in
the electricity market is a strip of daily options. These options
are specified for a given contract period (year, quarter, month,
etc.) and can be exercised daily. For example, the holder of a
December 2004 daily call option can issue an advance notice
on December 15 to receive a specified volume of electricity
on December 16 during the on-peak hours, paying the fixed
price per MWh. Last, there are hourly options for financial
settlements against hourly spot prices during specified blocks
of hours like 1, 4, and 8 hours [14].

2.2.3. Swing Options

For swing options, the option holder nominates a total
fixed amount to be delivered over the contract period and
is also given the right to swing the volume received within a

certain range, with limits on the number of swing right over
the contract period. While a vanilla option protects against
prices for a fixed volume on each day during the deliv-
ery period, a swing option allows the holder to respond to
volumetric risks by adjusting the volume exercised. Accord-
ingly, the holder can protect more volume when spot prices
are spiky than when spot prices are at a normal level.
Swing options are well studied in the literature, for example:
[9, 15, 18, 26].

2.2.4. Interruptible Service Contracts

Interruptible contracts are made with customers who are
willing to have their electricity service interrupted by the LSE
under specified conditions. In exchange for the interruption
option, the LSE typically offers a lower electricity rate to the
customer. In the situations where supply or demand shocks
occur, the interruptible contracts allow LSEs to interrupt the
counterparty’s service at a lower cost than serving them by
purchasing power at the high spot price. For literature on such
contracts, see [12, 25].

2.2.5. Weather Derivatives

Weather derivatives give payouts depending on the realized
weather variables; thus, they can be used to hedge volumet-
ric risks for various industries whose supply and demand
volume is affected by weather conditions. Since the first
transaction by energy companies took place in 1997, the
transaction volume in weather derivatives has been expand-
ing rapidly among diverse industries such as agriculture,
tourism, beverage, ice cream, and entertainment. In addition,
weather derivatives are used by investment firms as inde-
pendent means of diversifying their risks from the existing
financial markets because it is widely perceived that the cor-
relations between weather indices and most financial indices
are negligible.

Traditionally, hedging against abnormal weather condi-
tions has been done through insurance contracts. These
insurance contracts are typically settled to cover against cat-
astrophic weather conditions such as drought and floods.
However, these contracts cannot protect against abnormal but
less extreme weather conditions, which could also affect prof-
its. The need for an instrument that can be used to hedge such
non-catastrophic weather conditions brought the weather
derivatives into the market. Moreover, for weather deriva-
tives, there is no need to provide proofs of financial loss to
receive payout unlike insurance contracts; payoffs of weather
derivatives are decided by the actual weather readings at a
weather station specified in the contract.

Among the various weather derivatives in use based on
indices such as precipitation, temperature, and wind speed,
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the most commonly traded weather derivatives are Heat-
ing Degree Days (HDD) and Cooling Degree Days (CDD)
derivatives. The HDD (CDD) index is the sum of positive
values of average temperature8 minus 65◦ during the contract
period, mostly a month or a season. The reason for the
popularity of degree-days derivatives is not only the trans-
parency of the data and value, but also the high correlation
between electricity demand and degree-days. In response
to the increased demand, Chicago Mercantile Exchange
(CME) started a standard electronic market place for HDD
and CDD futures and options since September 1999 now
reaching a more than 30,000 annual trading volume.9 They
are also traded in OTC markets such as LIFFE (Lon-
don International Financial Futures and Options Exchange)
and electronic market places like ICE (intercontinental
Exchange).

Suppose an LSE decides to mitigate its volumetric risk
associated with serving the uncertain electricity demand in its
service area during winter. If the upcoming winter is mild, the
electricity demand would be low, leaving the LSE with low
revenue. Using the fact that the electricity demand increases
as the HDD value increases in the LSE’s service area, the
LSE could buy an HDD put option with strike 2500 and tick
amount10 $10, for instance. If the upcoming winter were mild
and the HDD were 2000, then the LSE would receive $5000.
However, if the realized HDD were greater than the strike
value, 2500, then no payout is made from the contracts. In
this way, the LSE would offset its low revenues when the
weather is unfavorable.

2.2.6. Power-Weather Cross-commodity Derivatives

Since the price risk and volumetric risk are correlated,
weather derivatives that only cover the volumetric risk would
not be effective without additional hedging of price risk. For
example, LSEs definitely don’t like the cases where load
is too high at the same time as the wholesale price spikes.
But if the wholesale price is not very high, then the high
load would be generally favorable to them. Such LSEs can
benefit from the power–weather derivatives that would give
positive payouts when two conditions are both met, for exam-
ple, whenever temperature is above 80◦ at the same time as
the spot price of electricity is above $100. The merit of this
kind of double-triggered cross-commodity derivatives is that
they are cheaper than the standard weather derivatives. They
are available in OTC markets and provide efficient tools for
volumetric risk management for LSEs.

8 Mean of maximum and minimum temperature of the day.
9 [source: www.cme.com].
10 The tick amount is the money that the put option would payout
for one unit of HDD deviation under the strike price.

3. OPTIMALLY HEDGING VOLUMETRIC
RISKS USING STANDARD CONTRACTS

While weather derivatives can be used to mitigate volu-
metric risks because of the high correlation between power
demand and weather variables, appropriate use of power
derivatives would also help in mitigating volumetric risks
due to the correlation between power demand and price.
The use of standard electricity instruments may be advan-
tageous when an LSE needs to avoid the speculative stigma
of weather derivatives. Regulators may view weather deriva-
tive trading as a speculative activity and be reluctant to allow
the LSE to pass the cost of such risk management tactics to
consumers served at regulated rates. Weather derivatives do
nothing to insure supply adequacy, which is a major con-
cern in the power industry. As mentioned earlier, concerns
for generation adequacy have motivated regulators to require
that LSEs hedge their load serving obligations and reserves
with contracts that are covered by physical generation
capacity.

In this section, we propose a new approach for managing
volumetric risks by constructing a portfolio of standard for-
ward contracts and power derivatives whose underlying is the
wholesale electricity spot price. If needed, such instruments
can be backed by physical generation capacity or interruptible
supply contracts that will assure deliverability of the hedged
energy.

Consider an LSE who is obligated to serve an uncertain
electricity demand q at the fixed price r . Assume that the
LSE procures electricity that it needs in order to serve its
customers from the wholesale market at spot price p.

To protect against price risk, the LSE can enter into forward
contracts to fix the buying price at the forward price F . First,
the number of forward contracts to be purchased needs to
be determined. Suppose that the LSE decides to purchase
an amount q̄ of forwards; then, the actual demand would be
q̄ + �q. Then, the profit that is at risk is �q · (r − p). The
LSE would want to protect against the situation where either
spot price p is higher than r and �q > 0 or p is less than r

and �q < 0. Now the second question arises: how to manage
this remaining risk?

The LSE’s strategy could be buying call options with strike
prices that are higher than r and exercised when �q > 0 and
buying put options with strike prices less than r and exercised
when �q < 0. Of course, prices of the call/put options are
not negligible. Then, the relevant decision problem is to deter-
mine how many put/call options should the LSE purchase and
at what strike prices?

The timing of entering into forward and options con-
tracts is also an important decision, since the forward and
options prices change as the time approaches the delivery
period, reflecting the changing expectations in the mar-
ket. Optimizing such timing decisions requires solving an
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integrated problem of selecting the optimal hedging portfolio
and choosing the optimal timing of purchase. However, the
timing problem is out of the scope of this paper.11 Here we
restrict ourselves to a single period model where a hedging
portfolio is constructed at time 0 in order to reduce risk from
serving retail load at time 1. A single-period model will allow
us to see the implications of the optimal hedging strategy.

To deal with this hedging problem, we first derive the over-
all payoff that the optimal hedging portfolio should have as a
function of realized spot price p and then determine how to
span this payoff with forwards and options.

3.1. Obtaining the Optimal Payoff Function

3.1.1. Mathematical Formulation

In our single-period setting, hedging instruments are pur-
chased at time 0 and all payoffs are received at time 1.
Hedging portfolio has an overall payoff structure x(p), which
depends on the realization of the spot price p at time 1.
Note that our hedging portfolio may include money market
accounts, letting the LSE borrow money to finance hedging
instruments. Let y(p, q) be the LSE’s profit from serving
the load at the fixed rate r at time 1. Then, the total profit
Y (p, q, x(p)) after receiving payoffs from the contracts in
the hedging portfolio is given by

Y (p, q, x(p)) = y(p, q) + x(p), (1)

where

y(p, q) = (r − p)q.

The LSE’s preference is characterized by a concave utility
function U defined over the total profit Y (·) at time 1. LSE’s
beliefs on the realization of spot price p and load q are char-
acterized by a joint probability function f (p, q) for positive
p and q, which is defined on the probability measure P . On
the other hand, let Q be a risk-neutral probability measure
by which the hedging instruments are priced and g(p) be the
probability density function of p under Q. Because the elec-
tricity market is incomplete, there may exist infinitely many
risk-neutral probability measures. We assume that a specific
measure Q was picked according to some optimal criteria.

We formulate the LSE’s problem as

max
x(p)

E[U [Y (p, q, x(p))]]

s.t . EQ[x(p)] = 0, (2)

11 Related work on this topic can be found in [23], which considers
the optimal timing of static hedges using only forward contracts.

where E[·] and EQ[·] denote expectations under the prob-
ability measure P and Q, respectively. In (2), we require
the manufacturing cost12 of the portfolio to be zero under
a constant risk-free rate. This zero-cost constraint implies
that purchasing derivative contracts may be financed from
selling other derivative contracts or from the money market
accounts. In other words, under the assumption that there is no
limits on the possible amount of instruments to be purchased
and money to be borrowed, our model finds a portfolio from
which the LSE obtains the maximum expected utility over
total profit.

3.1.2. Optimality Conditions

The Lagrangian function for the above constrained opti-
mization problem is given by

L(x(p)) = E[U(Y (p, q, x(p)))] − λEQ[x(p)]

=
∫ ∞

−∞
E[U(Y )|p]fp(p)dp − λ

∫ ∞

−∞
x(p)g(p)dp

with a Lagrange multiplier λ and the marginal density func-
tionfp(p)ofp underP . Differentiating L(x(p))with respect
to x(·) results in

∂L

∂x(p)
= E

[
∂Y

∂x
U ′(Y )

∣∣∣∣p
]

fp(p) − λg(p) (3)

by the Euler equation. Setting (3) to zero and substituting
∂Y
∂x

= 1 from (1) yields the first-order condition for the
optimal solution x∗(p) as follows:

E[U ′(Y (p, q, x∗(p)))|p] = λ∗ g(p)

fp(p)
. (4)

Here, the value of λ∗ should be the one that satisfies the zero-
cost constraint (2). If g(p) = fp(p) for all p, then (4) implies
that the optimal payoff function makes an expected marginal
utility from the variation in q to be the same for any p.

3.1.3. CARA Utility

A CARA utility function has an exponential form: U(Y ) =
− 1

a
e−aY where a is the coefficient of absolute risk aversion.

With CARA utility, the optimal payoff function x∗(p), which

12 A derivative price is an expected value of the discounted payoff
under the risk-neutral measure Q.
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satisfies (4), is obtained as

x∗(p) = 1

a

(
ln

fp(p)

g(p)
+ ln E[e−ay(p,q)|p]

)

− 1

a

(
EQ

[
ln

fp(p)

g(p)

]
+ EQ[ln E[e−ay(p,q)|p]]

)
. (5)

PROOF: We see from the special property U ′(Y ) =
−aU(Y ) of a CARA utility function that the following
condition holds:

E[U(Y ∗)|p] = −λ∗

a

g(p)

fp(p)
,

which implies that the utility which is expected at any price
level p is proportional to g(p)

fp(p)
. Then the optimal condition

is reduced to

E[e−a(y(p,q)+x∗(p))|p] = λ∗ g(p)

fp(p)

for an LSE with a CARA utility function. Then,

x∗(p) = 1

a
ln

(
1

λ∗
fp(p)

g(p)
E[e−ay(p,q)|p]

)

= 1

a

(
− ln λ∗ + ln

fp(p)

g(p)
+ ln E[e−ay(p,q)|p]

)
. (6)

The Lagrange multiplier λ∗ in the equation should satisfy the
zero-cost constraint (2), which is

∫ ∞
−∞ x∗(p)g(p)dp = 0.

That is,

∫ ∞

−∞
1

a

(
− ln λ∗ + ln

fp(p)

g(p)

+ ln E[e−ay(p,q)|p]
)

g(p)dp = 0. (7)

Solving (7) for ln λ∗ gives

ln λ∗ =
∫ ∞

−∞

(
ln

fp(p)

g(p)
+ ln E[e−ay(p,q)|p]

)
g(p)dp.

Substituting this into Eq. (6) gives the optimal solution (5).
�

3.1.4. Mean-Variance Approach

The mean-variance approach is to maximize a mean-
variance objective function, which is linearly increasing
in the mean and decreasing in the variance of the profit:
E[U(Y )] = E[Y ] − 1

2aV ar(Y ). It follows from V ar(Y ) =
E[Y 2] − E[Y ]2 that

U(Y ) ≡ Y − 1

2
a(Y 2 − E[Y ]2)

for the mean-variance objective function in an expected utility
form. Then, the optimal solution x∗(p) that satisfies (4) is
obtained as

x∗(p) = 1

a

(
1 −

g(p)

fp(p)

EQ
[

g(p)

fp(p)

]
)

− E[y(p, q)|p]

+ EQ[E[y(p, q)|p]]
g(p)

fp(p)

EQ
[

g(p)

fp(p)

] . (8)

PROOF: From U ′(Y ) = 1−aY , the optimal condition (4)
is as follows:

E[1 − aY ∗|p] = λ∗ g(p)

fp(p)
.

Equivalently,

fp(p) − aE[Y ∗|p]fp(p) = λ∗g(p). (9)

Integrating both sides with respect to p from −∞ to ∞, we
obtain λ∗ = 1−aE[Y ∗]. Substituting λ∗ and Y ∗ = y(p, q)+
x∗(p) into (9) gives

fp(p) − a(E[y(p, q)|p] + x∗(p))fp(p)

= g(p) − a(E[y(p, q)] + E[x∗(p)])g(p).

By rearranging, we obtain

x∗(p) = 1

a
− 1

a

g(p)

fp(p)
+ (E[y(p, q)] + E[x∗(p)])

× g(p)

fp(p)
− E[y(p, q)|p]. (10)

To cancel out E[x∗(p)] in the right-hand side, we take the
expectation under Q to the both sides to obtain

0 = 1

a
− 1

a
EQ

[
g(p)

fp(p)

]
+ (E[y(p, q)] + E[x∗(p)])

× EQ

[
g(p)

fp(p)

]
− EQ[E[y(p, q)|p]], (11)
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and subtract Eq. (11) × g(p)/fp(p)

EQ[g(p)/fp(p)] from Eq. (10). This
gives the final formula for the optimal payoff function under
mean-variance utility as in (8). �

Note that when we can assume P ≡ Q in the electric-
ity market, which was empirically justified in [1, 19] for
the Nordic electricity forward market, the optimal payoff
function under the mean-variance utility becomes

x∗(p) = E[y(p, q)] − E[y(p, q)|p]. (12)

The first term E[y(p, q)] is a constant, and the second term
E[y(p, q)|p] is the expected profit given the value of the spot
price. This implies that whatever the spot price is realized,
the optimal portfolio is the one that makes the expected total
profit for any given price under quantity uncertainty to be the
same as the expected profit before hedging. This is because
maximizing the mean-variance objective function with our
zero-cost constraint and P ≡ Q is the same as just min-
imizing a variance of profit after hedging.13 In fact, given
the value of p, the variance of profit is zero after adding the

optimal payoff in (12). We see that the optimal portfolio can
remove only the uncertainty in revenue that is correlated with
price.

3.1.5. Bivariate Lognormal-Normal Distribution
for Price and Load

Suppose the marginal distributions of p and q as follows:

Under P : log p ∼ N(m1, s2), q ∼ N(m, u2),
Corr(log p, q) = ρ

Under Q : log p ∼ N(m2, s2).

Then, we can get the explicit functions for the optimal pay-
off. For the CARA utility, the optimal payoff function (5)
reduces to

x∗(p) = 1

a
(A1(p) + A2(p)), (13)

where

A1(p) ≡ ln
fp(p)

g(p)
− EQ

[
ln

fp(p)

g(p)

]
= −m2 − m1

s2
(log p − m2)

A2(p) ≡ ln E[e−ay(p,q)|p] − EQ[ln E[e−ay(p,q)|p]]

= −arρ
u

s
(log p − EQ[log p]) + a

(
m − ρ

u

s
m1

)
(p − EQ[p]) + aρ

u

s
(p log p − EQ[p log p])

+ 1

2
a2(−2r(p − EQ[p]) + p2 − EQ[p2])u2(1 − ρ2)

= −arρ
u

s
(log p − m2) + a

(
m − ρ

u

s
m1

) (
p − em2+ 1

2 s2) + aρ
u

s

(
p log p − (m2 + s2)em2+ 1

2 s2
)

+ 1

2
a2

(−2r(p − em2+ 1
2 s2) + p2 − e2m2+2s2)

u2(1 − ρ2)

13 This kind of hedging is also considered in [11]: mean-variance
hedging reduces to variance minimization when the pricing
measure equals to the physical measure because they consider
only forward contracts, which have zero expected value before
delivery.

and for the mean-variance utility, the optimal payoff func-
tion (8) reduces to

x∗(p) = 1

a
(1 − B1(p)) − B2(p) + B3B1(p), (14)
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where

B1(p) ≡
g(p)

fp(p)

EQ
[

g(p)

fp(p)

] = exp

(
m2 − m1

s2
log p + m2

1 − m2
2

2s2
− (m1 − m2)

2

s2

)

= e
− (m1−m2)(m1−3m2)

2s2 p
m2−m1

s2

B2(p) ≡ E[y(p, q)|p] = E[(r − p)q|p] = (r − p)
(
m + ρ

u

s
(log p − m1)

)
B3 ≡ EQ[E[y(p, q)|p]]

= (r − EQ[p])
(
m − ρ

u

s
m1

)
+ ρ

u

s
(rEQ[log p] − EQ[p log p])

= (
r − em2+ 1

2 s2) (
m − ρ

u

s
m1

)
+ ρ

u

s

(
rm2 − (m2 + s2)em2+ 1

2 s2)
.

We have used the following formulas in the calculation.

EQ[log p] = m2

EQ[p] = em2+ 1
2 s2

EQ[p log p] = (m2 + s2)em2+ 1
2 s2

EQ[p2] = e2m2+2s2

g(p)

fp(p)
=

1
ps

√
sπ

exp

(
− 1

2

(
log p−m2

s

)2
)

1
ps

√
sπ

exp

(
− 1

2

(
log p−m1

s

)2
) = exp

(
m2 − m1

s2
log p + m2

1 − m2
2

2s2

)

EQ

[
g(p)

fp(p)

]
= exp

(
m2 − m1

s2
m2 + m2

1 − m2
2

2s2
+ (m2 − m1)

2

2s2

)
= exp

(
(m1 − m2)

2

s2

)

We’ve also used q|p ∼ N
(
m+ρ u

s
(log p −m1), u2(1 −ρ2)

)
to obtain

ln E[e−ay(p,q)|p] ≡ ln E[e−a(r−p)q |p]
= −a(r − p)

(
m + ρ

u

s
(log p − m1)

)

+ 1

2
a2(r − p)2u2(1 − ρ2).

3.1.6. Bivariate Lognormal Distribution
for Price and Load

Suppose the marginal distributions of p and q, on the other
hand, follow bivariate lognormal distributions as follows:

Under P : log p ∼ N(m1, s2), log q ∼ N
(
mq , u2

q

)
,

Corr(log p, log q) = φ

Under Q : log p ∼ N(m2, s2).

Then, we can get the explicit functions for the optimal payoff
for the mean-variance utility:

x∗(p) = 1

a
(1 − B1(p)) − B ′

2(p) + B ′
3B1(p), (15)

where

B ′
2(p) ≡ E[y(p, q)|p] = E[(r − p)q|p]

= (r − p)emq+φ
uq

s
(log p−m1)+ 1

2 u2
q (1−φ2)

since log q|p ∼ N(mq + φ
uq

s
(log p − m1), u2

q(1 − φ2)), and

B ′
3 ≡ EQ[E[y(p, q)|p]]

= re
mq+φ

uq

s
(m2−m1)+ 1

2 u2
q (1−φ2)+ 1

2 φ2 u2
q

s2 s2

− em2+mq+φ
uq

s
(m2−m1)+ 1

2 u2
q (1−φ2)+ 1

2 (φ
uq

s
+1)2s2

. (16)
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3.2. Replicating the Optimal Payoff Function

In the previous section, we’ve obtained the payoff function
x∗(p) that the optimal portfolio should have. In this section,
we construct a portfolio that replicates payoff x(p).

In [4], Carr and Madan showed that any twice continuously
differentiable function x(p) can be written in the following
form:

x(p) = [x(s) − x ′(s)s] + x ′(s)p +
∫ s

0
x ′′(K)(K − p)+dK

+
∫ ∞

s

x ′′(K)(p − K)+dK

for an arbitrary positive s. This formula suggests a way of
replicating payoff x(p). Let F be the forward price for a
delivery at time 1. Evaluating the equation at s = F and
rearranging it gives

x(p) = x(F ) · 1 + x ′(F )(p −F)+
∫ F

0
x ′′(K)(K −p)+dK

+
∫ ∞

F

x ′′(K)(p − K)+dK . (17)

Note that 1, (p − F), (K − p)+, and (p − K)+ in the above
expression represent payoffs at time 1 of a bond, forward
contract, put option, and call option, respectively.

Therefore,

x(F ) units of bonds,
x ′(F ) units of forward contracts,
x ′′(K)dK units of put options with strike K for every

K < F , and
x ′′(K)dK units of call options with strike K for every

K > F

gives the same payoff as x(p).

The above implies that unless the optimal payoff function
is linear, the optimal strategy involves purchasing (or selling
short) a spectrum of both call and put options with contin-
uum of strike prices. This result proves that LSEs should
purchase a portfolio of options to hedge price and quantity
risk together. Even if prices go up with increasing loads, more
call options with higher strike prices are exercised, having an
effect of putting price caps on each incremental load.

In practice, electricity derivatives markets, as any deriva-
tives markets, are incomplete. Consequently, the market does
not offer options for the full continuum of strike prices, but
typically only a small number of strike prices are offered.
Our purpose is to best replicate the optimal payoff function
using existing options only. Therefore, we need to decide
what amount of options to purchase for each available strike
price so that the total payoff from those options is equal or
close to the payoff provided by the optimal payoff function.

Let K1, . . . , Kn be available strike prices for put options and
K ′

1, . . . , K ′
m be available strike prices for call options where

0 < K1 < · · · < Kn < F < K ′
1 < · · · < K ′

m.

Consider the following replicating strategy, which consists
of

x(F ) units of bonds,
x ′(F ) units of forward contracts,
1
2 (x ′(Ki+1) − x ′(Ki−1)) units of put options with strike

prices Ki , i = 1, . . . , n,
1
2 (x ′(K ′

i+1) − x ′(K ′
i−1)) units of call options with strike

prices K ′
i , i = 1, . . . , m.

This strategy was obtained by the following approximations:

∫ F

0
x ′′(K)(K − p)+dK +

∫ ∞

F

x ′′(K)(p − K)+dK

=
n−1∑
i=0

∫ Ki+1

Ki

x ′′(K)(K − p)+dK

+
m∑

i=1

∫ K ′
i+1

K ′
i

x ′′(K)(p − K)+dK

≈
n−1∑
i=0

∫ max(p,Ki+1)

max(p,Ki)

x ′′(K)dK · 1

2
{(Ki −p)+ + (Ki+1 −p)+}

+
m∑

i=1

∫ min(p,K ′
i+1)

min(p,K ′
i )

x ′′(K)dK · 1

2
{(p − K ′

i )
+ + (p − K ′

i+1)
+}

≈
n−1∑
i=0

∫ Ki+1

Ki

x ′′(K)dK · 1

2
{(Ki − p)+ + (Ki+1 − p)+}

+
m∑

i=1

∫ K ′
i+1

K ′
i

x ′′(K)dK · 1

2
{(p − K ′

i )
+ + (p − K ′

i+1)
+}

=
n∑

i=1

∫ Ki+1

Ki−1

x ′′(K)dK · 1

2
(Ki − p)+

+
m∑

i=1

∫ K ′
i+1

K ′
i−1

x ′′(K)dK · 1

2
(p − K ′

i )
+.

We see that the error from the replicating strategy is very
close to zero if there exist put and call options with strike
price F (i.e., Kn 
 F 
 K1) and if p is realized very close
to one of the strike prices. The error will be smaller if the
intervals between strike prices are small, especially for the
interval within which there is a high probability that p will
fall.
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3.3. An Example

In this section, we illustrate the method that we derived
in the previous sections. We consider the on-peak hours of
a single summer day as time 1. Parameters were approx-
imately based on the California Power Exchange data of
daily day-ahead average on-peak prices and 1% of the total
daily on-peak loads from July to September 1999. Specific
parameter values are imposed as follows:

• Price is distributed lognormally with parameters
m1 = 3.64 and s = 0.35 in both the real-world
and risk-neutral world: log p ∼ N(3.64, 0.352) in
P and Q. The expected value of the price p under
this distribution is $40.5/MWh.

• The fixed rate r = $100/MWh is charged to the
customers who are served by the LSE.

• For CARA utility, the risk aversion is a = 1.5.
• Load is either normally distributed with mean m =

300 and u2 = 302 or lognormally distributed with
parameter m = 5.77 and u = 0.09.

We would like to point out a significant correlation effect
in the profit distributions. Figure 1 shows that the profit dis-
tributions become quite different as the correlation between
load and logarithm of price changes. Considering that the cor-
relation coefficient of our data is 0.7, we observe that the cor-
relation coefficient cannot be ignored in the analysis of profit.

The optimal payoff functions for a CARA utility LSE
are drawn in Figure 2 for various correlation coefficients
between log p and q. Generally, low profit from high loads for

Figure 1. Profit distribution for various correlation coefficients.
Generated 50,000 pairs of (p, q) from a bivariate normal distribu-
tion of (log p, q) with a various correlation ρ’s, where log p ∼
N(3.64, 0.352) and q ∼ N(300, 302) and plotted estimated proba-
bility density functions of the profit using normal kernel (assuming
r = $100/MWh). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 2. The optimal payoff function for an LSE with CARA
utility when price and load follow bivariate lognormal-normal distri-
bution log p ∼ N(3.64, 0.352) and q ∼ N(300, 302) with correlation
coefficient ρ. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

very high spot prices and from low load for very low spot price
is compensated with the cases where spot prices and loads are
around the expected value. This can be seen from the graph
where as the spot price goes away from r , positive payoff is
received from the optimal portfolio while the payoff is nega-
tive around r . We also note that larger payoff can be received
when the correlation is smaller. This is because the variance
of profit is bigger when the correlation is smaller, as we can
see from Figure 1. Therefore, even when the correlation is
zero, the optimal payoff function is nonlinear.

Figure 3 illustrates the numbers of contracts to be pur-
chased in order to obtain the payoff x∗(p) for an LSE with a
CARA utility function. We see that the numbers of options
contracts are very high relative to the mean volume. This
is because we don’t restrict the model with constraints such
as credit limits. The zero-cost constraint (2) that we only
included in our model enables borrowing as much money as
needed to finance any number of derivative contracts.

For an LSE with mean-variance utility, the optimal payoff
functions are drawn in Figure 4. They show the tendency of
mean-variance utility to protect against high price and low
quantity. For an illustration of the numbers of contracts to be
purchased in order to obtain payoff x∗(p), see Figure 5. Note
that in our examples the number of options contracts to be
purchased in the optimal portfolio is positive for any strike
prices. This implies that we borrow money from the bank and
purchase a portfolio of options contracts.

Figure 6 compares distribution changes between profit
without hedging, profit after price hedge14 and profit after

14 Price hedge here means that we add the optimal payoff function
obtained under the assumption of no quantity risk. This is in fact
equivalent to buying forwards for the average load quantity.
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Figure 3. The graphs show numbers of forward and options contracts to be purchased in order to replicate the optimal payoff x∗(p) that
is obtained for the LSE with CARA utility. In this example, the forward price is $40.5/MWh, thus, the optimal portfolio includes forward
contracts for x ′(40.5) MWh, put options on x ′′(K)dK MWh for K< 40.5 and call options on x ′′(K)dK MWh for K > 40.5. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

the optimal price and quantity hedge.15 The graphs shows
significant improvements in reducing risks when we hedge
price and quantity risk together.

In Figure 7 we explore the sensitivity of the optimal
payoff function with respect to the divergence between
the risk-neutral distribution and the assumed physical dis-
tribution of prices. Specifically, we assume that the joint
distribution for quantity and price under both measures P

and Q is represented by a bivariate lognormal-normal density
function with possible differences in the mean logarithmic
price, which we vary. The results depend on the utility func-
tion used. For CARA utility, the overall payoff is higher than

15 Price and quantity hedge refers to the optimal payoff function that
we obtained in this paper.

the optimal payoff if the expected price is higher than the
market price, but the difference is not that significant with
respect to the payoff changes for differing p. For the mean-
variance case, however, the difference between payoffs for
varying mean logarithmic price m2 is more noticeable.

Figure 8 shows how hedging strategies change with risk
aversion. Figure 8a displays the optimal payoff functions for
CARA utility with different levels of risk aversion. It shows
that the payoff function with high risk aversion is more sen-
sitive to the unit change in spot price, indicating that a more
risk averse LSE will enter into more active hedging. On the
other hand, mean-variance utility shows different aspects.
In Figure 8b, as a gets close to 0.01, the optimal payoff
doesn’t change much; the mean-variance objective function
gives more weight to variance as a gets bigger, so a won’t

Figure 4. Optimal payoff functions for an LSE with mean-variance utility. (a) corresponds to (log p, q) ∼ N(3.64, 300, 0.352, 302, ρ), and
(b) corresponds to (log p, log q) ∼ N(3.64, 5.77, 0.352, 0.092, ρ). [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 5. The graphs show numbers of forward and options contracts to be purchased in order to replicate the optimal payoff x∗(p)
that is obtained for the LSE with mean-variance utility. In this example, the forward price is $40.5/MWh; hence, the optimal portfolio
includes the forward contract for x ′(40.5) MWh, put options on x ′′(K)dK MWh for K< 40.5 and call options on x ′′(K)dK MWh for
K > 40.5. The upper Panels (a) and (b) correspond to price and load following a bivariate lognormal-normal distribution, and the lower panels
correspond to price and load following a bivariate lognormal distribution. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 6. The comparison of profit distribution for an LSE with mean-variance utility for three cases: before hedge, after price hedge, and
after price and quantity hedge, assuming the correlation coefficient between price and load to be 0.7. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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Figure 7. Sensitivity of the optimal payoff function to divergence between the risk neutral probability measure and the physical probability
measure. The graphs correspond to the case when price and load follow a bivariate lognormal-normal distribution with correlation coefficient
0.5. m2 represents the mean of logarithm of price under the risk-neutral probability measure with m2 = 3.64 corresponding to the case P ≡ Q.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

affect the optimal payoff function above a certain level and
the objective turns into minimizing variance. However, for
smaller risk aversion, the mean-variance objective function
puts more weights on the mean of profit; LSEs with low
risk aversion will protect more against the lower spot price
worrying that the expected profit is low from decreased load
when spot price is low.

4. CONCLUSION

Price risk and its management in the electricity mar-
ket have been studied by many researchers and is well
understood. However, price risk should be understood as a
correlated risk with volumetric risk (quantity risk), which
is also significant. Volumetric risk has great impact on the
profit of load-serving entities; therefore, there is a great need
for methodology addressing volumetric risk management.

We discussed financial contracts that allow LSEs to miti-
gate volumetric risk: swing options, interruptible contracts,

and weather derivatives. In particular, weather derivatives
are widely used to hedge volumetric risks since there are
strong correlations between weather variables and power
loads.

We propose an alternative approach that exploits the high
correlation between spot prices and loads to construct a volu-
metric hedging strategy based on standard power contracts. In
a one-period setting, we obtain the optimal zero-cost portfolio
consisting of bonds, forwards, and options with a contin-
uum of strike prices. Also, the paper shows how to replicate
the optimal payoff using available European put and call
options. The approximation of a payoff function using avail-
able options contracts that was shown in this paper can also
be applied for hedging in markets that have put and call
options with many different strike prices. The model and
methodology are applicable to other commodity markets and
with different profit functions.

There are more extensions that can be made to the cur-
rent model. First, the zero-cost assumption allows the LSE

Figure 8. Optimal payoffs for the case when price and load follow a bivariate lognormal-normal distributions: N(3.64, 300, 0.352, 302, 0.5)
under P while the log-price distribution is N(3.66, 0.352) under Q. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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to borrow as much money at time 0 to buy the options con-
tracts. Imposing credit limits on the hedging strategy would
make the model more realistic. Second, the electricity market
is incomplete, so the risk-neutral probability measure we
choose would not be exactly the same as what the market uses
for pricing. Therefore, a pricing error would exist, which can
lead to inefficient hedging. A model that accounts for possible
errors in choosing the risk-neutral probability measure would
be a good extension for applications in the actual electricity
markets.
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