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Abstract— Load serving entities (LSE) providing electricity
service at regulated prices in restructured electricity markets,
face price and quantity risk. We address the hedging problem
of such a risk averse LSE. Exploiting the correlation between
consumption quantities and spot prices, we developed an optimal,
zero-cost hedging function characterized by payoff as function
of spot price. We then show how such a hedging strategy can be
implemented through a portfolio of call and put options.

I. INTRODUCTION

The introduction of competitive wholesale markets in the
electricity industry has put high price risk on market partici-
pants, particularly on load serving entities (LSEs). The unique
non-storable nature of electricity as a commodity eliminates
the buffering effect associated with holding inventory, and
makes the possibility of sudden large price changes more
likely. Significant market risks that are faced by LSEs are not
related to price alone. Volumetric risk (or quantity risk), caused
by uncertainty in the electricity load is also an important
exposure for LSEs since they are obligated to serve the varying
demand of their customers at fixed regulated prices. Electricity
volume directly affects the company’s net earnings and more
importantly the spot price itself. Hence, hedging strategies
that only concern price risks for a fixed amount of volume
cannot fully hedge market risks faced by LSEs. The price
and volumetric risks are especially severe to LSEs because
supply and demand conditions usually shift adversely together
as demonstrated by the California electricity crisis in 2000 and
2001, which led three large LSEs in California to bankruptcy
or near bankruptcy.

As a way of mitigating price risks in electricity markets,
derivatives such as futures, forwards and options have been
used. An electricity forward contracts obligates a party to buy
and the other party to sell a specified quantity on a given date
in the future at a predetermined fixed price. At the maturity
date if the market price is higher than the contracted forward
price, then the buyer would make a profit, conversely, if the
market price is lower than the forward price then the buyer will
suffer a loss. The profits and losses are paid when the delivery
is completed. Put or call options are also used for different
types of risk hedging: A call (put) option on electricity supply
obligates the seller to reimburse the buyer for spot prices above
(below) the strike price. LSEs would also use call options to
avoid the risk of higher prices while still being able to forgo

the contract and enjoy the benefit of lower spot prices.
While it is relatively simple to hedge price risks for a

specific quantity, such hedging becomes difficult when the
demand quantity is uncertain, i.e., volumetric risks are in-
volved. When volumetric risks are involved a company should
be hedged against fluctuations in total cost, i.e., quantity times
price but unfortunately, there are no simple market instruments
that would enable such hedging. Furthermore, the common
approach of dealing with demand fluctuations for commodities
by means of inventories is not possible in electricity markets
where the underlying commodity is not storable.

The non-storability of electricity combined with the steeply
rising supply function and long lead time for capacity ex-
pansion results in strong positive correlation between demand
and price. When demand is high, for instance due to a heat
wave, the spot prices will be high as well and vice versa.
For example, the correlation coefficient between hourly price
and load for two years from April 1998 in California1 was
0.539. [2] also calculated the correlation coefficients between
normalized average weekday price and load for 13 markets:
for example, 0.70 for Spain, 0.58 for Britain, and 0.53 for
Scandinavia. There are some markets where this price and
load relationship is weak but in most markets load is the most
important factor affecting price of electricity.

The correlation between load and price amplifies the ex-
posure of an LSE having to serve the varying demand at
fixed regulated prices and accentuates the need for volumetric
risk hedging. An LSE purchasing a forward contract for a
fixed quantity at a fixed price based on the forecasted demand
quantity will find that when demand exceeds its forecast and it
is underhedged the spot price will be high and most likely will
exceed its regulated sale price, resulting in losses. Likewise,
when demand is low below its forecast, the spot price at which
the LSE will have to settle its surplus will be low and most
likely below its purchase price, again resulting in losses.

Because of the strong causal relationship between electricity
consumption and temperature, weather derivatives have been
considered to be an effective means of hedging volumetric
risks in the electricity market. Weather derivatives, whose

1During this period, all the regulated utilities in the California market
procured electricity from the spot market at the Power Exchange (PX). They
were deterred from entering into long term contracts through direct limitations
on contract prices and disincentives due to ex post prudence requirements.



payoff is triggered by weather conditions, exploit the correla-
tion between electricity demand and weather condition. For
example, if the upcoming winter is milder than usual, the
electricity demand would be low leaving an LSE with low
revenue. The LSE can protect against such situation by buying
a Heating Degree Days (HDD) put option, which gives a
positive payoff if the winter was realized milder than the HDD
strike value denotes and zero payoff otherwise. However, the
speculative image of such instruments makes them undesirable
for a regulated utility having to justify its risk management
practices and the cost associated with such practices to a
regulator.

In this paper we propose an alternative to weather deriva-
tives which involves the use of standard forward electricity
contracts and price based power derivatives. This new ap-
proach to volumetric hedging exploits the aforementioned cor-
relation between load and price. Specifically, we address the
problem of developing an optimal hedging portfolio consisting
of forward and options contracts for a risk averse LSE when
price and volumetric risks are present and correlated.

Electricity markets are generally incomplete markets in the
sense that not every risk factor can be perfectly hedged by
market traded instruments. In particular, the volumetric risks
are not traded in the electricity markets. Thus, we cannot
naively adopt the classical no-arbitrage approach for hedging
volumetric risks. Our proposed methodology is based on the
alternative approach offered by the economic literature for
dealing with risks that are not priced in the market, by
considering the utility of economic agents bearing such risks.
Specifically, we maximize the expected utility over the LSE’s
profit in order to investigate the optimal hedging strategies for
price and volumetric risks.

Hedging problems dealing with non-traded quantity risk has
been analyzed in the agricultural literature. A pioneering arti-
cle [1] shows that the correlation between price and quantity
is a fundamental feature of this problem and calculated the
variance-optimizing hedge ratio of futures contracts. [3] shows
that quantity uncertainty provides a rationale for the use of
options. They derived exact solutions for hedging decision
on futures and options assuming a CARA utility function
and multivariate normality for the distribution of price and
quantity. However, they assumed that only one strike price
of options is available. In the electricity market literature, [7]
directly deals with an LSE’s problem in a multi-period setting,
but they don’t consider options as their hedging instruments.
Our result shows that an optimal hedging portfolio for the
LSE includes options with various strike prices. The idea
of volumetric hedging using a spectrum of options was also
proposed in [6] from the perspective of a Public Utility
Commissions who could impose such hedging on the LSE
as a means of ensuring resource adequacy and market power
mitigation.

Determining the optimal number of contracts from a set of
available options requires the solution of a difficult optimiza-
tion problem, even in a single-period setting since payoffs of
options are non-linear. Instead, in this paper we tackle the

problem by first determining a continuous optimal payoff func-
tion that represents payoff of a hedging portfolio as a function
of spot price, and then developing a replicating strategy based
on a portfolio of standard instruments. The idea of obtaining
the optimal payoff function is adopted from [4] which derives
and analyzes optimal payoff functions that should be acquired
by a value-maximizing non-financial production firm facing
multiplicative risk of price and quantity. Instead of assuming
the existence of certain instruments, they derive the payoff
function that the optimal portfolio will have. We extend their
model to a more general setting and furthermore to the repli-
cation of the optimal payoff function using available forwards
and options. We also derive an optimal payoff function in a
closed form for an LSE considering a constant absolute risk
aversion (CARA) utility function under a bivariate normal
assumption on the distribution of quantity and logarithm of
price.

The remainder of the paper is organized as follows. In
section 2, we provide a mathematical model and obtain the
optimal payoff function. In section 3, we explore a way
of replicating the optimal payoff derived in section 2 using
forwards and available call and put options. Section 3 shows
an example and section 4 concludes the paper.

II. OBTAINING THE OPTIMAL PAYOFF FUNCTION

A. Mathematical Formulation

Consider an LSE who is obligated to serve an uncertain
electricity demand q at the fixed price r.2 Assume that the
LSE procures electricity, that it needs in order to serve its
customers, from the wholesale market at spot price p. We
consider a single-period problem where hedging instruments
are purchased at time 0 and all payoffs are received at time
1. Hedging portfolio has an overall payoff structure x(p),
which depends on the realization of the spot price p at time
1. Note that our hedging portfolio may include money market
accounts, letting the LSE borrow money to finance hedging
instruments.

Let y(p, q) be the LSE’s profit from serving the load at the
fixed rate r at time 1. Then, the total profit Y (p, q, x(p)) after
receiving payoffs from the contracts in the hedging portfolio
is given by

Y (p, q, x(p)) = y(p, q) + x(p). (1)

where
y(p, q) = (r − p)q.

The LSE’s preference is characterized by a concave utility
function U defined over the total profit Y (·) at time 1.
LSE’s beliefs on the realization of spot price p and load q
are characterized by a joint probability function f(p, q) for
positive p and q, which is defined on the probability measure
P . On the other hand, let Q be a risk-neutral probability
measure by which the hedging instruments are priced, and g(p)
be the probability density function of p under Q. Note that this

2In fact, most of US states which opened their retail markets into compe-
tition have frozen their retail electricity prices.



probability measure may not be unique since the electricity
market is incomplete, however, in this paper we ignore this
issue.

We formulate the LSE’s problem as follows:

max
x(p)

E
[
U [Y (p, q, x(p))]

]

s.t.
1
B

EQ[x(p)] = 0 (2)

where E[·] and EQ[·] denote expectations under the proba-
bility measure P and Q, respectively. B is the time-0 price
of a risk-free asset paying $1 at time 1. The constraint (2)
means that the manufacturing cost of the portfolio is zero,
because a contract is priced as the expected value of discounted
payoff under the risk-neutral probability measure. This zero-
cost constraint implies that purchasing derivative contracts
may be financed from selling other derivative contracts or
from the money market accounts. In other words, under the
assumption that there is no limits on the possible amount
of instruments to be purchased and money to be borrowed,
our model finds a portfolio from which the LSE obtains the
maximum expected utility over total profit.

B. Optimality Conditions

The Lagrangian function for the above constrained opti-
mization problem is given by

L(x(p)) = E
[
U(Y (p, q, x(p)))

] − λEQ[x(p)]

=
∫ ∞

−∞
E

[
U(Y )|p]fp(p)dp − λ

∫ ∞

−∞
x(p)g(p)dp

with a Lagrange multiplier λ and the marginal density function
fp(p) of p under P . Differentiating L(x(p)) with respect to
x(·) results in

∂L

∂x(p)
= E

[∂Y

∂x
U ′(Y )

∣∣∣p
]
fp(p) − λg(p) (3)

by the Euler equation. Setting (3) to zero and substituting
∂Y
∂x = 1 from (1) yields the first order condition for the optimal
solution x∗(p) as follows:

E
[
U ′(Y (p, q, x∗(p)))

∣∣p]
= λ∗ g(p)

fp(p)
(4)

Here, the value of λ∗ should be the one that satisfies the zero-
cost constraint (2). If g(p) = fp(p) for all p, then (4) implies
that the optimal payoff function makes an expected marginal
utility from the variation in q to be the same for any p.

C. CARA utility

A CARA utility function has the form: U(Y ) = − 1
ae−aY

where a is the coefficient of absolute risk aversion. We see
from the special property U ′(Y ) = −aU(Y ) of a CARA
utility function that the following condition holds:

E[U(Y ∗)|p] = −λ∗

a

g(p)
fp(p)

,

which implies that the utility which is expected at any price
level p is proportional to g(p)

fp(p) .

It follows from U ′(Y ) = e−aY and (4) that the optimal
condition is

E
[
e−a(y(p,q)+x∗(p))

∣∣p]
= λ∗ g(p)

fp(p)

for an LSE with a CARA utility function. Then,

x∗(p)=
1
a

ln
( 1

λ∗
fp(p)
g(p)

E
[
e−ay(p,q)

∣∣p])

=
1
a

(
− lnλ∗ + ln

fp(p)
g(p)

+ ln E
[
e−ay(p,q)

∣∣p])
(5)

The Lagrange multiplier λ∗ in the equation should satisfy the
zero-cost constraint (2), which is

∫ ∞
−∞ x∗(p)g(p)dp = 0. That

is,∫ ∞

−∞

(
−lnλ∗+ln

fp(p)
g(p)

+lnE
[
e−ay(p,q)

∣∣p])
g(p)dp = 0 (6)

Solving (6) for lnλ∗ gives

lnλ∗ =
∫ ∞

−∞

(
ln

fp(p)
g(p)

+ lnE
[
e−ay(p,q)

∣∣p])
g(p)dp

Substituting this into equation (5) gives the optimal solution:

x∗(p) =
1
a

(
ln

fp(p)
g(p)

+ lnE
[
e−ay(p,q)

∣∣p])

−1
a

(
EQ

[
ln

fp(p)
g(p)

]
+ EQ

[
lnE

[
e−ay(p,q)

∣∣p]])
(7)

Note that if we can assume P ≡ Q in the electricity market,
then the optimal payoff function under CARA utility becomes

x∗(p) =
1
a

(
lnE

[
e−ay(p,q)

∣∣p]−E
[
lnE

[
e−ay(p,q)

∣∣p]])
(8)

and thus the utility expected at p after receiving the optimal
payoff is

E[U(y + x∗(p))|p] = exp(E[lnE[U(y)|p]])

This implies that the optimal portfolio is such that the
expected utility from the varying demand at given p is the
same for all p.

Bivariate lognormal-normal distribution under P ≡ Q:
Suppose for simplicity that the LSE assigns to each state the
same probabilities as those given by the risk-neutral density
function (i.e., P ≡ Q). We calculate the optimal payoff
function (8) assuming the distribution of (p, q) to be bivariate
lognormal-normal3: (log p, q) ∼ N(up, q̄, v

2
p, σ2

q , ρ).
We use the conditional distribution of q given p, which is

q|p ∼ N
(
q̄ + ρ

σq

vp
(log p − up), σ2

q (1 − ρ2)
)
,

to obtain

lnE
[
e−ay(p,q)

∣∣p]
=ln

[
e−a(r−p)q

∣∣p]
=−q̄a(r − p) − ρ

σq

vp
(log p − up)a(r − p)

+
1
2
σ2

q (1 − ρ2)a2(r − p)2.

3price follows lognormal distribution and load follows normal distribution,
but they are correlated each other.



Then, the optimal solution under P ≡ Q from (8) becomes

x∗(p) =q̄(p − E[p])

+ρ
σq

vp

(
p log p − E[p log p] − up(p − E[p])

)

−ρ
σq

vp
r
(
log p − E[log p]

)

+
1
2
σ2

q (1 − ρ2)a
(
p2 − E[p2] − 2r(p − E[p])

)

For p, a lognormal random variable with parameter (up, v
2
p),

we have E[log p] = up, E[p] = eup+ 1
2 v2

p , E[p log p] = (up +
v2

p)eup+ 1
2 v2

p , and E[p2] = e2up+2v2
p . By substituting these, we

obtain the following optimal payoff function:

x∗(p)=(q̄ + σ2
q (1 − ρ2)ar)(p − eup+ 1

2 v2
p) (9)

+ρ
σq

vp
(p − r)(log p − up) − ρσqvpe

up+ 1
2 v2

p

+
1
2
σ2

q (1 − ρ2)a
(
p2 − e2up+2v2

p
)

We note that scaling the quantity variable takes special care.
Consider scaling the quantity so that q′ = cq instead of q.
Then q′ ∼ N(cq̄, (cσq)2). One might be led to think that the
optimal payoff function would be just x∗(p) obtained using
(p, q′), multiplied by c; however, that is not true. The only
case where scaling the quantity by c results in an optimal
payoff function cx∗(p), is when σq′ =

√
cσq .

III. REPLICATING THE OPTIMAL PAYOFF FUNCTION

In the previous section, we’ve obtained the payoff function
x∗(p) that the optimal portfolio should have. In this section,
we construct a portfolio that replicates the payoff x(p).
In [5], Carr and Madan showed that any twice continuously
differentiable function x(p) can be written as in the following
form:

x(p) = [x(s) − x′(s)s] + x′(s)p

+
∫ s

0

x′′(K)(K − p)+dK +
∫ ∞

s

x′′(K)(p − K)+dK

for an arbitrary positive s. This formula suggests a way of
replicating the payoff x(p). Let F be the forward price for
a delivery at time 1. Evaluating the equation at s = F and
rearranging it gives

x(p) = x(F ) · 1 + x′(F )(p − F )

+
∫ F

0

x′′(K)(K − p)+dK +
∫ ∞

F

x′′(K)(p − K)+dK.

Note that 1, (p − F ), (K − p)+ and (p − K)+ at each term
are payoffs at time 1 of a bond, forward contract, put option,
and call option, respectively.

Therefore,
x(F ) units of bonds,
x′(F ) units of forward contracts,
x′′(K)dK units of put options with strike K for every

K < F , and

x′′(K)dK units of call options with strike K for every
K > F
gives the same payoff as x(p).

The above implies that unless the optimal payoff function is
linear, the optimal strategy involves purchasing (or selling
short) a spectrum of both call and put options with continuum
of strike prices. This result proves that LSEs should purchase
a portfolio of options to hedge price and quantity risk
together. Even if prices go up with increasing loads, more
call options with higher strike prices are exercised, having an
effect of putting price caps on each incremental load.

In practice, electricity derivatives markets, as any derivatives
markets, are incomplete. Consequently, the market does not
offer options for the full continuum of strike prices, but
typically only a small number of strike prices are offered.
Our purpose is to best-replicate the optimal payoff function
using existing options only. Therefore, we need to decide
what amount of options to purchase for each available strike
price so that the total payoff from those options is equal or
close to the payoff provided by the optimal payoff function.
Let K1, · · · , Kn be available strike prices for put options,
K ′

1, · · · ,K ′
m be available strike prices for call options where

0 < K1 < · · · < Kn < F < K ′
1 < · · · < K ′

m and let
K0 = 0, Kn+1 = F = K ′

0, and K ′
m+1 = ∞.

Consider the following replicating strategy, which consists of
x(F ) units of bonds,
x′(F ) units of forward contracts,
1
2 ((x′(Ki+1) − x′(Ki−1))
units of put options with strike price Ki, i = 1, · · · , n,
1
2 (x′(K ′

i+1) − x′(K ′
i−1))

units of call options for a strike price K ′
i, i = 1, · · · ,m.

This strategy replicates a payoff function x(p) with an
error e(p) given below:
e(p) = 1

2{(x′(p)−x′(Kj))(Kj+1−p)−(x′(F )−x′(Kn))(F−
p)}, if p ∈ (Kj ,Kj+1) for any j = 1, · · · , n − 1,
e(p) = 1

2{(x′(p)−x′(Kn))(F −p)− (x′(F )−x′(p))(F −p)}
if p ∈ (Kn, F ),
e(p) = 1

2{(x′(K ′
1)−x′(p))(p−F )− (x′(p)−x′(F )}(p−F )

if p ∈ (F,K ′
1), and

e(p) = 1
2{(x′(K ′

j)−x′(p))(p−K ′
j−1)−(x′(K ′

1)−x′(F ))(p−
F )} if p ∈ (K ′

j−1, K
′
j) for any j = 2, · · · ,m.

We see that the error from the replicating strategy is
very close to zero if there exist put and call options with
strike price F (i.e., Kn � F � K1) and if p is realized very
close to one of the strike prices. The error will be smaller if
strike prices are offered in smaller increments, especially
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Fig. 1. Profit distribution for various correlation coefficients.
Generated 50000 pairs of (p, q) from a bivariate normal distrib-
ution of (log p, q) with a various correlation ρ’s, where log p ∼
N(3.64, 0.352) and q ∼ N(300, 302), and plotted estimated proba-
bility density functions of the profit using normal kernel (assuming
r = $100/MWh).

for price intervals with high probabilities of containing p.4

IV. AN EXAMPLE

In this section, we illustrate the method that we derived
in the previous sections. We consider the on-peak hours of a
single summer day as time 1. Parameters were approximately
based on the California Power Exchange data of daily day-
ahead average on-peak prices and 1% of the total daily on-
peak loads from July to September, 1999. Specific parameter
values are imposed as follows:

• Price is distributed lognormally with parameters up =
3.64 and vp = 0.35, in both the real-world and risk-
neutral world: log p ∼ N(3.64, 0.352) in P and Q. Note
that the expect value of the price p under this distribution
is $40.5/MWh.

• Load that the LSE needs to serve is distributed normally
with mean q̄ = 300 and variance σ2

q = 302.
• Correlation coefficient between log p and q is 0.7.
• The fixed rate r charged to the customers is 100.
• The LSE’s risk preference is decided by CARA utility

with the risk aversion a = 1.5.
We would like to point out a significant correlation-effect on

profit distributions. Figure 1 shows that the profit distributions
become quite different as the correlation between load and
logarithm of price changes. Considering that the correlation
coefficient of our data is 0.7, we observe that the correlation
coefficient cannot be ignored in the analysis of profit.

The optimal payoff functions (9) are drawn in Figure 2 for
various correlation coefficients between log p and q. Generally,

4In fact, the NYMEX offers the following strike prices for PJM electricity
options: twenty strike prices in increments of $0.50 per megawatt hour above
and below the at-the-money strike price, and the next 10 strike prices in
increments of $1.00 above the highest and below the lowest existing strike
prices for a total of at least 61 strike prices. The at-the-money strike price
is nearest to the previous day’s close of the underlying futures contract.
Strike price boundaries are adjusted according to the futures price movements.
(source: www.nymex.com)

low profit from high loads for very high spot prices and from
low load for very low spot price is compensated with the
cases where spot prices and loads are around the expected
value. This can be seen from the graph where as the spot
price goes away from r, positive payoff is received from
the optimal portfolio while the payoff is negative around r.
We also note that larger payoff can be received when the
correlation is smaller. This is because the variance of profit
is bigger when the correlation is smaller as we can see from
Figure 1. Therefore, even when the correlation is zero, the
optimal payoff function is nonlinear.

Figure 3 illustrates the optimal numbers of contracts to be
purchased in order to obtain the payoff x∗(p) for an LSE with
a CARA utility function. It indicates large variations in the
number of contracts purchased under the optimal portfoli as

the correlation coefficient changes.
We see that the numbers of options contracts are very high

relative to the mean volume. This is because we don’t restrict
the model with constraints such as credit limits. The zero-
cost constraint (2) that we included in our model allows

borrowing as much money as needed to finance any number
of derivative contracts.
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Fig. 2. The optimal payoff function under CARA utility when price
and load follow bivariate lognormal-normal distribution

V. CONCLUSION

Price risk and its management in the electricity market have
been studied by many researchers and it is well understood.
However, price risk should bestudied in conjunction

with volumetric risk (quantity risk), which is also significant.
Volumetric risk has great impact on the profit of load-serving
entities; therefore, there is a great need for methodology
addressing volumetric risk management.

Weather derivatives are widely used to hedge volumetric
risks since there is strong correlations between weather vari-
ables and power loads. In contrast, we propose an alternative
approach that exploits the high correlation between spot prices
and loads to construct a volumetric hedging strategy based on
standard power contracts. In a one-period setting, we obtain



0 20 40 60 80
−0.5

0

0.5

1

1.5

2

2.5
x 10

5

Forward price F ($/MWh)

F
or

w
ar

ds
 Q

ua
nt

ity
 (

M
W

h)

ρ =0
ρ =0.3
ρ =0.5
ρ =0.7
ρ =0.8

(a) x′(F )

0 50 100 150
400

600

800

1000

1200

1400

1600

1800

2000

2200

Strike price K ($/MWh)

Q
ua

nt
ity

 o
n 

op
tio

ns
 (

M
W

h)

ρ =0
ρ =0.3
ρ =0.5
ρ =0.7
ρ =0.8

(b) x′′(K)

Fig. 3. The graphs show numbers on forward and options contracts
to be purchased to replicate the optimal payoff x∗(p) that is obtained
for the LSE with CARA utility. In this example, the optimal port-
folio includes forward contracts for x′(40.5) MWh, put options on
x′′(K)dK MWh for K < 40.5 and call options on x′′(K)dK MWh
for K > 40.5.

the optimal zero-cost portfolio consisting of bonds, forwards
and options with a continuum of strike prices. Also the paper
shows how to replicate the optimal payoff using available
European put and call options.  In  a  different  paper  we have 

obtained similar results for a mean-variance utility function and 

alternative joint probability distributions on quantity and price 

The model and methodology are applicable to other
commodity markets and with different profit functions.

There are more extensions which can be made to the current
model. First, the zero-cost assumption allows the LSE
unlimited  borrowing  at  time 0 to buy the options contracts.
Imposing credit limits or Value-at-Risk limits on the hedging
strategy would make the model more applicable. Second, the
electricity market is incomplete, so the risk-neutral probability
measure we choose would not be exactly the same as what the
market uses for pricing. Therefore, a pricing error would exist,
which can lead to inefficient hedging. A model that accounts
for possible errors in choosing the risk-neutral probability
measure would be a good extension for applications in the
actual electricity markets.

REFERENCES

[1] McKinnon, R. I., ”Futures markets, Buffer stocks, and income stability
for primary producers,” Journal of political economy, 75, 844-861, 1967.

[2] Li, Y. and Flynn, P., ”A Comparison of Price Patterns in Deregulated
Power Markets,” UCEI POWER Conference, Berkeley, March 2004.

[3] Moschini, G. and Lapan, H., ”The hedging role of options and futures
under joint price, basis, and production risk,” International economic
review, 36(4) Nov. 1995.

[4] Brown, G.W., and Toft, K.B., ”How firms should hedge,” The review of
financial studies, Fall 2002, 15(4), pp. 1283-1324, 2002.

[5] Carr, P., and Madan, D., ”Optimal positioning in derivative securities,”
Quantitative finance Vol. 1, 2001, pp. 19-37, 2001.

[6] Chao, H. and Wilson, R., ”Resource adequacy and market power mitiga-
tion via options contracts,” UCEI POWER conference, Berkeley, March
2004

[7] Wagner, M., Skantze, P., Ilic, M., ”Hedging Optimization Algorithms for
Deregulated electricity markets,” Proceedings of the 12th Conference on
Intelligent Systems Application to Power Systems 2003,

                                                                                                                                                                                  ACKNOLEDGEMENTS

                                                                                                                                           This work was supported by NSF Grants EEC 0119301, ECS 0134210 and
                                                                                                                                           by the Power System Engineering Research Center (PSERC)


