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Fault Current Calculation by The Least Squares Method 
Natthaphob Nimpitiwan, Student Member, IEEE, and Gerald T. Heydt, Fellow, IEEE 

Abstract-- This paper contains the analysis of the increase of 
fault current due to the installation of DGs or merchant plants.  
An index called the Average Change of Fault Current, ACF, is 
proposed.  The ACF can be applied to indicate the contribution 
of the increase of fault current and to allocate the responsibility 
of system upgrades among the owners of DGs.  The least 
squares method for calculating the ACF is discussed.  The con-
fidence interval of the coefficients and mean response of ACF is 
discussed.  
 
Index Terms—Distributed generation, dispersed generation, 
power distribution, fault current calculation, average change of 
fault current.  
 

I. INTRODUCTION 
ROTECTION system planning is one of the indispensa-
ble parts of electric power system design.  Analysis of 
fault level, pre-fault condition, and post-fault condition 

are required for the selection of interruption devices, protec-
tive relays, and their coordination.  Systems must be able to 
withstand a certain limit of faults which also affects reliabil-
ity indices.  This paper relates to the increase of fault cur-
rents due to the addition of DGs: the appearance of distrib-
uted generation (DG), perhaps at high levels of penetration, 
and the effect of DG on fault currents.1

Deregulation, utility restructuring, technology evolution, 
environmental policies and increasing electric demand are 
stimuli for new distributed generation.  According to the US 
Department of Energy, DG is defined as “the modular elec-
tric generation or storage located near the point of use.  Dis-
tributed generation systems include biomass-based genera-
tors, combustion turbines, thermal solar power and photo-
voltaic systems, fuel cells, wind turbines, microturbines, 
engines/generator sets and storage and control technologies.  
Distributed resources can either be grid connected or inde-
pendent of the grid.  According to the IEEE Standard 1547-
2003, DG is defined as “Electric generation facilities con-
nected to an Area Electric Power System (EPS) operator 
through a Point of Common Coupling (PCC); a subset of 
Distributed Resource (DR)” [1].  Reduction of investment in 
transmission and distribution system upgrades and fast in-
stallation are the major benefits to the power utilities.  Many 
applications, such as upgrading the reliability of the power 
supply, peak shaving, grid support and combined heat and 
power (CHP), are the major benefits to distributed generation 
owners. 

However, the appearance of co-generation, DG, and un-
conventional generation may result in the change of the fault 
response in a system.  New operating conditions may occur 
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after appearance of new generation sources in the power 
systems.  Many types of DGs, such as fuel cells, microtur-
bines, wind turbines, solar cells, and reciprocating engine are 
sold in the market.  The variety of control techniques of the 
DGs result in different characteristics during both normal 
and abnormal operating conditions.   

 

II. INCREASE OF FAULT CURRENT 

Circuit breaker capability and configuration of protective 
relays that were previously designed for the system without 
DGs may not safely manage faults.  In order to assess the 
severity (i.e., amplitude) of the increase in fault current in the 
system due to installing DGs, fault current analysis is done, 
and this procedure is standardized and considered critical.  
The process is lengthy and generally considered to be quite 
accurate.  Many classical references have been written on 
this topic, such as [2] - [5].   

This paper proposes an index called Average Change of 
Fault current, ACF.  One of the applications of ACF is to 
indicate the severity of the increase of fault currents in the 
system due to the installation of each DG or merchant plant.  
The least squares method for calculating the ACF is dis-
cussed in the following sections. 
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where If,n is the fault current at bus n before installing new 
DG, IfDG,n is the fault current at bus n after installing new 
DGs into the system, and nbus is the total bus in the system.  
Note that  
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is the percent change of amplitude of the fault currents at the 
69 kV buses. 

Normally, owner of the buses with new DGs have to up-
grade the fault current interrupting capability of the circuit 
breaker and the change of the fault current, fI∆ , at the 

slack bus is not significant.  For these reasons, the buses with 
new DGs and system slack bus are not taking into considera-
tion in (1).   

 

III. LEAST SQUARES ESTIMATOR CONCEPTS 
Assuming that the ACF model of the system is a set of 

linear functions y(x1, x2 , x3, …xmk), the output of a linear sys-
tem can be written as, 
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or  
WxY = ,             (2) 
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In (2), Y is a general output vectors.  For the present calcula-
tion, Y will be taken to be a scalar presentation of the fault 
current average across a power system to which DG is added.  
The matrix W is a one-by-mk matrix (row vector) containing 
the linear coefficients (also known as a “weight vector”), and 
x is an mk-by-one data vector. The index m is the number of 
12-kV buses where DG or merchant plant can be installed, k 
is order of the linear function and n is the set of data. 

The error matrix, E, is given by comparing the output 
from the least squares model with the corresponding desired 
n-by-one output matrix D, 

E = D – Y. 
Note that the goal of system modeling is to minimize the 
sum of squares of the error.  In this case, the variables to be 
identified to accomplish this minimization are the wn values.  
Therefore, the estimate of the weight vector W is given as  
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The term ( )  is recognized as the pseudoinverse of 
X and the notation X

TT XXX
1−

+ is used [6], [8]. 
 

IV. APPLICATION OF THE LEAST SQUARES METHOD 

In this application, the lease square estimator is applied to 
calculate the ACF of the system corresponding to the imped-
ance of DGs.  The unknown system can be modeled as many 
different functions – in this case of the impedance of added 
DGs.  After a search of many potential fitting functions, the 
following are offered as potential candidates and all are lin-
ear in the wn terms, 
First order:    
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Reciprocal of DGimp,k: 
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Reciprocal of DGimp,k cubes: 
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The input data and DG impedances are used to estimate W 
which is a vector of the indicated w weights above.  Calcula-
tion of the weight vector, wmk, used as in (3) is comparable to 
the parameter estimation techniques in [6] and [7].  Note that 

 is the impedance of the added DG and wiDGZ , 1i, w2i and w3i 
are the coefficients of the several terms in the expansion. 
 
 

V. TIMING OF THE ADDITION OF DGS 
 
 The foregoing concept is that an index be utilized to 
determine the percentage of upgrade costs that should be 
equitably attributed to owners of new DGs.  If a single DG is 
added, there is no issue on the attribution of cost.  However, 
if several DGs are installed – more or less at the same time – 
it may not be clear as to who should pay for upgrade costs.  
The ACF concept is a standardized way to attribute costs.  
The envisioned concept is that costs associated with the pur-
chase and installation of circuit protection hardware, includ-
ing circuit breakers, shall be evaluated at the time that the 
added DGs are commissioned. 
 Only synchronous generator DGs are addressed in this 
paper – although inverter based DGs are predominant at the 
lower power levels. 
 

VI. ILLUSTRATIVE EXAMPLES 

To illustrate the application of the proposed index, a sam-
ple system (see Fig. 1) is used to demonstrate the potential 
economic impact due to the high levels of DG and merchant 
plant penetration.  

The sample system is connected to a 230 kV transmission 
system at bus Thunder1, considered as the system slack bus.  
The voltage level at 230 kV from slack bus is stepped down 
to 69 kV at the supply substation.  The taps of substation 
transformer at 230 kV and the 12 kV distribution transform-
ers usually operate higher than 1.0 p.u. to reduce the effect of 
voltage drop in the distribution level.  The Thevenin equiva-
lent impedance of 230 kV bus is 0.757+j6.183 ohms per 
phase. 

By applying the reciprocal of DGimp,k cubes model,  
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(10) 
the coefficient matrix, Wmk, is calculated from the database 
which can be generated randomly from the fault current cal-
culation program.  Number of elements of the coefficient 
matrix is m-by-kth order of the model.  The database com-
poses impedance of DGs in each location and ACFs of the 
sample system.   

Assume that the DGs are installed at 6 locations: Cam-
eron2, Signal3, Seaton2, Ealy3, Ealy4 and Sage3.  The tran-
sient impedances of each DG are as shown in Table 1.  

 
TABLE 1 

 LIST OF THE BUSES WITH NEW DG  

Bus name Transient impedance of the DG 
(p.u.) 

Cameron2 (6) 0.005 + j0.81 
Signal3 (11) 0.005 + j0.90 
Seaton2 (22) 0.005 + j0.83 
Ealy3 (24) 0.005 + j0.85 
Ealy4 (25) 0.005 + j0.92 
Sage3 (26) 0.005 + j0.84 
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Thunder1 Thunder2

Cluff

Cluff2

  19 MW
 0.4 MVR

  0.93 pu

  0.98 pu

  0.98 pu  1.03 pu

Cameron

  0.98 pu

Cameron2
  0.93 pu

  24 MW
 0.4 MVR

Noack

Noack2
  0.93 pu

  0.98 pu

  19 MW
 0.7 MVR

Signal

Signal12

  0.97 pu

  0.90 pu
Signal13
  0.92 pu

  18 MW
 0.2 MVR

  18 MW
 1.5 MVR

Shanon

Shanon2

  0.97 pu

  0.92 pu

  20 MW
   2 MVR

Superst
  0.97 pu

Super14

  13 MW
 2.7 MVR

Super15

  19 MW
 0.2 MVRSage

Sage2

15.2 MW
 1.8 MVR

McCoy

McCoy2

   0 MW
   0 MVR

Seaton

Seaton2

19.0 MW
 2.1 MVR

Ealy

Ealy3 Ealy4

18.6 MW
 0.3 MVR

 7.3 MW
 1.7 MVR

  0.90 pu
  0.97 pu   0.91 pu

  0.93 pu   0.92 pu

  0.91 pu  0.91 pu

  0.97 pu

Sage3

14.20 MW
1.66 MVR

0.87 pu

Sage4
0.92 pu

16.05 MW
1.85 MVR

269.40 MW
74.70 Mvar

279.56 MVA

 
 
 
 

Fig. 1. Illustrative example 69 kV transmission system 
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In this calculation, the least squares estimator model is 
created from 500 cases.  Impedances of DGs installed at 12-
kV buses are generated randomly with uniformly distributed 
under the same base MVA. The database is uniformly col-
lected and used to calculate the coefficients of the model by 
replacing into (3).  The coefficient matrix of the illustrative 
system is, 
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= 10.63 %. 
Note that the ACF from the conventional fault current cal-

culation is 10.87 %.  The error from the least squares estima-
tor compared to the conventional fault current calculation is 
2.25 %.  

Equation (10) gives the relation between the impedance of 
DGs in the system and the ACF.  Accuracy of the least 
squares model can be measured by the norm of error squares,  

E = 
Y

YACFconv −  p.u. 

or       E =
XW

XWACF

mk

mkconv

⋅

⋅−
 p.u. , 

where ACFconv is the average change of fault current from the 
conventional fault current calculation. 

From all models in (4) to (9), the reciprocal of DGimp 
cubes as in (9) gives the least norm of error squares.  The 
norm of error squares of each model is shown in Table 2.     

TABLE 2 NORM OF ERROR SQUARED FOR ILLUSTRATIVE EXAMPLE 

Model Equation Norm of error 
squared*

First order (3) 0.1300 
Second order (4) 0.0411 
Third order (5) 0.0112 
Reciprocal of nDGZ ,  (6) 0.0575 

Reciprocal of 
2

,nDGZ  (7) 0.00897 

Reciprocal of 3
,nDGZ  (8) 0.00155 

* expressed as a fraction, e.g., 0.13 = 13.0% 
 

Note that (10) can be independently written as 14 compo-
nents according to fourteen 12 kV buses.  Each component, 

called “Bus ACF”, relates to the contribution of the DG to 
the ACF.  The plot of Bus ACF and the total ACF is shown 
in Fig. 2.  For instance, the contribution of the DG at bus 6 
(Cameron2) and 11 (Signal3) to ACF are, respectively, 

3
4,

2
4,4,

6
12641.012409.115609.2

DGDGDG ZZZ
ACF ⋅+⋅−⋅= (11) 

3
11,

2
11,11,

11
12259.011037.113148.2

DGDGDG ZZZ
ACF ⋅+⋅−⋅= (1
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Fig. 2  Plots of the bus ACF and the total ACF 

 
VII. CONFIDENCE INTERVAL OF THE LEAST SQUARES 

 ESTIMATOR COEFFICIENT 

Assuming that the errors of the least squares estimator 
model are normally and independently distributed with mean 
zero and variance, .  The coefficient matrix, W , is nor-
mally distributed with the mean vector W and the covariance 
matrix .  For the same reason, the marginal 
distribution of any least squares estimator, , is normal 

with mean w

2
eσ

12 )'( −XXeσ

mkŵ

jje C2σ
1)' −XX

ˆ

mk and variance , where Cii is the ith di-

agonal element of the ( matrix.  Therefore, the 
100(1-α) percent confidence interval for the least squares 
estimator coefficients wii , i = 1,…, mk , is  

iieiiepn CtwwCt 2
,2/

2
,2/ ˆˆˆ σσ αα −− +≤≤−

pn−,2/α

2
eσ

2
eσ

pniiiŵ     (13) 
where t is the value from t-distribution, n is the num-
ber of all historical data, p is number of coefficient of the 
least squares estimator and  is the estimation of variance 

of errors.  The estimation of variance of errors, , is, 
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SS TT
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=ˆ Re2σ
wDD −

=
ˆ'

, 

where SSRes is the residual or error sum of squares [8]. 
 

Applying (11), the 95 percent confidence intervals on the 
coefficients of the ACF model for the illustrated system, Fig. 
1, are shown in Table A1. 
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As part of a further discussion of the confidence in the es-
timate, define a particular situation when the input of the 
ACF model is 
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For example, if considering the reciprocal of 
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The ACF can be calculated at a particular point by applying 
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The variance of the is FCA ˆ
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1

0
2 )()ˆ( xXXxFCAVar −′′=σ . 

Therefore, 100(1-α) percent confidence interval on the mean 
response of the ACF model with x0, )( 0xACFE , as the input 
is [38], 

00
2

,2/0 ˆˆ xCxtFCA nnepn ′± − σα .               (14) 
For instance, the 95 percent confidence interval of ACF of 

the illustrative system with new DGs, )( 0xACFE , shown in  
Table 3 is, 

00
2

467,025.0 ˆ63.10 xCxt jje ′± σ , 

or      
819.10)(53.10 0 ≤≤ xACFE . 

There is ninety five percent that the true ACF of this Case 
stays in the indicated interval.  Table 4 shows the confidence 
interval of the ACF value of the illustrative system with vari-
ous percent confidence, α. 

VIII. ALLOCATION OF THE RESPONSIBILITY FOR THE SYSTEM 
UPGRADES TO THE OWNER OF DGS 

This section proposes a technique to allocate the responsi-
bility of each DG owner due to the system upgrades by ap-
plying the ACF index.  Theoretically, the owner of DGs 
should share the cost for the system upgrades, depending on 
the severity of the change of fault created by their own DGs. 
With reference to the illustrated system, six DGs are in-
stalled at the 12 kV bus.  From the conventional fault current 
calculation, as the consequence of installing these DGs, the 
CBs at 2 locations need to be upgraded.  The contributions of 
the DG at each bus are calculated as in (11) and (12). 

TABLE 3 CONFIDENCE INTERVAL OF THE COEFFICIENTS OF THE ACF MODEL 
FOR THE ILLUSTRATIVE EXAMPLE 

Model coeffi-
cient,  iw

Ninety five per-
cent confidence 
interval iwtCoefficien

intervalconfidence%95  

2.2048 
2.5609 
1.7878 
2.3637 
2.3148 
2.7164 
2.4916 
2.3671 
2.3834 
2.6878 
2.8195 
2.8508 
2.3576 
2.2561 
-1.1148 
-1.2409 
-0.8427 
-1.1276 
-1.1037 
-1.1208 
-1.1090 
-1.1408 
-1.2601 
-1.2799 
-1.1144 
-1.4519 
-1.2003 
-1.1449 
0.2317 
0.2641 
0.1711 
0.2298 
0.2259 
0.2100 
0.2113 
0.2252 
0.2692 
0.2643 
0.2006 
0.2991 
0.2523 
0.2447 

± 0.2650 
± 0.2433 
± 0.2457 
± 0.2564 
± 0.2470 
± 0.2310 
± 0.2503 
± 0.2548 
± 0.2554 
± 0.2830 
± 0.2372 
± 0.2695 
± 0.2477 
± 0.2572 
± 0.2195 
± 0.2001 
± 0.2009 
± 0.2126 
± 0.2021 
± 0.1879 
± 0.2057 
± 0.2113 
± 0.2104 
± 0.2342 
± 0.1945 
± 0.2254 
± 0.2052 
± 0.2126 
± 0.0579 
± 0.0523 
± 0.0521 
± 0.0559 
± 0.0526 
± 0.0485 
± 0.0537 
± 0.0556 
± 0.0552 
± 0.0617 
± 0.0505 
± 0.0601 
± 0.0541 
± 0.0559 

0.1202 
0.0950 
0.1374 
0.1085 
0.1067 
0.0850 
0.1005 
0.1076 
0.1072 
0.1053 
0.0841 
0.0945 
0.1051 
0.1140 
0.1969 
0.1613 
0.2384 
0.1885 
0.1831 
0.1676 
0.1855 
0.1852 
0.1670 
0.1830 
0.1745 
0.1552 
0.1710 
0.1857 
0.2499 
0.1980 
0.3045 
0.2433 
0.2328 
0.2310 
0.2541 
0.2469 
0.2051 
0.2334 
0.2517 
0.2009 
0.2144 
0.2284 

 
 

TABLE 4 PERCENT CONFIDENCE AND THEIR CONFIDENCE 
INTERVALS FOR THE ACF FOR THE ILLUSTRATIVE EXAMPLE 

Percent confidence 
interval 

Confidence interval, 

)xACF(E 0
 

98 10.63 0.21 ±
95 10.63 0.18 ±
90 10.63 0.15 ±
80 10.63 0.12 ±

 
 
The owners of DG should pay for the cost of upgrading 

the protection system, such as installation cost of circuit 
breakers and fuses, proportional to the ACFi.  For this reason, 
the cost for each owner of DG is distributed according to the 
following allocation, 
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Price to the owner of DG at bus i  

iN

i
i

ACF
ACF

upgradessystemforcostTotal
⋅=

∑

     (15) 

where N is the number of the bus with DG. 
Assuming that the cost of upgrading the CB at each of two 

locations is 50,000 dollars, that is, in (15) the total upgrade 
cost is 100,000 dollars. Then, the costs of upgrading the sys-
tem for each owner of a DG are shown in Table 5. 

In (15), it is assumed that the entire CB upgrade costs 
should be assigned to the DG owners.  If some fraction F of 
the total cost is to be paid by the utility company, then 1-F is 
paid by the DG owner, 
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i
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TABLE 5 COST FOR UPGRADES THE SYSTEM DUE TO 

 INSTALLING NEW DGS 

Bus name Cost of upgrading the 
system, dollar 

Cameron2 (6) 16,639.98 
Signal3 (11) 15,161.50 
Seaton2 (22) 17,355.68 
Ealy3 (24) 19785.29 
Ealy4 (25) 16,639.98 
Sage3 (26) 14,417.55 

 
IX. CONCLUSIONS 

Contribution of the increase of fault current due to instal-
lation of DG and merchant plant can be indicated by apply-
ing the ACF index.  The concept is that several DGs are 
added more-or-less simultaneously, and there is a need to 
assign the cost of protective upgrades due to the commis-
sioning of the several DGs.  A model is used to obtain the 
ACF index which is a percentage attribute to owners of the 
new DGs.  The least squares method can be applied to calcu-
late the coefficients of the ACF model.  In an illustrative 
example, by replacing only the impedance of new DGs in the 
least squares method model, the ACF from the least squares 
method of the illustrative system is 9.635 percent.  The error 
of the least squares method from the precise calculation is 
2.48 percent in that illustration.  The general conclusion on 
the basis of testing is that the ACF is accurate in the 10% 
range.   

One of the applications of the ACF index is to allocate the 
cost of upgrading the system.  The cost of upgrades the sys-
tem for each owner of DG mainly depends on the transient 
impedance of the DGs and the configuration of the system. 
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