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Abstract— This paper addresses a problem in state estimators for 
power systems.  The issue of non-collocated measurements is 
studied.  The measurement of P+jQ in a line or at a bus is usually 
accomplished by measuring voltage and current at an appropri-
ate point.  A transducer converts the voltage and current meas-
urement to active and reactive power which are transmitted to 
the state estimator.  If the voltage and current measurements are 
not at the same point in the circuit, that is the measurements are 
non-collocated, error is introduced.  The paper reports a way to 
correct for non-collocation of measurements. 
 
Index Terms—State estimation, measurements, measurement 
error, complex power measurement. 

I.  INTRODUCTION 
TATE estimation is a widely used tool in power system 
energy management systems.   The essence of state esti-

mation is that measurements are taken of active and reactive 
power, and system voltage magnitudes and phase angles (i.e., 
the ‘states’) are estimated.  The process usually uses minimum 
least squares methods. 
 
Power system measurements sometimes possess a degree of 
error, due to anything from instruments installed with reversed 
polarities to information loss through analog to digital conver-
sion.  State estimation methods can flag and smooth out bad 
measurements, but state estimation has better accuracy overall 
when there is less error.  In a deregulated power market it is 
increasingly important to find cost effective ways to improve 
system visibility and account for measurement errors.  If the 
error is due to an incorrectly installed instrument, then a soft-
ware solution would likely save more money than instrument 
reinstallation. 
 
One such power measurement error is non-collocated complex 
power measurements.  Complex power is usually calculated 
from voltage and current measurements, which must be taken 
at the same place to have any meaning.  In the non-collocated 
case the current transformer (CT) and the potential trans-
former (PT) of a power measurement instrument is separated 
by an amount of impedance. 
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It will be shown that a more accurate power measurement can 
be calculated utilizing a non-collocated value plus a correction 
procedure.  This correction calculation requires an accurate 
knowledge of the impedance between the instruments, the 
instruments location relative to the impedance and access to a 
PT reading.  Given these values, a non-collocated power 
measurement can be corrected through calculation rather than 
a costly and interruptive reinstallation of hardware.  
 
This paper gives detail on the nature of non-collocated meas-
urements and presents a method to calculate more accurate 
power values.  An 11 bus test bed has been created to demon-
strate the effect non-collocated power measurement correction 
has on improving state estimation results over a large system. 
 
The general topic of power system state estimation is well 
documented in the literature.  References [1-3] are a small 
sampling of the available literature.  Concerning error in state 
estimation, the following are offered as samples of relevant 
resources: 

• Reference [4] describes network topology errors and 
how to identify and correct these. 

• Reference [5] relates to parameter errors. 
• Reference [6] describes error in circuit breaker status. 
• Reference [7] deals with bad data measurements. 

II.  NON COLLOCATED POWER MEASUREMENTS 
Complex power is a function of the complex voltage and cur-
rent, where S=VI*.  Power measuring wattmeters are a very 
common part of power systems instrumentation.  These power 
measurement devices work by sampling the voltage, v(t), and 
the current, i(t), which are turned into a digital signal by an 
analog / digital converter and the power is calculated by a 
transducer.  This value is provided to a remote system opera-
tor and sometimes the individual voltage or current measure-
ment as well.  When measuring or calculating complex power, 
the voltage and current must be taken from the same place in 
the system.  In the case of a non-collocated power measure-
ment, this is not the case.  The impedance between the CT and 
PT can be represented as the circuit shown in Fig. 1.  In the 
case of a non-collocated measurement it is assumed that the 
instruments are not far apart and well within the range of typi-
cal short line modeling limits.  Because the CT and PT are 
often not separated by even a kilometer, resistance in the im-
pedance model has been assumed to be negligible.  An exam-
ple of a non-collocated instrument placement is shown in Fig. 
2. 
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Figure 1 A model for the reactance between CT and PT in a 

non-collocated measurement 
 

 
Figure 2 An example of a non-collocated power measurement 

instrument placing 
 

When discussing power values in this paper, the notation Sab 
will be used.  The subscript a will be the same subscript as the 
voltage used to calculate Sab and the subscript b will be the 
subscript of the current used to calculate Sab.  For instance, 
meaningful power values from the system in Fig. 1 would be 
S11 and S22, which are calculated as follows, 

*
1111 IVS =  

*
2222 IVS = . 

Examples of non-collocated power measurements from the 
system in Fig. 1 would be S12 (shown with instrument placing 
in Fig. 2) or S21.  Each of these is calculated as follows, 

*
2112 IVS =  

*
1221 IVS = . 

 
It is possible to calculate all of the power, voltage, and current 
values of the circuit in Fig. 1 (including S11 and S22) given 
only the systems reactance, X1, X2, and X3, a voltage magni-
tude, |V1| or |V2|, and a non-collocated complex power meas-
urement, S12 or S21, which are values from the circuit equation 
shown in Fig. 1.  This can be done using one of two methods: 
Case A and Case B, which will be detailed in this section.  
Case A is for instances when the voltage of the non-collocated 
power is known and Case B is used when a voltage is know 
that isn’t part of the non-collocated power value. 
 
One method for correcting non-collocated measurements will 
be called the “Case A” method.  For Case A, the non-
collocated measurement S12 is known, as well as |V1|, X1, X2, 
and X3.  S11 and S22 can be calculated.  This method can also 

be changed to work with S21 and |V2| being known values, 
which will be explained later.  First, the voltage magnitude V1 
can be made the reference voltage, so 

°∠= 011V . 
Since S12 = V1 I2* and S12 and V1 is known, I2 can be calcu-
lated immediately. 

*
1

*
12

2 V
SI =  

To calculate S11 and S22, V2 and I1 are needed.  The following 
matrix equation can be formed to solve for the remaining un-
knowns, 
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Equations (1) are a simple consequence of the bus impedance 
analysis of a linear AC circuit, namely Vbus = Zbus Ibus, where 
Zbus is the bus impedance matrix referred to ground [8]. 
 
Equation (1) can be multiplied out to give two equations that 
can be solved for the two unknowns, V2 and I1.  Solving for V2 
and I1 yields the following equations  
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The matrix relationship simplifies into the following 
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This Case A method can be changed to work when S21 and |V2| 
are known.  The diagram in Fig. 3 shows how the polarities of 
these values are changed using Case A with these numbers.  
The preceding method can be used, but V2 is used in place of 
V1, V1 is used in place as V2, I2 is replaced by –I1, I1 is replaced 
by –I2, X2 is used for X1 and X1 is used for X2.  For instance, in 
the first step of Case A, it is |V2| that becomes the reference 
voltage instead of |V1|.  V2 and S21 next solve for -I1, and so on.  
A detailed guide for parameter replacement is shown in Table 
1. 
 
 
 
Table 1 A parameter replacement guide to use Case A with S21 

and V2 known or Case B with S12 and V2 
Parameter Replace With 

V1 V2 
V2 V1 
I1 –I2 
I2 –I1 
X1 X2 
X2 X1 
S21 S12 
S12 S21 
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Figure 3 Circuit diagram for using Case A to calculate power 

given V2 and S21 
 
The next method is called the “Case B” method.  This is for 
when S21 and |V1| are known, along with the reactance X1, X2, 
and X3.  It will later be shown how Case B can solve for the 
instance where S12 and |V2| are known. 
 
Since one of the current cannot be immediately calculated 
with the given voltage and non-collocated power, Case B is a 
bit more difficult.  To solve for S11 and S22, a new circuit 
model is needed, shown in Fig. 4. 
 

 
Figure 4 A new notation for the non-collocated impedance 

model for use in Case B 
 

The given voltage is again the reference voltage, so using the 
new notation given in Fig. 4 

aVV =°∠= 011 . 

Using basic power relationships, where S=VI*, P=Real{S}, 
and Q=Imag{S}, the following relationships can be made us-
ing the new notation 
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Currently a, P21, and Q21 are known values.  To help solve for 
the rest, more equations can be made using the relationship 
between V1 and VX, VX and V2 and Kirchhoff’s current law, 
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Here X1, X2, and X3 are known values, along with a.  Using 
these equations and the power relationships, there are eight 
equations with eight unknown parameters.  The eight equa-
tions can be simplified even more to the following 

1cXad +=  

1bXe −=  

2gXdh +=  

2fXek −=  

3X
efb +=  

3X
dgc −=  

kchbP +=21  

hcbkQ +=21 . 
 

Solving for the unknown parameters is a simple but time con-
suming process and left as an exercise for the reader.  Once all 
of the parameters in Fig. 4 are solved for, the real and unreal 
parts of S11 and S22 can be calculated with the following equa-
tions 
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The Case B method equations shown directly above can also 
be used when S12 and V2 are known.  The diagram in Fig. 3 
shows how the polarities of these values are changed using 
Case B with these numbers.  The Case B method can be used, 
but V2 is used in place of V1, V1 is used in place as V2, I2 is 
replaced by –I1, I1 is replaced by –I2, X2 is used for X1 and X1 
is used for X2.  For instance, in the first step of Case A, it is 
|V2| that becomes the reference voltage instead of |V1|.  V2 and 
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S21 next solve for -I1, and so on.  A detailed guide for parame-
ter replacement is shown in Table 1, which works for Case A 
and Case B. 
 
Case A and Case B show that complex power can be calcu-
lated from a non-collocated measurement.  A local voltage 
measurement and a detailed model of the local impedance are 
required along with the non-collocated power measurement.   

 

III.  ILLUSTRATIVE EXAMPLE 
To illustrate the effect of non-collocated power measurements, 
an 11 bus test bed has been created.  The test bed has been 
loosely based on the 500 kV transmission line power system 
in the United States southwest.  The reactance and network 
configurations have been “invented” to obtain a convenient 
test bed.  The black diamonds in Fig. 5 represent wattmeters.  
Line parameters were calculated from the actual line configu-
rations and approximate line length.  These parameters are 
shown in Table 2 in per unit on a 100 MVA, 500 kV base.  
Each bus was assigned a per unit voltage value.  Knowing the 
bus voltage and line parameters allowed calculation of the 
individual line currents and complex power flow.  The 11 bus 
system and state estimation calculations were performed using 
MATLAB mathematical software.  The goal in this test bed is 
to introduce random error into the measurements and also a 
non-collocated measurement to one of the buses to study the 
effect on state estimation.  The no-error case is used as a basis 
of comparison. 

 
 
 
 
 
 
 

Table 2 Line reactances for test bed, on a 100 MVA, 500 kV 
base 

Line Parameter Reactance (p.u.) 
Xa 0.017 
Xb 0.004 
Xc 0.0335 
Xd 0.0015 
Xe 0.0062 
Xf 0.0483 
Xg 0.0064 
Xh 0.0206 
Xj 0.0039 
Xk 0.0099 
Xl 0.0156 

 
Figure 5 An 11 bus test bed inspired by the 500 kV lines of the US southwest 
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The test bed uses 18 power instruments to estimate the voltage 
angle and magnitude at each bus.  Least squares state estima-
tion is the most common form of state estimation used by 
power utilities and will be used in this example.  Least squares 
state estimation multiplies a vector of measurements [z] to the 
pseudo-inverse of a matrix [H], which gives a state estimate 
vector [x].  The matrix [H] is a matrix of coefficients that is 
Nm (the number of measurements) by Ns (the number of 
states).  Least squares state estimation is improved by a large 
number of measurements and in power engineering the case is 
always overdetermined, where Nm>Ns.  The final unweighted, 
overdetermined case is shown here    

[ ] [ ] [ ] [ ] [ ]zTHHTHx
1−

⎥⎦
⎤

⎢⎣
⎡= . 

 
For calculating the bus angles with real power measurements, 
a simplified version of the following power flow equation is 
used. 

)sin( 21
21 δδ −=

X
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P . 

Since the voltages are all very close to 1 per unit during the 
steady state and the angles very close to zero, the general 
power flow equation can be simplified.  The sine of small an-
gles is near the angle itself.  The following power equation is 
used. 

)(1
21 δδ −=

X
P . 

In the context of least squares state estimation, the matrix [z] 
is made of real power measurements and the matrix [H] is 
made from the inverse of line reactance.  The state matrix [x] 
is composed of the bus reference angles to be estimated. 
 
Now the state estimation equation for the imaginary power is 
created.  Again voltages are assumed to be very close to 1 per 
unit value and the reference angles close to zero.  The equa-
tion can be simplified as follows. 
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Whether calculating voltage magnitude or angle, the [H] ma-
trix can be made from the inverse of each lines reactance.  
Here the measurement matrix [z] is the reactive power meas-
urements and the state vector [x] is made of bus voltage mag-
nitudes. 
 
The test bed will have introduced a non-collocated measure-
ment at Bus 2 for the non-collocation case studies.  The im-
pedance used in all instances is shown in Table 3, relative to 
the general non-collocated impedance circuit shown in Fig. 1.  
The X1 and X2 impedance values could represent large series 
capacitors used to decrease the change in voltage angle over 
these lines that somehow got installed between the wattmeter 
CT and PT.  The non-collocated power instrument will calcu-
late power from the V2 and I1 positions, relative to the diagram 
in Fig. 1.  The power at instrument M1 should read 5.14 per 
unit, but in this non-collocated instance it reads 1.05 per unit. 

 
Table 3 Test bed non-collocated reactance values, on a 100 

MVA and 500 kV base 
 Value in per unit 

X1 -0.01022 
X2 -0.00995 
X3 1/1.14 

 
 

The test will be conducted in five cases, called Cases 0, 1, 2, 
3, 4, and 5.  For each case, the complex power measurements 
are used to calculate the state variables δ and |V|.  The state 
variables will have the no-error, no non-collocation Case 0 
results subtracted from them, giving δ-δno-error and |V|-|V|no-error 
for each Case.  The δ-δno-error and |V|-|V|no-error values will be 
calculated 1000 times and the average value will be analyzed 
by observing the 2-norm residual, mean, and variance.  The 
Case 0 will have no power measurements error and no non-
collocated instruments, so the δ-δno-error and |V|-|V|no-error values 
are expected to be close to zero.  Case 1 will have power 
measurements with a random amount of error, with a maxi-
mum error of 10%, and no non-collocated power instruments.  
Case 2 will have power measurements with a random amount 
of error, with a maximum error of 30%, and have no non-
collocated power measurements.  Case 3 will have power 
measurements with a random amount of error, with a maxi-
mum error of 10%, and one non-collocated power instrument 
at Bus 2.  Case 4 will have power measurements with a ran-
dom amount of error, with a maximum error of 30%, and one 
non-collocated power instrument at Bus 2.  The percent error 
represents typical random error in power systems measure-
ments.  It is hoped that by comparing Cases 0, 1, 2, 3 and 4 
that the amount of error due to random noise (the percent error 
in cases 1, 2, 3,  and 4) and the non-collocated instrument 
(Cases 3 and 4 only) can be discerned.  The results of this test 
are shown in Tables 4, 5, 6, and 7. 
 
 
Table 4 Test bed average δ after 1000 runs compared to actual 

δ, for all cases 
  State δ-δno-error   
Case Noise ||r||2 of δ Mean Variance 

0 none 0.0945948 0.028521 1.62E-32 
1 10% 0.0945958 0.028521 5.13E-09 
2 30% 0.094598 0.028521 5.26E-08 

3 

10%, one 
non-

collocated 
measure-

ment 

0.095822 0.028521 2.39E-05 

4 

30%, one 
non-

collocated 
measure-

ment 

0.09586 0.028521 2.43E-05 
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Table 5 Test bed average |V| after 1000 runs compared to ac-

tual |V|, for all cases 
  State |V|-|V|no-error  

Case Noise ||r||2 of |V| Mean Variance 
0 none 0.081075 -0.022879 8.18E-05 
1 10% 0.081079 -0.022879 8.20E-05 
2 30% 0.081119 -0.022879 8.11E-05 

3 

10%, one 
non-

collocated 
measure-

ment 

0.081558 -0.022879 8.88E-05 

4 

30%, one 
non-

collocated 
measure-

ment 

0.081511 -0.022879 8.92E-05 

 
Table 6 Test bed average P measurement after 1000 runs com-

pared to actual P, for all cases 
  P-Pno-error  

Case Noise ||r||2 of P Mean Variance 
0 none 0.098162 -0.003115 5.57E-04 
1 10% 0.107574 -0.006990 9.39E-04 
2 30% 0.239030 -0.035610 0.002054 

3 

10%, one 
non-

collocated 
measure-

ment 

4.101085 -0.2225 0.929933 

4 

30%, one 
non-

collocated 
measure-

ment 

4.101085 -0.2225 0.934167 

 
Table 7 Test bed average Q measurement after 1000 runs 

compared to actual Q, for all cases 
 

  Q-Qno-error  
Case Noise ||r||2 of Q Mean Variance 

0 none 1.676460 0.008759 0.165243 
1 10% 1.447761 0.086734 0.115952 
2 30% 1.448581 0.084969 0.1149 

3 

10%, one 
non-

collocated 
measure-

ment 

2.16158 -0.006283 0.274566 

4 

30%, one 
non-

collocated 
measure-

ment 

2.155998 -0.003878 0.275201 

IV.  SOME OBSERVATIONS DRAWN FROM THE EXAMPLES 
The complex power resulting from each test Case is shown in 
Tables 6 and 7.  In general, the random measurement error in 
Cases 1 and 2 increases the 2–norm residual for P-Pno-error and 
the mean difference for the real power moves away from zero, 
all relative to the no-error Case 0.  For both the real and 
imaginary power comparisons, the variance increases due to 
measurement error.  Subsequently, the measurement error 
alone increases overall measurement error and variance.  
Cases 3 and 4 possess measurement error and a single non-
collocated measurement.  In Cases 3 and 4 the average P-Pno-

error and Q-Qno-error values result in a larger 2-norm residual, a 
mean difference further away from zero for P-Pno-error, and a 
larger variance relative to Cases 0, 1 and 2.  Because of this, it 
can be said that a single non-collocated instrument increased 
the measurement error in the test bed and the variance. 

 
The effect on the estimation of states is more subtle than the 
direct power measurements.  The state variable average differ-
ences from the no-error case are shown in Tables 4 and 5.  
Table 4 shows that Cases 1 and 2, which contain only meas-
urement error, differ little from the no-error Case 0, the only 
exception being a marked increase in variance in the δ-δno-error 
calculations in Cases 1 and 2 relative to Case 0.  Measurement 
error alone then only introduces variability into the bus phase 
angle calculations.  When a single non-collocated measure-
ment is added during Cases 3 and 4 the result is a small 2-
norm residual increase and variance increase for the δ-δno-error 
and |V|-|V|no-error measurements relative to Cases 0, 1 and 2.  
The variance change is smaller for the |V|-|V|no-error measure-
ment than it is for the δ-δno-error measurement.  This shows that 
in power system state estimation, a single non-collocated in-
strument can widen the variability of calculated bus voltage 
angles and magnitudes and increase error. 
 
Applying the non-collocated measurement calculations dis-
cussed in Section II would eliminate the non-collocated error.  
In this case, since the non-collocated power is calculated from 
V2 and I1, so Case B from Section II would be the appropriate 
fix.  After the power measurement adjustment, the Case 3 and 
4 results would resemble the Cases 1 and 2 results.  By com-
paring Cases 1 and 2 to Cases 3 and 4, the benefits become 
apparent: there is a lower amount of measurement variance 
and a lower 2-norm residual in Cases 1 and 2.  Therefore, ac-
counting for non-collocated measurement would increase state 
estimation confidence and will create more accurate meas-
urements system-wide. 

V.  CONCLUSION 
Non-collocated measurements in a power system can present a 
source of error.  However, with an accurate knowledge of 
reactance and transformer configuration at the power trans-
ducer instrument, it is possible to correct the faulty power 
measurement and improve state estimation while avoiding 
costly instrument reinstallation / reconfiguration.  In cases 
where there are non-collocated power measurements, this cal-
culation has the potential to improve state estimation results 
and system-wide measurement confidence.   
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