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 Abstract—This paper demonstrates several uses of Adaptive 
Resonance Theory (ART) based neural network (NN) algorithm 
combined with Fuzzy K-NN decision rule for fault detection and 
classification on transmission lines. To deal with the large input 
data set covering system-wide fault scenarios and improve the 
overall accuracy, three Fuzzy ART neural networks are proposed 
and coordinated for different tasks. The performance of 
improved scheme is compared with the previous development 
based on the simulation using a typical power system model. The 
speed and accuracy of detecting continuous signals during the 
fault is also evaluated. Simulation results confirm the 
improvement benefits when compared with the previous 
implementation.   
 

Keywords—adaptive resonance theory, fuzzy logic, neural 
networks, pattern recognition, power system faults, power system 
protection, protective relays. 

I.  INTRODUCTION 

he applications of artificial neural networks for protective 
relaying was extensively studied in recent years. The 
history, applications and advantages using artificial neural 

networks in protecting power systems are summarized in 
several survey and tutorial papers [1-4]. The conventional 
distance relay settings are based on a predetermined network 
configuration taking into account the worst fault conditions. 
The neural network based algorithm has more adaptability and 
is expected to be more accurate when the system and fault 
conditions are different from the assumed.  
 A new concept of transmission line fault classification 
algorithm using a self-organized, neural network based on 
Adaptive Resonance Theory (ART) with Fuzzy K-nearest 
neighbor (K-NN) decision rule is proposed previously [5]. 
The algorithm makes several improvements from the original 
form [6] by optimizing the training process and improving the 
classifying accuracy. The improved performance is 
demonstrated using a specific power system model, which 
covers a variety of power system operating conditions and 
fault parameters [5].  
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 The previous implementation of the Fuzzy ART neural 
network [5] was focused on the algorithm tuning for fault 
classification on the transmission line of interest (primary 
line). This paper investigates some additional improvements 
for making the algorithm a practical fault detection and 
classification tool: a) Good selectivity for system-wide events. 
Fault or other events occurring in the areas other than the 
primary line (where the relay is located) may “confuse” neural 
network based algorithm unless it is trained with such events. 
The associated issue is how to train the neural networks 
efficiently with huge data set when the number of scenarios is 
increased to include system-wide events. b) Ability to detect 
all fault types. By the features formed from three-phase 
currents and voltages, it is still difficult to distinguish all fault 
types, especially two-phase faults and two-phase-ground 
faults. New feature extraction method needs to be studied and 
selected. c) Improved speed and accuracy. To achieve 
desirable speed and accuracy, we need to evaluate whether to 
use training patterns based on “static” signals taken from 
post-fault values or the continuous signals of the entire fault 
period. 
 The purpose of this paper is to study above issues in detail, 
provide improvements and perform evaluation. A new 
structure involving three Fuzzy ART neural networks is 
developed to solve the first two problems. The evaluation is 
based on a typical 9-bus power system model implemented in 
the Alternate Transient Program (ATP) [7]. The performance 
of the improved algorithm based on static signal is evaluated 
and compared with the previous version. Speed and accuracy 
of proposed method when detecting the fault from continuous 
signal is then evaluated.  
 The paper is organized as follows. In Section II, a brief 
introduction of Fuzzy ART neural network algorithm is 
provided. The application issues of the previous 
implementation are demonstrated in Section III. Section IV 
provides the proposed improvements. Performance testing, 
results and discussions are given in Section V. Conclusions 
are summarized in Section VI.  

II.  FUZZY ART NEURAL NETWORK ALGORITHM 

 The earlier version of the algorithm implementation can be 
found in [5]. The structure of Fuzzy ART neural network 
algorithm and its application are shown in Fig.1. The two grey 
blocks are the key components of the algorithm: ART neural  
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Fig. 1.  Application of Fuzzy ART Neural Network for fault detection and 
classification 

 
network training and fuzzy K-NN classification. The 
theoretical background of these two approaches can be found 
in [8,9]. By using those techniques, the fault detection and 
classification becomes a pattern recognition issue instead of 
phasor computation and comparison. Voltage and current 
signals from the local measurement are formed as patterns by 
certain data processing method [10]. Thousands of such 
patterns obtained from power system simulation or substation 
database of field recordings are used to train the neural 
network offline and then the pattern prototypes are used to 
analyze faults online by using the Fuzzy K-NN classifier. The 
ART neural network is also capable for online training to 
update the pattern prototypes.  
 The ART neural network based on unsupervised-supervised 
learning is very effective when trained with large data sets due 
to its special clustering techniques. The number of clusters is 
increased and their position is updated automatically during 
the learning and there is no need to define them in advance. 
By continuous iteration of unsupervised and supervised 
learning, a set of clusters that represent the desired outputs 
are obtained.  
 Using the prototypes of trained clusters, Fuzzy K-nearest 
neighborhood classifier can realize online analysis of 
unknown patterns for fault detection and classification [5]. 
The Fuzzy K-NN classifier takes into account both the effect 
of weighted distances and the size of neighboring clusters for 
distinguishing new patterns. It is proved that it has better 
performance than a common K-nearest neighborhood 
classifier [5]. 

III.  APPLICATION ISSUES OF THE PREVIOUS IMPLEMENTATION 

 Previous work reported in [5] is focused on algorithm 
integration and parameter optimization to obtain better 
classification accuracy. The simulation is conducted based on 
a real system section, as shown in Fig.2. The proposed 
algorithm is installed at SKY-STP line on the SKY side [5]. 
The complex simulation considered a broad range of fault 
parameters including type, location, resistance, and inception 
angle. The testing under several system conditions, such as 
week infeed, source variance, and frequency variance was 
implemented. Those tests are necessary to prove the 
adaptability of the algorithm to a large range of disturbances.  

 However, there are still some application issues that are not 
considered or not yet solved before. In this section, we will 
explain the issues using some examples and the solutions will 
be given in the following sections. 

A.  System-wide Fault Events    

 The previous training and testing was focused on the 
classification of faults occurring on the SKY-STP line [5]. 
The training patterns and testing patterns are only taken from 
the scenarios involving faults on the SKY-STP line. In 
practice, disturbances on other lines, especially adjacent lines 
will definitely affect the fault detection on the SKY-STP line.  
  The SKY-STP system was not suitable to study the 
effect of common system-wide disturbances. The system is 
too strong by having too many equivalent ideal sources. 
Because of that, the faults occurring on other lines have little 
influence on the SKY-STP fault detection. One of the 
examples is shown in Fig.3. For the measurement at SKY bus, 
the fault occurring at the end of SKY-STP can be easily 
differentiated from the same type of fault occurring at the 
beginning of STP-HILL. That is not typical in a larger system, 
which will be shown in Section V. 
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Fig. 2.   Centerpoint SKY-STP system model 
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Fig. 3.  Measurement at SKY-STP on SKY side 
(a), (b) Three-phase current and voltage respectively for A-B-G fault at 95% of 
SKY-STP; (c), (d) Three-phase current and voltage respectively for A-B-G fault 

at 5% of STP-HILL 
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B.  Distinguishing two-phase from two-phase-ground faults    

 The patterns for neural network training are formed using 
three-phase time domain voltage and current signals [5]. 
Compared to others, the two-phase fault and two-phase-
ground faults (i.e. AB and ABG) may have similar features 
and it may not be easy to distinguish them from each other. 
An example is shown in Fig. 4. The previous work classified 
those two kinds of faults in the same category. In most cases, 
we need to separate these two faults because one is an aerial 
fault and the other is a ground fault. Three-phase faults, 
whether grounded or not, usually appear the same because the 
three-phase values are still symmetrical or close to being 
symmetrical.  

C.   Dynamic Simulations  

 The training and testing signals in [5] are both taken from 
post-fault values, as shown in Fig.5. The data window is fixed 
at one cycle or half cycle. That method is suitable for dealing 
with fault classification. Since the fault inception time is not 
known in advance, the transient data are fed into the data 
window one by one. The patterns are changing dynamically 
and may not look like the ones used in the training and testing 
process. Whether or not the algorithm is still good for fast and 
accurate fault detection was not evaluated in the previous 
work. The result of this kind of testing will be reported in this 
paper. 

IV.   THE ALGORITHM IMPROVEMENTS 

 To take into account system-wide fault events, the number 
of training and testing patterns needs to be increased 
significantly. In [5], as many as 3315 patterns are already 
selected for the line of interest and a single neural network is 
trained to take over all the functions. If many more inputs are 
added, the burden in training will be huge. This paper 
proposes a novel scheme, as shown in Fig.6, to train the 
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Fig. 4.  Measurement at SKY-STP on SKY side 
(a), (b) Three-phase current and voltage respectively for A-B-G fault at 95% of 
SKY-STP; (c), (d) Three-phase current and voltage respectively for A-B fault at 

95% of SKY-STP 

neural network more efficiently. Three neural networks based 
on fuzzy ART neural network algorithm are proposed to 
implement different functions. Similar ideas to differentiate 
neural networks can be found in [11,12], but the application is 
quite different. 
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Fig. 5.  Feature extraction for data processing 
(a) three-phase voltage (b) three-phase current 
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Fig. 6.  Global view of the fault detection and classification scheme 
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 Neural network #1 (NN1) serves as a starting function to 
initially detect the fault events within a predefined range, 
which is usually larger than the far most protection zones 
from both ends. There are only two outputs from NN1. 
“Fault” means a fault occurred within the predefined margin 
and “normal” means no fault occurred within that margin. 
NN1 takes into account all possible fault events that may 
affect the desired detection. The training process is not 
significantly involved since there are only two outputs. 
 Neural network #2 (NN2) is used to refine the classification 
of the “fault” events detected by NN1. While the fault events 
for training NN1 may be sparsely distributed at each line, the 
ones for training NN2 will have more density in the desired 
zones and zone margins to give more accurate conclusions. 
The output of NN2, according to the classification objective, 
describes specific event types (normal, AB/ABG, BC/BCG, 
CA/CAG, ABC/ABCG, AG, BG, CG), or combines the zone 
information (Zone I, Zone II, Zone III or reverse Zone).  
 Neural network #3 (NN3) separates two-phase faults from 
two-phase-ground faults. The major difference in these two 
types of faults is the magnitude of neutral voltage and current 
during the fault. Fig.7 shows the neutral voltage and current 
for the fault case shown in Fig.4. It indicates clearly the 
feature difference for two kinds of faults. Therefore the 
training patterns for NN3 are derived from the time domain 
signal 03 ( )a b cu u u u= + +  and 03 ( )a b ci i i i= + + . Two outputs 

of NN3 indicate whether the fault involves ground.  
 The advantage of coordinating the three neural networks is 
distributing the large input set into different neural networks 
to reduce the burden of training and testing. NN1 has large 
number of inputs but few outputs, providing an initial crude 
conclusion where the faults are located. NN2 takes more 
patterns from limited areas to refine the classification. NN3 
uses different training features to detect whether the fault 
involves ground. The benefits will be demonstrated in Section 
V. 
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Fig. 7.  Measurement at SKY-STP on SKY side 
(a) (b) 3io and 3uo  for A-B-G fault at 95% of SKY-STP 

(c) (d)  3io and 3uo for A-B fault at 95% of SKY-STP 

V.  MODEL IMPLEMENTATION AND PERFORMANCE STUDIES 

A.  Power System Model  

 The WECC 9-bus system shown in Fig.8 is selected in this 
paper for several reasons. First of all, the system has proper 
size and represents a typical power system. Secondly, the 
system is commonly used in power flow and transient stability 
study because the generator parameters are available. More 
dynamic situations can be generated to test the performance 
of fault analysis algorithms under such conditions. An 
example shown in Fig.9 demonstrates that the disturbances 
outside the line of interest can indeed be confusing for a relay 
because of the similarity of the features.  
 The 9-bus system is implemented in Alternate Transient 
Program (ATP) [7]. The original lumped parameters of each 
transmission line are changed to distributed parameters and 
the length of each line is set identically to 100 miles for 
simplicity.  

B.  Protection Scheme and Generation of Training Samples   

 As shown in Fig.8, the proposed fault detection and 
classification algorithm is located on line 9-6 at bus 9. The 
goal for the three neural networks is to protect the entire 
length of line 9-6. Because the signal is taken from one end, at 
least two zones are required in order to have a security margin. 
The zone I reaches 80% of line 9-6 and the zone II up to 20% 
of line 6-4.  
 The scenarios for extracting training patterns of the three 
neural networks depend on four main fault parameters: fault 
type, fault distance, fault resistance for ground faults and fault 
inception angle. The scenarios have a combination of those 
four parameters. According to the goal of each neural network, 
the selection of training patterns is quite different.  
  For NN1, the goal is to distinguish the fault events 
occurring on line 9-6 and line 6-4 from normal events and 
other faults outside those two lines. Fault scenarios from all 
six lines are taken into account for NN1 while more cases are 
generated around the margin from bus 9 and bus 4. Total 
9564 cases are generated for training NN1 and two outputs 
are the “fault” and “normal” in this case. 
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Fig. 9.  Measurement at Line 9-6 on Bus 9 
(a), (b) Three-phase current and voltage respectively for A-B-G fault at 90% of 
Line 9-6; (c), (d) Three-phase current and voltage respectively for A-B-G fault 

at 10% of Line 6-4 

 
 NN2 is used to refine the detection and classification for 
the patterns which NN1 considered as “fault”. For training 
NN2 on line 9-6 and line 6-4, 9240 cases are generated. The 
number of outputs is fifteen which includes eight event types 
(normal, AB/ABG, BC/BCG, CA/CAG, ABC/ABCG, AG, 
BG, CG) combined with two zones.  
 If NN2 classified a fault as two-phase fault, then the pattern 
will be sent to NN3 to check whether it is a ground fault. For 
training NN3 on line 9-6 and line 6-4, 1152 cases are 
generated. Only phase-to-phase faults and phase-to-phase-to-
ground faults will be used for the training and the two outputs 
of NN3 are “ground” and “phase”. 
 For each fault scenario, the first cycle of three phase 
voltage and current signals after fault are formed as input 
pattern. The signals are filtered by low-pass Butterworth 
filters and sampled at 1.92Hz (32samples/cycle). The voltage 
and current signals are normalized in the range of [-1,1] and 
arranged in a single vector to form the training pattern. 
Detailed data Pre-processing steps can be found in [9].  For 
NN3, the neutral voltage and current are used for forming the 
patterns. Other data processing steps are identical.  
  The training results of the three neural networks are 
listed in Table I. All of the neural networks have 100% 
training rate, which means all input patterns are grouped and 
separated in different clusters. The number of clusters and 
training time indicate the difficulty in grouping the patterns. 
Notice that the values of training time are approximate values 
used only to make relative comparison for different neural 
networks. The values are based on the simulation on Pentium 
4, 1.8 GHz PC. Actually the training time is highly dependent  
 

TABLE I 
COMPARISON OF NEURAL NETWORK TRAINING 

 Input 
number 

Output 
number 

Trained 
Clusters 

Training 
Rate 

Training 
Time 

NN1 9564 2 121 100% 45 min 
NN2 9240 15 2790 100% 6 hours 
NN3 1152 2 7 100% 10 min 

on the hardware and software configurations. NN2, which is 
used before solely to take over all the functions, has 
significantly larger training time than other two neural 
networks. That justifies the distribution of the training tasks 
into three neural networks. 

C.  Performance Comparison when Using Static Signals  

 Two sets of 3000 test scenarios are generated for the six 
lines in WECC 9-bus system. Each line has 500 cases with the 
fault parameters randomly selected from uniform distribution 
of: all fault types, fault distance between 0 and 100% of line 
length, fault resistance between 0 Ω  and 30 Ω , and fault 
angle between 0 °  and 360 ° . The voltage and current signals 
from post-fault values are preprocessed by the same method 
as used in the training process.  
 The entire test data sets pass one by one through the three 
neural networks in Fig.6. The number of patterns is reduced 
after each step according to the previous detection result. For 
each step, the misjudgment error is recorded and the overall 
error is calculated by  

( 1 2 3) 100
%

ne ne ne
error

N

+ + ×=                          (9) 

 Where, ne1: Number of Cases that NN1 misclassified faults 
within desired zone as “normal”. 
 ne2: Number of Cases where NN2 misclassified either fault 
type or fault zone. 
 ne3: Number of Cases that NN3 misclassified two-phase 
faults 
 N: Total number of cases in the test set. 
 In Table II, the test result is compared with the previous 
single neural network application [5], in which only NN2 is 
used for detection and classification. By comparing the errors, 
we can see that the coordinated networks demonstrate 
significant improvement in the classification accuracy. The 
result also indicates that based on the new feature extraction 
method, NN3 has very good performance when separating 
two-phase faults and two-phase-ground faults. 
 Fig.10 shows the distribution of the mis-classified cases in 
each of the six lines for the two methods. Because those cases 
only occur on three lines in our test, we just take those three 
lines and arrange them in a row with bus numbers labeled. 
The horizontal axis is the fault location and the vertical axis is 
the fault angle. For the three neural networks scheme, only a 
few cases around boundary of zone 1 and zone 2 are 
misclassified. When only NN2 is used, there are more 
troubles in the forward zones and also in the reverse zone. 

 
TABLE II 

TEST RESULT FOR STATIC SIMULATION 
 Test Set 1 Test Set 2 

Cases 3000 3000 NN1 
Error(%) 0.80 0.57 
Cases 937 927 
Error(%) Type only 0.00 0.22 NN2 
Error(%) Type&Zone 6.08 6.36 
Cases 544 535 NN3 
Error(%) 0.18 0.00 

Overall Error(%) 1.93 1.96 
Cases 3000 3000 NN2 only 
Error(%) 9.87 9.43 
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Fig. 10.  Distribution of the mis-classified cases in each line 
(a) the method using three neural networks  (b) the method using only NN2   

D.  Speed and Accuracy  

 As explained in Section III, the real application for online 
fault detection and classification should deal with the 
continuous signal going from pre-fault to post-fault status. 
The neural networks trained by post fault static signal are not 
necessarily demonstrating good performance for the dynamic 
signals.  
 For this test, five fault scenarios are picked randomly from 
the fault events on the primary and secondary lines. All faults 
start at 0.01s and are cleared at 0.20s. In the example shown 
in Fig.11, a sliding data window of one cycle data is arranged 
as input to the Fuzzy ART neural networks. Sampling rate is 
32 samples/cycle and the window moves forward one sample 
at a time. In online application, NN1 is active all the time to 
detect the occurrence of a fault. NN2 and NN3 are triggered 
when NN1 “finds” a fault. If NN2 and NN3 have classified 
the same fault type three times in a row, the trip signal is sent. 
In this test, the post fault samples at which NN1 and NN2/3 
make the conclusions are recorded and the latter one is 
defined as the speed of detecting the fault. This test indicated 
that there is no difference between new method and previous 
one because both of them issue a trip command when NN2 
makes the conclusion.  
 According to the test results listed in Table III, all five 
cases will complete detection within one cycle with the 
correct zone, which is usually the requirement for fault 
detection in transmission line. That means this fault detection 
and classification tool is capable for online use. In most cases,  
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Fig.11.  Sliding data window as the input of neural networks 

  
TABLE III 

TEST RESULT FOR DYNAMIC SIMULATION 
 

Scenarios 1 2 3 4 5 
Line  9-6 9-6 6-4 9-6 9-6 
Type CA CG BG ABC ABG 
Dist (%) 17.84 69.22 9.32 12.05 60.33 

Res ( Ω ) 0 10.55 4.28 0 0.1 

Ang ( ° ) 172.6 253.2 3.1 162.8 149.2 

NN1 9 16 6 7 14 Speed 
(Samples) NN2/3 17 28 19 17 29 
Type correct? Y Y Y N Y 
Zone correct? Y Y Y Y Y 

 
the fault type is classified correctly at the moment the fault is 
detected. The speed and accuracy of the algorithm can be 
further adjusted according to the system requirement by 
adjusting the pattern’s data window when training the neural 
networks. 

VI.  CONCLUSIONS 

 When compared to the previous implementation of Fuzzy 
ART neural network algorithm, the integration of three neural 
networks provides a better solution by improving both 
efficiency of training and accuracy of fault detection and 
classification for real applications. The tests implemented 
using the new system model reflect the application issues not 
considered before. The test results show good performance of 
the coordinated neural networks for both off-line and on-line 
applications.  

VII.  APPENDIX 

 
TABLE IV 

TRAINING SCENARIOS FOR NN1 
 

 Line 9-6 Line 6-4 Line 9-8 Other 3 lines 
Type All 11 types + normal state 
Dist % 5,10,15,20,40,60,

80,95 
5,10,20,40,60,
75,80,85,90, 
92,94,95 

5,6,8,10,15,20,
25,40,60,80, 
90,95 

5,20,40,60, 
80,95 

Res ( Ω ) 10, 20 

Angle ( ° ) 0~360, step 30 0~360, step 30 0~360, step 30 0~360, step 45 

Cases 1740 2604 2604 3 × 872 

 
TABLE V 

TRAINING SCENARIOS FOR NN2 
 

 Line 9-6 Line 6-4 
Type All 11 types + normal state 
Dist % 10,20,40,60,70,75,77, 

79,81,83,85,90 
5,10,15,18,19,21,22,25, 
40,60,80,95 

Res ( Ω ) 5,10, 20,25 

Angle ( ° ) 0~360, step 30 0~360, step 30 

Cases 4620 4620 

 
TABLE VI 

TRAINING SCENARIOS FOR NN3 
 

 Line 9-6 Line 6-4 
Type AB, BC, CA, ABG, BCG, CAG 
Dist % 5,20,40,60,80,95 5,20,40,60,80,95 

Res ( Ω ) 0,10,20 

Angle ( ° ) 0~360, step 45 0~360, step 45 

Cases 576 576 
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