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An estimator of propagation of cascading failure
Ian Dobson, Kevin R. Wierzbicki, Benjamin A. Carreras, Vickie E. Lynch, David E. Newman

Abstract— We suggest a statistical estimator to measure the
extent to which failures propagate in cascading failures such as
large blackouts. The estimator is tested on a saturating branching
process model of cascading failure and on failure data generated
by the OPA simulation of cascading blackouts. The estimator is a
standard estimator for the branching process parameter modified
so as to avoid saturation effects. We discuss the statistical
effectiveness of the estimator and show how estimating the failure
propagation and the initial failures leads to estimates of the
distribution of the numbers of cascading failures. The estimator
is derived from a simple and high-level branching process
model of cascading failure. We discuss how branching process
approximations and in particular the propagation parameter may
arise in several different models, including models of interacting
infrastructures.

I. INTRODUCTION

Cascading failure is the main way that blackouts become
widespread. For example, the August 2003 blackout spread to
a sizable region of Northeastern America by cascading [28].
A traditional way to address cascading failure is to limit the
failures that initiate cascades. To pursue the complementary
approach of limiting the propagation of failures after they are
initiated, we first need to be able to quantify how much failures
propagate from data. This paper suggests such an estimator
and tests it on a branching process model of cascading failure
and on the OPA model [4] of cascading failure blackouts. The
estimator may be applicable to cascading failure of other large,
interconnected infrastructures.

We model the growth of blackout failures using a branching
process and then estimate the branching process parameter λ
that measures the extent to which failures propagate. Branch-
ing process models are an obvious choice of stochastic model
to capture the gross features of cascading blackouts because
they have been developed and applied to other cascading
processes such as genealogy, epidemics and cosmic rays [21].
The first suggestion to apply branching processes to blackouts
appears to be in [15] and subsequent applications to blackouts
appear in [14], [16].
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We now explain how branching processes can be useful
approximations to some of the gross features of cascading
blackouts. Our idealized probabilistic model of cascading
failure [17] describes a general cascading process in which
component failures weaken and further load the system so that
subsequent failures are more likely. We have shown that this
cascade model and variants of it can be well approximated by
a Galton-Watson branching process with each failure giving
rise to a Poisson distribution of failures in the next stage
[15], [13]. Moreover, some features of this cascade model are
consistent with results from cascading failure simulations [6],
[14], [25]. All of these models can show criticality and power
law regions in the distribution of failure sizes or blackout sizes
consistent with NERC data [8]. The distribution of the number
of high voltage transmission lines lost in North American
contingencies from 1965 to 1985 [1] also has a heavy tail
distribution [9]. Initial work fitting branching process models
to observed blackout data is in [16].

The Galton-Watson branching process model [21], [2] gives
a way to quantify the propagation of cascading failures with
a parameter λ. In the Galton-Watson branching process the
failures are produced in stages. The process starts with Z0

failures at stage zero to represent the initial disturbance. The
failures in each stage independently produce further failures
in the next stage according to an probability distribution with
mean λ called the offspring distribution. That is, each failure
in each stage produces an average of λ failures in the next
stage.

The eventual behavior of the branching process is governed
by the parameter λ. In the subcritical case of λ < 1, the
failures will die out (that is, reach and remain at zero failures
at some stage) and the mean number of failures in each
stage decreases exponentially. In the supercritical case of
λ > 1, although it possible for the process to die out, often
the failures increase exponentially until the system size or
saturation effects are encountered.

Saturation is thought to be a significant effect because many
observed cascading blackouts do not proceed to the entire
interconnection blacking out. The reasons for this may well
include inhibition effects such as load shedding relieving sys-
tem stress, or successful islanding, that apply in addition to the
stochastic variation that will limit some cascading sequences.
Understanding and modeling these inhibition or saturation
effects is important, but in this paper we avoid describing
the saturation process by only estimating the propagation of
failures before saturation is encountered.

At the critical case of λ = 1, the branching process has a
power law distribution of number of failures with exponent



−1.5. A corresponding power law region can be observed in
the distributions of number of failures in the cascading failure
model [17] and in the distribution of blackout size in blackout
models [4], [10], [25] when the system has a particular loading
called the critical loading. The implications for blackout risk
of the power law region are that the risk of large blackouts is
approximately the same or even exceeding the risk of small
blackouts [5]. This observation justifies the study of large
blackouts; an exponential tail in the distribution of blackout
size would imply that large blackouts have negligible risk and
that a risk-based analysis would ignore large blackouts. More-
over, at criticality the mean blackout size starts to increase
more rapidly and above criticality there is an increasing risk
of large blackouts. The terminology of criticality comes from
statistical physics and does not, at this stage of knowledge
of overall blackout risk, necessarily imply improper power
system operation. Indeed there is some evidence that power
systems may organize themselves to near critical loading in
response to strong societal forces balancing economic use of
the transmission system and reliability [7], [8].

One requirement on the failure data in order to estimate λ
is that the failures be grouped into stages. The estimator we
propose depends on the number of failures in the stages and
particularly on the total number of failures and the number
of failures in the initial and final stages. Many cascading
failure simulations naturally produce failures in stages as the
simulation iterates. However, if the method is applied to real
data, the problem of grouping the data into stages must be
addressed (see [16] for initial work grouping failures together
according to closeness in time).

One direct way to estimate the probability distribution of
number of line failures at a given level of system loading
is simply to run the simulation or record real blackout data
until sufficient data is accumulated to estimate the probability
distribution of blackout sizes. This is straightforward but
requires a large number of simulations or an impractically
long observation time. If the distribution of line failures is
near criticality and it has a power law character, the probability
distribution requires many observations to determine its form
for the larger blackouts. For example, it can take of the order
of 1000 to 10000 real or simulated blackouts to accurately
estimate the probability of the larger number of line failures
in the near critical case. The near critical case is pertinent
because there is some evidence and explanation indicating that
the North American power transmission system is designed
and operated near criticality [8], [7]. However, [8], [7] mainly
apply to the distribution of energy unserved and the exact
relationship between an “external”, societal impact measure
of blackout size such as energy unserved and an “internal”
measure of blackout size such as number of lines failed
remains unclear. On the other hand, empirical data for North
American line outages [1] has a heavy tail that is fairly close
to a power law [9].

If one assumes a branching process model, one can predict
the probability distribution of the number of failures from
the initial distribution of failures and the estimate of λ using
an analytic formula (an example is shown in section III-
D). We test the estimate for λ on line failure data from the

OPA cascading failure simulation by predicting the probability
distribution of the number of line failures using the estimate of
λ and comparing this distribution to the probability distribution
of line failures observed in OPA. This approach of estimating
the distribution of line failures by first estimating λ has the
potential to be much faster because λ is the mean of the
offspring distribution that generates the branching process and
the offspring distribution does not have heavy tails.

II. BRANCHING PROCESS WITH SATURATION

This section describes the details of the main branching
process model used in this paper. Suppose that there are
N identical components and all components are initially
unfailed. The process saturates when S ≤ N components fail.
Component failures occur in stages with Zn the number of
failures in stage n and Yn the total number of failures up to
and including stage n.

Yn = Z0 + Z1 + Z2 + ... + Zn (1)

There are a deterministic number Z0 of initial failures. Each
of the Zn failures in stage n independently causes a further
number of failures in stage n + 1 according to a Poisson
distribution with mean λ, except that if the total number of
failures exceeds S, then the total number of failures is limited
to S. That is, the jth failure in stage n causes Z

[j]
n+1 failures

in stage n + 1 according to the Poisson distribution and the
total number of failures in stage n + 1 is

Zn+1 = min
{

Z
[1]
n+1 + Z

[2]
n+1 + · · · + Z

[Zn]
n+1 , S − Yn

}
, (2)

where Z
[1]
n+1, Z

[2]
n+1, · · · , Z

[Zn]
n+1 are independent. (A different

form of saturation is described in [15], [14].) The total number
of failures Y is distributed according to a saturating Borel-
Tanner distribution:

P [Y = r] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z0λ(rλ)r−Z0−1 e−rλ

(r − Z0)!
; Z0 ≤ r < S

1 −
S−1∑
s=Z0

Z0λ(sλ)s−Z0−1 e−sλ

(s − Z0)!
; r = S

(3)
Some simulations such as OPA may produce a random num-

ber Z0 of initial failures. If the initial failures are independent
and of equal probability p0, then they are distributed according
to a binomial distribution. If the number of components is
large and p0 is small, the distribution of initial failures is
approximately Poisson with mean θ = Np0 and in this
case the total number of failures is distributed according to
a saturating generalized Poisson distribution:

P [Y = r] =

⎧⎪⎨⎪⎩
θ(rλ + θ)r−1 e−rλ−θ

r! ; 0 ≤ r < S

1 −
S−1∑
s=0

θ(sλ + θ)s−1 e−sλ−θ

s!
; r = S

(4)

We are interested in the total number of failures conditioned
on there being a nonzero number of failures and this is



distributed according to

P [Y = r] =

⎧⎪⎪⎨⎪⎪⎩
θ(rλ + θ)r−1 e−rλ−θ

r!(1−e−θ)
; 1 ≤ r < S

1 −
S−1∑
s=1

θ(sλ + θ)s−1 e−sλ−θ

s!(1 − e−θ)
; r = S

(5)
If there is an arbitrary distribution of nonzero initial failures

P [Z0 = z0] for z0 = 1, 2, 3, ..., then the total number
of failures is distributed according to a combination of the
saturating Borel-Tanner distributions:

P [Y =r] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∑
z0=1

P [Z0 =z0]z0λ(rλ)r−z0−1 e−rλ

(r − z0)!
; r < S

1 −
S−1∑
s=1

P [Y =s]; r = S

(6)

III. ESTIMATORS OF PROPAGATION λ̂s AND MEAN INITIAL

FAILURES θ̂

A. Definition of λ̂s

We suppose that the cascading failure simulation produces
Z0 > 0 initial failures in stage 0 and then iterates to produce
further numbers of failures Z1, Z2, Z3,... in stages 1,2,3,... re-
spectively. The assumption of Z0 > 0 implies that all statistics
are conditioned on the start of a cascade. The simulation is run
K times to produce K independent realizations of the cascade.
The failures in the kth run are written as Z

(k)
0 , Z

(k)
1 , Z

(k)
2 ,

Z
(k)
3 ,... . The simulation results can be tabulated as follows:

stage 0 stage 1 stage 2 stage 3 · · ·
run 1 Z

(1)
0 Z

(1)
1 Z

(1)
2 Z

(1)
3 · · ·

run 2 Z
(2)
0 Z

(2)
1 Z

(2)
2 Z

(2)
3 · · ·

run 3 Z
(3)
0 Z

(3)
1 Z

(3)
2 Z

(3)
3 · · ·

. . . . .

. . . . .

run K Z
(K)
0 Z

(K)
1 Z

(K)
2 Z

(K)
3 · · ·

(7)

Define the cumulative number of failures in run k up to and
including stage n as

Y (k)
n = Z

(k)
0 + Z

(k)
1 + Z

(k)
2 + ... + Z(k)

n (8)

Each run has a stage at which the number of failures is zero
and remains zero for all subsequent stages, either because the
cascade dies out, or all N of the components in the system
have failed. The number of failures at which saturation occurs
is S ≤ N . Define

s(k) = max{n | Y (k)
n < S and Z

(k)
n−1 > 0 } (9)

Then s(k) is either the first stage at which there are zero
failures or the last stage before saturation.

We define the estimator of λ as

λ̂s =

∑K
k=1

(
Z

(k)
1 + Z

(k)
2 + ... + Z

(k)
s(k)

)
∑K

k=1

(
Z

(k)
0 + Z

(k)
2 + ... + Z

(k)
s(k)−1

) (10)

=

∑K
k=1

(
Y

(k)
s(k) − Z

(k)
0

)
∑K

k=1 Y
(k)
s(k)−1

(11)

The appendix derives formulas for the mean and variance of
λ̂s.

B. The standard estimator λ̂n

The estimator λ̂s is a variant of the well known estimator:

λ̂n =

∑K
k=1

(
Y

(k)
n − Z

(k)
0

)
∑K

k=1 Y
(k)
n−1

(12)

The difference is that λ̂n uses a fixed number of stages n for
each run whereas λ̂s only uses information from stages before
saturation. λ̂n is a maximum likelihood estimator [11], [24],
[19]. Moreover, for fixed n and as K → ∞,

(i) If λ < ∞, λ̂n → λ almost surely and Eλ̂n → λ; that
is, λ̂n is an strongly consistent and asymptotically unbiased
estimate of λ;

(ii) if the offspring distribution variance σ2 < ∞, then λ̂n

has an asymptotically normal distribution

N

⎛⎝λ, σ2

[
K

n−1∑
i=0

λi

]−1
⎞⎠ = N

(
λ,

σ2(λ − 1)
K(λn − 1)

)
Note that the standard deviation of λ̂n ∼ 1/

√
K.

C. Estimator of mean initial failures θ̂

K samples of the initial failures are given by Z
(1)
0 , Z

(2)
0 ,...,

Z
(K)
0 . We fit the initial failures with a Poisson distribution

with parameter θ conditioned on nonzero number of failures:

P [Z0 = r] =
e−θ

1 − e−θ

θr

r!
, r = 1, 2, 3, ... (13)

Let the sample mean of the initial failures be

Z0 =
1
K

K∑
k=1

Z
(k)
0 . (14)

Then both maximum likelihood and method of moments
estimation of θ in (13) yields an estimate θ̂ satisfying

Z0 =
θ̂

1 − e−θ̂
. (15)

D. Estimating distribution of number of failures from λ

If we assume that the cascading process is approximated
by a branching process with a Poisson offspring distribution,
then we can obtain the probability distribution of the number
of failures from λ. For example, assuming one initial failure,
Figure 1 shows the probability distributions obtained for S =
N = 1000 and three values of λ. For subcritical λ = 0.6 well
below 1, the probability of large number of failures of size near
S is exponentially small. The probability of exactly S failures
is also very small. As λ increases in the subcritical range
λ < 1, the mechanism by which there develops a significant
probability of large number of failures near S is that the power
law region extends towards S failures [14]. For near critical
λ ≈ 1, there is a power law region extending to S failures. For
supercritical λ = 1.2, there is an exponential tail. This again
implies that the probability of large number of failures < S is
exponentially small. However there is a significant probability
of exactly S failures that increases with λ.
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Fig. 1. Log-log plot of PDF of total number of failures in branching process
model for three values of λ. λ = 0.6 is indicated by the diamonds. λ = 1.0
(criticality) is indicated by the boxes. λ = 1.2 is indicated by the triangles.

IV. RESULTS

We first consider the statistical performance of the estimator
λ̂s on an ideal saturating branching process and then test
the use of analytic branching process formulas including the
estimator λ̂s in predicting the distribution of line failures from
the OPA simulation.

A. Testing on saturating branching process

The estimator λ̂s was tested on the saturating branching
process with Poisson offspring distribution and Z0 = 1 for
various specified values of λ and saturation S. Figures 2 and
3 show how well λ̂s matches λ for saturations S = 20 and S =
100. The necessity for λ̂s taking account of saturation is shown
by the corresponding results for λ̂n in Figure 4 (compare to
Figure 2). For subcritical λ well below λ = 1, λ̂n and λ̂s give
the same performance because it is likely that cascades die
out before reaching saturation.

We determined the bias and variance of λ̂s numerically by
computing λ̂s 1000 times and computing the sample mean
and standard deviation of λ̂s. The standard deviation σ(λ̂s)
was found to decrease ∼ 1/

√
K as K increases.

For saturation S = 20, 0 < λ < 2, and number of runs
10 ≤ K ≤ 1000, λ̂s underestimated λ with a bias less than
0.1:

−0.1 < µ(λ̂s) − λ ≤ 0

and
σ(λ̂s) ≤

0.6√
K

.

For example, K = 20 runs gives σ(λ̂s) ≤ 0.13.
For saturation S = 100, 0 < λ < 2, and number of runs

10 ≤ K ≤ 150, λ̂s underestimated λ with a bias less than
0.07:

−0.07 < µ(λ̂s) − λ ≤ 0

and
σ(λ̂s) ≤

0.5√
K

.

For example, K = 20 runs gives σ(λ̂s) ≤ 0.11.
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Fig. 2. λ̂s plotted against λ from 20 runs of saturating branching process
with saturation S = 20. 5 computations of λ̂s are shown for each value of
λ to indicate the scatter of the results around the line of slope one.
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Fig. 3. λ̂s plotted against λ from 20 runs of saturating branching process
with saturation S = 100. 5 computations of λ̂s are shown for each value of
λ to indicate the scatter of the results around the line of slope one.
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Fig. 4. Standard estimator λ̂n plotted against λ from 20 runs of saturating
branching process with saturation S = 20. 5 computations of λ̂n are shown
for each value of λ to indicate the scatter of the results around the line of
slope one.



B. Computing λ̂s from OPA results and predicting distribution
of line failures

The OPA model produces cascading line failures in stages
resulting from a random initial set of line failures. (Here the
intent of the term ”line failure” includes line outages in which
the line is intact but temporarily unavailable to transmit power
as well as line outages in which the line is damaged.) The
power transmission system is modelled using DC load flow
and LP generator dispatch and cascading line overloads and
failures are represented [4]. The power system is assumed to
be fixed with no transmission line upgrade process.

For each case considered, OPA was run so as to produce
5000 cascading failures with a nonzero number of line failures.
These 5000 runs yield line failure data in the form (7). All our
statistics are conditioned on a nonzero number of line failures.
Then λ̂s and θ̂ were obtained using equations (11) and (15).
The empirical distribution of the initial failures Z0 was also
estimated. The number of runs and the resulting data set are
large enough that the standard deviation of λ̂s is negligible.
The objective is to test an accurate λ̂s by evaluating its ability
to predict the probability distribution of line outages. (The
influence on statistical accuracy of the small number of runs
desirable in practice is evaluated in section IV-A.)

For each case, the probability distribution of line failures
was predicted using two methods and compared to the empir-
ical probability distribution of line failures. The first method
used the estimates λ̂s and θ̂ in the saturating generalized
Poisson distribution formula (5) to predict the distribution.
This tests the validity of the branching process model of initial
failures and propagation underlying (5) and the estimates λ̂s

and θ̂. The second method used the empirical distribution of
initial failures and the estimate λ̂s in the formula (6) to predict
the distribution. This tests the validity of the branching process
propagation of failures and the estimate λ̂s.

The first three cases used the IEEE 118 bus system at
average load levels of 0.9, 1.0, and 1.3 times the base case
loading. (The OPA parameters (explained in [4]) are γ = 1.67,
p0 = 0.0001 and p1 = 1 and (11) is evaluated with saturation
S = 15 lines.) The results are shown in Figures 5-7 and Table
I. The matches in Figures 5 and 6 are very good. Note that the
OPA simulation of cascading failure producing the empirical
probability distributions of line failures is substantially more
complicated than the simple analytic probability distribution
formulas (5) and (6) used to predict the same distributions.
Figure 7 shows a case with a large initial disturbance (the
average number of lines initially failed is θ̂ ≈ 12). In this case
the match for the generalized Poisson distribution is good and
the match for the formula (6) using the empirical distribution
of initial failures is poorer, especially for the smaller number
of failures. We suspect that the poorer match is due to some
of the cascades reaching saturation because of the large initial
disturbance.

The last two cases used the 190 bus tree-like test system
[4] at average load levels of 1.0 and 1.2 times the base case
loading. (The OPA parameters are γ = 1.94, p0 = 0.005 and
p1 = 0.15, and (11) is evaluated with saturation S = 15 lines.)
The results are shown in Figures 8 and 9 and Table I. The

results in Figure 9 show saturation effects not well captured
in the branching process model that make the prediction of
the distribution poorer. (One could set S = 15 in (5) and
(6) to model all cascades stopping when 15 lines fail, but
this very crude model of saturation gives a spike at 15 lines
that is also a poor fit to the empirical distribution since quite
a few of the cascades proceed beyond 15 lines failed.) The
position of the peak in the empirical distribution of Figure
9 indicates a concentration of number of line failures near
15, and we associate this with a tendency for the cascades to
saturate at approximately 15 lines failed. There also seems to
be a secondary peak and saturation at approximately 30 lines
failed. At smaller loadings such as in Figure 8, fewer cascades
encounter the saturation and, although the saturation effect is
perhaps discernible, it is small. We expect larger saturation
values in larger test systems. It is interesting to note that
the July and August 1996 Western area blackouts saturated
at over 30 high voltage line trips and the August 2003 Eastern
interconnect blackout saturated at several hundred high voltage
line trips [16].

The results suggest that good predictions of the probability
distributions of the number of line failures can be obtained
as long as saturation effects are not significant. We do not
understand how to accurately model the saturation effects at
present. The ability to predict the probability distribution of
the number of line failures in non saturating cases supports the
applicability of branching models to cascading failure before
saturation is reached and the usefulness of the estimate λ̂s

of failure propagation. λ̂s can be obtained much more effi-
ciently than empirical probability distributions of line failures
obtained by brute force.

TABLE I

ESTIMATORS FOR OPA CASES

power loading
system factor θ̂ λ̂s

IEEE 118 bus 0.9 1.10 0.19
IEEE 118 bus 1 1.66 0.41
IEEE 118 bus 1.3 12.20 0.44

tree-like 190 bus 1.0 1.49 0.53
tree-like 190 bus 1.2 6.21 0.61

V. GENERALITY AND LIMITATIONS OF λ CONCEPT

This paper approximates cascading failure by a single-type
Galton-Watson branching process with random or determinis-
tic initial failures. The most immediate motivation is that this
branching process approximates a loading dependent model of
cascading failure [17] and captures some, but not all, qualita-
tive features of cascading failure in blackout simulations [4],
[10], [25]. Moreover, the single-type Galton Watson branching
process also approximates other cascading processes, such as
avalanches in idealized sandpiles [23], [27], initial spread of
epidemics, growth of populations etc. Thus estimation of λ is
already established in cascading failure in other fields [19].
This section shows two examples of more elaborate models
that involve cascading failure to start to explore how the
parameter λ may apply more generally.



1 2 5 10 20 50 100

0.001

0.005

0.01

0.05

0.1

0.5
probability

number of lines failed

Fig. 5. IEEE 118 bus system with loading factor 0.9. PDF estimated with
initial failure distribution and λs (solid line) and θ̂ and λ̂s (dashed line)
compared with OPA empirical PDF (dots). Note the log-log scales.
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Fig. 6. IEEE 118 bus system with loading factor 1.0. PDF estimated with
initial failure distribution and λs (solid line) and θ̂ and λ̂s (dashed line)
compared with OPA empirical PDF (dots).
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Fig. 7. IEEE 118 bus system with loading factor 1.3. PDF estimated with
initial failure distribution and λs (solid line) and θ̂ and λ̂s (dashed line)
compared with OPA empirical PDF (dots).
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Fig. 8. Tree-like 190 bus system with loading factor 1.0. PDF estimated
with initial failure distribution and λs (solid line) and θ̂ and λ̂s (dashed line)
compared with OPA PDF (dots).
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Fig. 9. Tree-like 190 bus system with loading factor 1.1. PDF estimated
with initial failure distribution and λs (solid line) and θ̂ and λ̂s (dashed line)
compared with OPA PDF (dots).

A. Demon model of two coupled infrastructures

The Demon model [26] abstractly models cascading infras-
tructure failure as a dynamic complex system. The Demon
model is based on the forest fire model of Bak, Chen and
Tang [3] with modifications by Drossel and Schwabl [18].
For a single system, the model is defined on a 2-d network.
Network nodes represent components of the infrastructure
system and lines represent couplings between components.
The components can be operating, failed or failing. The rules
of the model are that for each time step:

1) Any operating component fails with a probability Pf .
Pf is the spontaneous failure rate independent of other
components.

2) An operating component fails with a probability Pn

if at least one of the nearest components is failing.
Pn describes the extent to which failures propagate to
neighboring components.

3) A failing component becomes a failed one.
4) A failed component is repaired and becomes operational

with probability Pr.



We can generalize this single system to two coupled infras-
tructure systems by taking two of these 2-d networks, making
a fraction g of the nodes in each system correspond to the
component in the corresponding 2-d position in the other
system, and adding another rule:

5) An operating component in system 1 fails if the corre-
sponding component in system 2 is failed or failing. An
operating component in system 2 fails if the correspond-
ing component in system 1 is failed or failing.

In this paper, we will assume that the two coupled systems
have identical networks and identical parameters except that
the probability P

(1)
f of spontaneous failures in system 1 may

differ from the the probability P
(2)
f of spontaneous failures

in system 2. We assume that the systems are coupled sym-
metrically with coupling coefficient c and that the fraction
of components coupled to other system is g. These rules
allow both analytic mean field and numerical calculations and
we start with a mean field calculation that generalizes the
calculation in [18]. The number of components in each system
is N . Let O(i)(t) be the fraction of operating components in
system i at time t; that is, the number of operating components
at time t divided by N . In the same way, we can define
the fraction of failed components, F (i)(t), and the fraction
of failing components, B(i)(t).

The mean field equations for the coupled system are:

B(1)(t+1) = P
(1)
f O(1)(t) + PnfO(1)(t)B(1)(t)

+cgO(1)(t)(B(2)(t) + F (2)(t))
F (1)(t+1) = (1 − Pr)F (1)(t) + B(1)(t)

O(1)(t+1) = (1 − P
(1)
f )O(1)(t) + PrF

(1)(t)

−PnfO(1)(t)B(1)(t) − cgO(1)(t)(B(2)(t) + F (2)(t))

B(2)(t+1) = P
(2)
f O(2)(t) + PnfO(2)(t)B(2)(t)

+cgO(2)(t)(B(1)(t) + F (1)(t))
F (2)(t+1) = (1 − Pr)F (2)(t) + B(2)(t)

O(2)(t+1) = (1 − P
(2)
f )O(2)(t) + PrF

(2)(t)

−PnfO(2)(t)B(2)(t) − cgO(2)(t)(B(1)(t) + F (1)(t))
(16)

In (16), f is the average number of neighboring nodes within
a system that a failing node can propagate failure to. During
failure propagation, since at least one of the nodes neighboring
a failing node has failed, f ≈ k−1, where the network degree
k of each system is the average number of nodes within each
system that are joined to a given node. Equations (16) are
consistent with the condition O(i)(t) + B(i)(t) + F (i)(t) = 1.

In the limit with no spontaneous failures, P
(1)
f = P

(2)
f = 0,

and for a steady state solution, (16) can be reduced to two
coupled equations,(

1 − PnfO(1)
)
Pr(1 − O(1)) = cg(1 + Pr)(1 − O(2))O(1),(

1 − PnfO(2)
)
Pr(1 − O(2)) = cg(1 + Pr)(1 − O(1))O(2).

(17)
If c �= 0, then O(1) = 1 implies O(2) = 1; that is, the
systems are effectively decoupled. Therefore, to have truly
coupled systems, system 1 must be in a supercritical state with

O(1) < 1. Here criticality occurs in passing from an average
state with almost no failures to an average state with some
failures.

For this mean field computation we have assumed identical
system symmetrically coupled. In particular P

(1)
f = P

(2)
f = 0.

Then O(1) = O(2), and (17) lead to the following identical
solutions for the two systems in steady state:

O(i) =

⎧⎨⎩
1, ĝ ≤ 1
1
ĝ
, ĝ > 1

(18)

F (i) =

⎧⎨⎩
0, ĝ ≤ 1

ĝ − 1
ĝ(1 + Pr)

, ĝ > 1
(19)

B(i) =

⎧⎨⎩
0, ĝ ≤ 1

ĝ − 1
ĝ(1 + Pr)

Pr, ĝ > 1
(20)

Here, ĝ is the control parameter given by

ĝ = Pnf +
cg(1 + Pr)

Pr
(21)

The critical point occurs at ĝ = 1.
Observe from (21) that if the systems are uncoupled so that

c = 0, then ĝ = Pnf both measures the average propagation
of failures in each system and detects criticality when ĝ =
1. Thus for uncoupled systems (or a system considered in
isolation) ĝ has similar characteristics to λ in the branching
process model. However, the situation is more complicated
when the systems are coupled and then (21) shows that the
criticality depends also on the coupling and the probability of
repair Pr.

We have tested the results from the mean field computation
by comparing them with numerical results for the identical
coupled systems formed from the systems listed in Table II.
The results for the average number of operating components
are shown in Figure 10. These results were obtained for fixed
Pr = 0.001, c = 0.0005, P

(1)
f = 0.00001, and P

(2)
f = 0

and we have varied the propagation parameter Pn. The results
show very good agreement with the mean field theory results
as the network degree k increases. For k = 2, the system are
practically 1-d and the mean field theory is not applicable.

TABLE II

SYSTEMS TO BE COUPLED

system k number of nodes

Open 3-branch Tree 2 3070
Closed 3-branch Tree 3 3070

Square 3.96 10000
Hexagon 5.9 4681

The density of operating components is practically the same
in both systems. This is expected because the systems are
nearly identical with the only symmetry breaking feature being
the probability of spontaneous failures P

(2)
f that is zero in the

second system.
Perhaps the most important point for the purposes of this

paper is that the critical point moves as the coupling cg
increases. Figure 11 shows the critical point as a function of



Fig. 10. Variation of fraction of operating components O(1) in system 1 as
the propagation parameter Pn is varied.

Fig. 11. Fraction of operating components O(i) at critical point as a function
of coupling cg for system 1 and system 2. The triangles with dots inside are
results obtained with g = 1 (all components coupled between the systems)
and the open triangles are results obtained with g = 0.1 and a tenfold increase
in c.

the coupling cg. A factor of four variation in the critical point
is seen. Figure 11 shows the critical points of both system
1 and system 2 calculated from the change in the functional
form of the operating node density (18). The two systems are
virtually indistinguishable from each other.

Following [18], we computed a measure of propagation of
failing components

λ̂d =
〈

B(4)
B(3)

〉
(22)

where 〈 〉 denotes averaging over all the cascades occurring
in the model runs. While there is critical value for λ̂d at the

critical point discussed above, the critical value of λ̂d at the
critical point is typically less then 1 (up to 20% less for the
cases examined) and it depends on the coupling and the details
of the system. We are continuing to investigate measures of
propagation and their interpretation and possible applicability
to the coupled system.

B. Two-type branching process model

To show a more elaborate branching process model where
the generalization of λ with all the characteristics of the
single type case is not yet apparent, consider a two-type
Galton-Watson branching process [2]. One motivation for the
two types in blackout models is that type 1 could represent
component failures within the network and type 2 could
represent the amount of load shed or energy unserved. Another
motivation is that the two types could represent failures in two
coupled infrastructures [26]. One way to generalize λ is the
matrix

Λ =
(

λ11 λ12

λ21 λ22

)
where λij is the average number of type j failures caused by
each type i failure in the previous stage. The coupled cascading
processes still show criticality but the condition for criticality
becomes λmax = 1 where λmax is the largest eigenvalue of Λ
[26]. λmax is a quadratic root function of the entries of Λ. The
criticality property remains a function of Λ, but the function
is not trivial as in the single type case.

Suppose that the two-type branching process represents
two coupled infrastructures. Then, if the first infrastructure
is incorrectly modeled in isolation, it will be a single-type
branching process with parameter λ11, and its proximity to
criticality will be computed as 1−λ11. On the other hand, the
model of the two coupled infrastructures will yield a proximity
to criticality of 1 − λmax. This illustrates the importance of
mutual couplings with other infrastructures in determining the
propensity for cascading failure.

VI. DISCUSSION AND CONCLUSION

In this paper, we approximate cascading failure by a single
type Galton-Watson branching process with saturation in order
to propose a method of quantifying the propagation of failures
λ and hence estimate the probability distribution of the number
of failures. The proposed estimator λ̂s requires K observations
of cascades with the initial and final failures grouped in stages.
Although λ̂s is not asymptotically unbiased, it does work in
the presence of saturation effects that are thought to occur in
blackouts.

Testing on a saturating branching process suggests that an
order of K = 10 observations can be sufficient to determine
λ̂s with worst-case bias and standard deviation of order 0.1.
The standard deviation of λ̂s decreases like 1/

√
K as K

increases and it may be possible to correct for the bias in
future work. This compares favorably with the much larger
number of observations needed to estimate the often heavy-
tailed distribution of number of failures directly. The ability
to estimate the propagation of failures and the distribution of
failures with a modest number of observations would expand



the opportunities for using cascading failure simulations to
study the effect of transmission system upgrades on cascading
failure and is crucial for the practicality of monitoring failures
in the power grid to assess cascading failure.

Initial testing of the estimator λ̂s by predicting the em-
pirical probability distributions of line failures from OPA
using branching process models shows a good fit for cases
in which saturation effects are not present. Similarly good fits
for the non-saturating case are obtained by approximating the
initial failures as a Poisson distribution and estimating the
mean θ̂ of the Poisson distribution. These results are also
promising in showing the applicability of simple branching
process models to cascading processes in blackouts before
saturation. Further progress on saturating cases is likely to
require a better understanding of the saturation effects.

We also examine quantities sharing some properties of λ in
an abstract complex systems dynamical model of two inter-
acting infrastructures. While there remains a useful parameter
ĝ governing the criticality of the model, the value of ĝ at
criticality varies with the amount of coupling between the two
infrastructures. When the infrastructures are not coupled, ĝ is
analogous to λ in that it describes the average propagation
of failures in each system and the system becomes critical
when ĝ = 1. However, the situation is more complicated when
the infrastructures become coupled. A two-type generalization
of the branching process is a different model of coupled
cascading systems and in this model λ can be generalized
to a more complicated function of the model parameters
that measures the dominant propagation and becomes 1 at
criticality. The complex systems dynamical model and the
two-type branching model are very different but both are
simple models of coupled cascading processes that have the
potential to capture some overall features of failures cascading
in and between infrastructures. Both models show that the
propensity for cascading failure is strongly influenced by the
mutual couplings between the infrastructures. In particular,
consideration of the infrastructures in isolation could give a
misleading assessment of the propensity for cascading failure.

As more is learned about the universal or application-
specific properties of cascading failure, the high level mod-
els of cascading failure may be elaborated. Each elaborated
branching process has further parameters to fit to describe
the cascade. Further work is needed to determine the best
compromise between simplicity and elaboration, but this paper
makes progress in estimating λ for a single-type Galton-
Watson branching process with saturation. This branching
process model or its elaborations could well be applicable to
assessing cascading failure risk in large networked infrastruc-
tures and in interacting infrastructures.
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APPENDIX

This appendix derives formulas for mean and variance of
λ̂s similar to the formulas for λ̂n in [19, pp. 36-37].

Define the event

A =
K⋂

k=1

{
s(k) = sk, Y

(k)
sk−2 = yk, Z

(k)
sk−1 = zk

}

E λ̂s = E

∑K
k=1 (Y (k)

s(k) − Z
(k)
0 )∑K

k=1 Y
(k)
s(k)−1

=
∑

sk,yk,zk

E

⎛⎝∑K
k=1 (Y (k)

s(k) − Z
(k)
0 )∑K

k=1 Y
(k)
s(k)−1

A

⎞⎠ P (A)

=
∑

sk,yk,zk

E

(∑K
k=1 (yk + zk + Z

(k)
sk − Z

(k)
0 )∑K

k=1 (yk + zk)
A

)
P (A)

=
∑

sk,yk,zk

(
1 +

∑K
k=1(λzk − Z

(k)
0 )∑K

k=1(yk + zk)

)
P (A)

= 1 + λE
1
K

∑K
k=1 Z

(k)
s(k)−1

1
K

∑K
k=1 Y

(k)
s(k)−1

− E
1
K

∑K
k=1 Z

(k)
0

1
K

∑K
k=1 Y

(k)
s(k)−1

(23)

Let
B(k) =

(
s(k), Y (k)

s(k)−2, Z
(k)
s(k)−1

)

Varλ̂s = Var

∑K
k=1 (Y (k)

s(k) − Z
(k)
0 )∑K

k=1 Y
(k)
s(k)−1

= Var

⎛⎝1 +

∑K
k=1(Z

(k)
s(k) − Z

(k)
0 )∑K

k=1(Y
(k)
s(k)−2 + Z

(k)
s(k)−1)

⎞⎠
= Var

⎛⎝ ∑K
k=1(Z

(k)
s(k) − Z

(k)
0 )∑K

k=1(Y
(k)
s(k)−2 + Z

(k)
s(k)−1)

⎞⎠
= E Var

⎛⎝ ∑K
k=1(Z

(k)
s(k) − Z

(k)
0 )∑K

k=1(Y
(k)
s(k)−2 + Z

(k)
s(k)−1)

B(k)

⎞⎠
+Var E

⎛⎝ ∑K
k=1(Z

(k)
s(k) − Z

(k)
0 )∑K

k=1(Y
(k)
s(k)−2 + Z

(k)
s(k)−1)

B(k)

⎞⎠
=

σ2E

∑K
k=1 Z

(k)
s(k)−1(∑K

k=1 Y
(k)
s(k)−1

)2 + Var

∑K
k=1(λZ

(k)
s(k)−1 − Z

(k)
0 )∑K

k=1 Y
(k)
s(k)−1

=
σ2

K
E

1
K

∑K
k=1 Z

(k)
s(k)−1(

1
K

∑K
k=1 Y

(k)
s(k)−1

)2

+
1
K

Var
1√
K

∑K
k=1(λZ

(k)
s(k)−1 − Z

(k)
0 )

1
K

∑K
k=1 Y

(k)
s(k)−1

This uses

VarX = EX2 − (EX)2

= EE(X2|Y ) − E(E(X|Y ))2 + E(E(X|Y ))2

−(EE(X|Y ))2

= EVar(X|Y ) + VarE(X|Y )
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