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Executive Summary 

This report deals with the placement of phasor measurement units (PMUs) based on the 
improvement in error in the estimate of the voltage phase angles in power systems.  The 
present technology measures voltage, current, and real and reactive power for 
determining the operating condition of the electric network. This technology cannot 
measure voltage phase angle directly.  Thus, voltage phase angles must be found by state 
estimation.   

This research examined two possible methods for incorporating phasor measurement 
units into present state estimation methods.  The two principal state estimation methods 
considered are: 1) using weighted least squares with significant weight on the PMU 
measurements; and 2) eliminating the equations associated with the voltage phase angle 
measurements made by the PMU.  The PMU measurements would be done using global 
positioning system (GPS) technology to measure voltage phase angles; this measurement 
would be very accurate.   

The test bed for the state estimation methodology assessment is the Institute Electrical 
and Electronics Engineering (IEEE) 14 bus system.  In this study, the IEEE 14 bus 
system is fully observable by supervisory control and data acquisition (SCADA) devices.  
The incorporation of PMU measurements into the system increases the accuracy of the 
voltage phase angle estimates.  The cases considered examine the location of the PMUs 
based on decreasing the error in the estimate of voltage phase angle.  The work includes 
an examination of the impact of noise on the location of the PMUs.  Also included in this 
work is the relationship between the number of PMUs installed and the error in the 
voltage phase angle estimates.  A goal of this work is to show the gains that can be 
attained by PMUs. 

ii 



 

Table of Contents 

1. State Estimation: Past, Present, and Future ................................................................ 1 

1.1 Background and Motivation ................................................................................... 1 

1.2 State Estimation Literature Review ........................................................................ 1 

1.3 The Pseudoinverse and Its Relationship to Least-Squares Estimation ................... 2 

1.4 Phasor Measurement Units Literature Review ....................................................... 2 

1.5 Organization of the Report ..................................................................................... 3 

2. The Basis of Linear State Estimation.......................................................................... 5 

2.1 The Method of Least Squares ................................................................................. 5 

2.2 Weighted Least Squares.......................................................................................... 5 

2.3 Norms...................................................................................................................... 7 

2.4 Condition Numbers................................................................................................. 8 

3. Experiments Utilizing PMU Measurements in State Estimators................................ 9 

3.1 Adding PMU Measurements to a State Estimator .................................................. 9 

3.2 Problem Statement .................................................................................................. 9 

3.3 Solution by Weighted Least Squares Estimation.................................................... 9 

3.4 Solution by Direct Substitution............................................................................. 11 

3.5 Metrics for Comparing WLS to Direct Substitution............................................. 11 

3.6 Design of the Experiments.................................................................................... 13 

3.7 Description of the Code ........................................................................................ 14 

3.8 Results from the MATLAB .................................................................................. 15 

3.9 Noise Dependency ................................................................................................ 17 

3.10 Conclusions........................................................................................................... 19 

4. Experiments Utilizing Multiple PMU Measurements in State Estimators ............... 20 

4.1 Adding PMU Measurements to a State Estimator ................................................ 20 

4.2 Description of the MATLAB Script ..................................................................... 20 

4.3 Results from Direct Substitution of Two PMU Measurements............................ 20 

4.4 Results from Weighted Least Squares Method of Two PMU Measurements...... 21 

4.5 Effect of Noise on Placement of PMUs................................................................ 21 

4.6 Additional of PMU Measurements ....................................................................... 26 

4.7 Examination of the Variance of the E-vector ....................................................... 27 

iii 



 

Table of Contents (continued) 
 

4.8 Conclusions........................................................................................................... 30 

5. Conclusions and Future Work .................................................................................. 31 

5.1 Conclusions........................................................................................................... 31 

5.2 Future Work.......................................................................................................... 32 

REFERENCES ................................................................................................................. 33 

A. IEEE14 Bus Test Bed System Information .............................................................. 35 

B. MATLAB Scripts for State Estimation..................................................................... 38 

B.1 Script for a Single PMU in the 14 Bus System..................................................... 38 

B.2 Script for Examining Two PMU in the 14 Bus System........................................ 45 

B.3 Script to Examine Impact of Multiple PMUs on the 14 Bus System ................... 53 

C. Summary of Experiments Performed........................................................................ 61 

 

iv 



 

Table of Figures 

Figure 2.1 Graphical representation of L-norms................................................................ 8 

Figure 3.1 One-line diagram of IEEE 14 bus system ...................................................... 14 

Figure 3.2 Normalized error of DS-1-0.3 per bus placement of PMU ............................ 16 

Figure 3.3 Normalized error of WLS-1-0.3 bus placement ............................................. 16 

Figure 3.4 Comparison of normalized error at bus 11 ..................................................... 19 

Figure 4.1 Normalized error for two PMU measurements in DS-2-0.3 .......................... 22 

Figure 4.2 Normalized error for two PMU measurements in WLS-2-0.3 ....................... 23 

Figure 4.3 Normalized error vs. noise to signal for DS-1 and DS-2................................ 24 

Figure 4.4 Normalized error vs. noise to signal for WLS-1 and WLS-2......................... 25 

Figure 4.5 Normalized error vs. noise to signal for DS-2 and WLS-2 ............................ 25 

Figure 4.6 Normalized error vs. number of PMUs added................................................ 26 

Figure 4.7 Number of ei terms set to zero versus variance of {ei} ................................. 29 

Figure 4.8 Number ei terms set to zero versus the mean of {ei}...................................... 29 

v 



 

Table of Tables 

Table 3.1 List of various measurements of error in the state vector .................................13 

Table 3.2 Normalized error of  as PMU location is varied............................................17 δ̂

Table 3.3 Normalized error as bus placement and noise level varied for DS-1................18 

Table 3.4 Normalized error as bus placement and noise level varied for WLS-1 ............18 

Table 4.1 Placement of two PMUs at varying signal to noise ratio in WLS-2 .................24 

Table A.1 Solved delta values for IEEE 14 bus system....................................................35 

Table A.2 Line impedances and power flow for 14 bus system .......................................36 

Table A.3 H matrix for the 14 bus test system..................................................................37 

Table C.1 Experiments performed ....................................................................................62

vi 



 

1. State Estimation: Past, Present, and Future 

1.1 Background and Motivation 
The electric power industry is undergoing multiple changes and restructuring towards 
deregulation.  As the restructuring is happening profits are less guaranteed, and some 
electric power utilities are increasing the loads on the grid to generate more revenue.  The 
increased power exchange has a concomitant requirement for situational awareness.  This 
refers to the need for system operators to know the operating states of the system.   

The Northeast blackout of 2003 was in part caused by the national electric grid being 
pushed past is limits and the operators not detecting that the grid was in a critical state 
[1].  If the operators of the electric grid in Ohio had been able to detect that several areas 
the grid were in critical states, they might have been able to prevent the cascading events 
which followed.  One key element of modern energy management systems is a state 
estimator: a state estimator uses system inputs and a system model to obtain and depict 
the power system states (mainly bus voltage magnitudes and phase angles). 

Most utilities have state estimators in the package of energy management systems.  Due 
to the fact that state estimators tend to not accurately represent the system during times of 
use of incorrect measurements (a condition which is flagged by the estimator), the system 
operators might turn off this function, have low confidence in the displayed values, or 
ignore displays. There are several topics in state estimation being studied to improve the 
accuracy of the state estimation in power systems.  In this report the author examines how 
new technology of a phasor measurement units, a global positioning system (GPS) 
technology can be used to help better the estimation of the states in an electrical power 
systems.    

1.2 State Estimation Literature Review 
Schweppe was one of the first to formulate static state estimation for a power network 
based on the power flow model [2].  The idea is to estimate the states of the power 
network. These states might not be directly observable based on physical relationships 
between the measurements and the desired unknown states.  The model developed by 
Schweppe requires that the physical state of the system is known, e.g. breaker status [2]. 

Another advancement in the field of state estimation was the introduction of a weight 
matrix to increase the accuracy of the results.  Weighting is done to enhance the “input” 
of accurate measurements, and de-emphasize the less accurate measurements.  It can be 
shown that the maximum likelihood estimate utilizes weights that are based on the 
covariance of the measurement devices.  The more accurate a measurement, the more 
weight in the state estimator [3].  Weighting is the practice of accounting for the 
confidence in a measurement.  The process of overcoming measurement noise is inherent 
in taking physical measurements, but there are situations in which the data are grossly 
erroneous.  The data that are erroneous must be identified and eliminated.  One method 
for the detection of bad data is the examination of the measurements and if the 
measurements deviate from expected values by some preset threshold the measurement 
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can be assumed to be bad [4].  Another problem that causes state estimators inaccuracies 
is the model itself. Generally the simple linear model Hx=z is used where the H is the 
measurement model (processing matrix), x is the state vector, and x is the measurements.  
If the process matrix is incorrect, the model does not represent what is physically 
happening in the system.  The detection of both erroneous data or improper formation of 
the process matrix may be done by examining the residual of the equation Hx=z [3].  The 
common technique in correcting the issue of unobservable areas is to provide an estimate 
of what the readings are in the unobservable areas to create an entire system model [5].   

References [6, 7, 8, 9] are textbooks on state estimation in power engineering; references 
[10 -- 14] are representative of solutions methods; and [4, 15] are case studies. 

1.3 The Pseudoinverse and Its Relationship to Least-Squares Estimation 
The commonly used model for a linear system is 

 Hx=z (1.1) 

with H as the process matrix (m by s matrix), x is the state vector (dimension s), and z is 
the measurement vector (dimension m) is overdetermined when m is larger than s.  
References [6 – 9, 16] describe Equation (1.1). Equation (1.1) can be “solved” in the 
least-square sense by minimizing ||r||2, 

 r=Hx-z (1.2) 

where || ● ||2 refers to the 2-norm [8].  Properties of norms appear in [8]. It can be shown 
that || r ||2 is minimized when 

 .  (1.3) zHxx +== ˆ

The notation  is the “estimate” of vector x, H+ pseudoinverse of H. References [6 – 9, 
16] describe the properties of the pseudoinverse.  Equation (1.3) is known as an unbiased 
least squares estimator. 

x̂

1.4 Phasor Measurement Units Literature Review 
Phasor measurement units (PMUs) are instruments that take measurements of voltages 
and currents and time-stamp these measurements with high precision.  PMUs are 
equipped with Global Positioning Systems (GPS) receivers.  The GPS receivers allow for 
the synchronization of the several readings taken at distant points [17].  PMUs were 
developed from the invention of the symmetrical component distance relay (SCDR).  The 
SCDR development outcome was a recursive algorithm for calculating symmetrical 
components of voltage and current [18].  Synchronization is made possible with the 
advent of the GPS satellite system.  The GPS system [19] is a system of 36 satellites (of 
which 24 are used at one time) to produce time signals at the earth’s surface.  GPS 
receivers can resolve these signals into {x,y,z,t} coordinates. The t coordinate is time. 
This is accomplished by solving the distance=(rate)(time) in three dimensions using 
satellite signals.  The PMU records the sequence currents and voltages and time stamps 
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the reading with time obtained by the GPS receiver.  It is possible to achieve accuracy of 
synchronization of 1 microsecond or 0.021° for 60 hertz signal. This is well in the 
suitable range of measuring power frequency voltages and currents [18].  Based upon the 
research done at Virginia Tech, the Macrodyne Company was able to begin production of 
PMU devices, which has lead to the IEEE Standard 1344 “Sychrophasor” which defines 
the output data format of a PMU [18]. 

PMUs are able to measure what was once immeasurable, phase difference at different 
substations.  When completing a state estimation of a power system one of the states, 
which are being determined, is the voltage angle at each bus.  With PMUs the utilities are 
able to directly measure voltage angle as compared to the swing bus.  

Since the development of the PMU, power engineers have been looking at how to use the 
device to better observe the system.  The PMUs have been implemented as a source of 
information to detect faults on transmission lines [19].  The implementation of PMUs to 
make the system more observable starts with a spanning tree and looks for areas of the 
system which are unobservable.  The next step is to impose certain criteria on the search 
of the proper placement of the PMUs.  Three that have been looked at are modified 
simulated annealing method, direct combination, and tabu search.  All three where 
examined on tests on the IEEE 14, 30, and 57 bus systems and the results show that the 
proposed methods can find the optimal solution in an efficient manner [17].  The other 
method for determining the optimal placement of the PMU is to do a genetic algorithm 
search, the authors suggest that a genetic search is the best because the two solution 
criteria may be in opposition of each other.  In this case, criterion one is to maximize the 
redundancy and observable area of system.  Criterion two is to minimize cost of the 
installation [20].  Another paper argues there should be more criteria added to the optimal 
placement of PMU including the examination of placement of the devices with 
consideration given to improving the security of the system [21]. 

How PMUs should work in state estimation has been discussed.  There is a school of 
thought that the measurements from the PMU are far superior of SCADA data used in 
traditional state estimation and should be collected and used separate from this data [21].  
Others admit there is difference in the information and it is viable to use PMU 
measurements in with SCADA data [22].  Hydro-Quebec believes that the PMUs are 
accurate enough to not need correlation between PMS measurements.  Their algorithm is 
to place the PMUs based on the busses which minimize the correlation between 
measurements [23].  

1.5 Organization of the Report 
The report is organized into five chapters.  Chapter one examines the work that has 
already been done in the field of state estimation and phasor measurement units.  Chapter 
two examines the theory behind state estimators.  In chapter two, there is an examination 
of the different types of the state estimators including least squares.  In Chapter two there 
is an examination of alternative norms.  Chapter three addresses the question of PMU 
placement.  That is, to identify the bus phase angle for which the perfect knowledge 
would produce the best improvement in estimator accuracy.  Chapter four contains 
experiments with multiple PMUs in the IEEE 14 bus system.  Chapter five contains 
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conclusions about the method studied in this report and future work to make the method 
more refined and applicable for real world systems.   

Three appendices are attached to the report: 

 A.  A description of a 14 bus test bed system 
 B.  MATLAB scripts used in this work 
 C.  A listing of all experiments done and the conditions of these experiments. 
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2. The Basis of Linear State Estimation 

2.1 The Method of Least Squares 
Present state estimation techniques rely on the least squares approach to finding the best 
estimation of states.  The method of least squares uses the linear equation, 

 zHx =  (2.1) 

H is the process matrix dimensioned (m x s), x is the state vector dimensioned (s), and z is 
the measurement vector dimensioned (m).  In state estimation it assumed that the system 
is over determined, meaning there are more measurements than states.  However rarely 
are the measurements perfect, and therefore z is actually a perfect measurement plus 
‘noise.’  The problem becomes how to find the best fit between measurements z and 
states x.  In the least squares approach idea is minimize the difference L2

 norm of the 
residual,  

 Hxzr −=   (2.2) 

( ) ( )t2 zHxzHxr −−=2|| . (2.3) 

To minimize Equation 2.3, take the derivative, which results in Equation 2.4.  Then 
simple algebra is used to separate the best estimate of x, namely ,  x̂

 zHxHH
x
r tt

xx

−==
∂

∂

=

ˆ0||

ˆ

2
2  (2.4) 

zHxHH tt =ˆ  ( ) zHHHx ttˆ =
1− . (2.5) 

The formulation in (2.5) is valid only when HtH is nonsingular.  The singular case is 
rarely encountered but can be handled by an alternative formatting.  There are two 
notable terms in Equation (2.5): (HtH)-1Ht term to this equation the pseudoinverse (2.7) 
and the gain matrix (2.6), 

 H  (2.6) HG t=

 ( ) tt HHHH + =
1− . (2.7) 

The notation H+ refers to the pseudoinverse. 

2.2 Weighted Least Squares 

A drawback of the least squares approximation is that the all the measurements are 
treated with the same weight.  This procedure is unbiased.  This implies that all the 
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measuring tools are measuring with the same accuracy and precision.  In power 
engineering, this is rarely the case. A term is added to the least squares to provide 
emphasis for accurate measurements. This is accomplished by weighting the residual r 
using a weighting matrix W.  The matrix W is m by m, and the weighted residual is W(Hx-
z).  The W diagonal entries are the inverse of the covariance of the measurements in order 
to obtain the maximum likelihood solutions [7], 

  (2.8) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

2

2
2

2
1

m

W

σ

σ
σ

Ο
Ο

( )zHxWr −=  (2.9) 

( )[ ] ( )[ ]t2 zHxWzHxWr −−=2|||| . (2.10) 

Equation 2.9 is the weighted residual equation.  Moving the W inside the parenthesis it is 
found an equation similar to least squares.  To find the x this minimizes ||r||22 take the 
derivative, 

 ( ) ( )WzWHxWzWHxr t −−=2
2||||  

 
Wzz =′
WHH =′

 

( ) ( )t2 zxHzxHr ′−′′−′=2||||  (2.11)  

 zHxHH
x
r tt

xx

′′−′′==
∂

∂

=

ˆ0||

ˆ

2
2

 

 ( ) zHHHx t ′′′′=ˆ −1 . (2.12) 

A weakness of weighted least squares is that if a measurement is known to high 
precision, it is difficult to represent that in the W matrix.  In the case below, assume that c 
is much greater than a and b, 

            
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3231

2221

1211

10
hh
hh
hh

H a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
c

b

b

w
w

w
W

1000
0100
0010

3

2

1
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  ⎥
⎦

⎤
⎢
⎣

⎡
′′

=
2221

1211

hh
hh

WHH t ′′

acbaba +++′ 222

acbaba +++′′

acbaba +++′ 222

  whwhwhh ++= 101010 33122111111

  whhwhhwhhhh ++== 101010 3323122221112112112

 . whwhwhh ++= 101010 33222211222

If c is much larger than b and a, any term raised to the c power is much larger than the 
rest. This causes the matrix HtWH to approach being singular.  Depending on precision of 
the software package being used and the magnitude of the difference between c and a and 
b can cause the terms not raised to the c power to be dropped completely. 

2.3 Norms 

The state estimation technique presented relies on the L2 being a satisfactory in 
representing the error between the measurements and the states.  The Lp norm is, 

 ( )p
m

i

p
ip xr ∑

=

=
0

|||||| .  (2.13) 

There are several L norms however three most commonly discussed are the L1, L2, and 
the L∞ norm.  The L1 norm is the sum of the absolute of the number as seen in Equation 
2.14.  The L2 norm is the square root of the sum of the squares, and the L∞ norm is the 
largest single value in the vector, 

L1-Norm  (2.14) ∑
=

=
m

i
ixr

1
1 ||||||

L2-Norm ( )∑
=

=
m

i
ixr

1

2
2||||  (2.15) 

L∞-Norm ( ) ||max||||||
1

i

m

i
i xxr == ∞

=

∞
∞ ∑ . (2.16) 

A plot can be created of the different norms of a vector of dimension two, 

 x=(x1, x2)t (2.17) 

 . (2.18) pp
p kx =||||
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Figure 2.1 shows loci of ||x||p=k.  L norms are a way of collapsing data stored in a vector 
into a single value.   

   

- k   k  

k  

x 1 

x 2   

|| x|| 2=k   

|| x|| 1=k   

- k  
 

||x||∞=k 

Figure 2.1 Graphical representations of L-norms 

2.4 Condition Numbers 
State Estimation based on the Hx=z has a weakness that small perturbations in vector z or 
matrix H can cause large changes in the estimated state vector, .  The condition number 
of a matrix is the largest singular value divided by the smallest singular value.  The 
singular value matrix is a diagonal matrix determined by,   

x̂

                             nmA ×ℜ∈ mmU ×ℜ∈ nnV ×ℜ∈

( )pdiagAVU ,...,, 21
T σσσ= }        { nmp ,min=  (2.25)  

 ( ) +⋅== AAAcond
2

1

σ
σ . (2.26) 

The condition number quantifies how close the matrix is to being orthogonal or singular.  
An orthogonal matrix has a condition number of 1 and singular matrix has a condition 
number of infinity.  As the condition number approaches 1, or is small, the matrix is 
considered well conditioned.  The counter statement is that as the condition number of a 
matrix is large, then the matrix is considered ill-conditioned or close to being a singular 
matrix.  Though not a linear map the larger the condition number of a matrix the larger 
the amplification of a perturbations in either the z vector or H matrix will map to the 
estimated state vector, . x̂
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3. Experiments Utilizing PMU Measurements in State Estimators 

3.1 Adding PMU Measurements to a State Estimator 
PMUs are able to make highly accurate phase angle measurements compared to 
conventional measurements made by SCADA devices.  Retrieving data from the PMUs 
to merge them with data from SCADA devices for state estimation can be problematic.  
Hyper accuracy of PMU data may not be warranted.  PMUs are able to directly measure 
voltage angles [24].  As discussed previously, voltage phase angle is one of the states to 
be estimated.  The addition of a voltage phase angle measurement to a conventional state 
estimator could greatly increase the accuracy of the state estimator if implemented 
correctly.  The two options examined in this report are to add PMU measurement into the 
state estimator with significant weight on this new measurement; or to eliminate the 
equations that correspond to the measured states.  These two philosophies are examined 
in this chapter. 

3.2 Problem Statement 
The state estimator used in this research is based on DC load flow model. In the DC 
model, the P -- δ relationship is decoupled from the Q -- |V| relationship.  Because the 
objective is to improve  accuracy, only the P – δ decoupled equations are used.  The 
basic equations are of the form,  

δ̂

 Hxz = . 

In this expression, z is the measurement vector, H is the process matrix and x is the state 
vector.  With added PMU measurements the equation becomes, 

  . (3.1) ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

GPSGPS I
HH

z
z

δ
δη 121

0

Note that in (3.1), the measurements z are contaminated by noise η, and augmented by 
PMU measurements zGPS.  The subscript ‘GPS’ refers to the ultimate source of angular 
measurements made by the PMU.  Submatrices H1 and H2 are the original H matrix 
partitioned into the parts which correspond to the δ and δGPS.  The I matrix is an identity 
matrix of suitable dimension.  This paper examines two possible methods for dealing 
with the formulation in (3.1): weighted least squares estimation; and estimation after the 
direct substitution of zGPS into the remaining equations. 

3.3 Solution by Weighted Least Squares Estimation 

The standard weighted least squares implementation was described in chapter 2. The 
solution of (3.1) by weighted least squares estimation  (e.g. Equation (2.12)) results in,  
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 ,  ⎥
⎦

⎤
⎢
⎣

⎡ +
=′

gpsz
z

z
η

 , ⎥
⎦

⎤
⎢
⎣

⎡
=

I
H

0
' 21 HH

and 

 ,  ⎥
⎦

⎤
⎢
⎣

⎡
=′

−

−

2

2
1

0
0

GPS

W
σ

σ

where  

 . 22
1

−− << GPSσσ

The estimate of  becomes  ⎥
⎦

⎤
⎢
⎣

⎡
=

GPSδ
δ

δ 1

 ( ) zWHHWH tt ′′′′′′=
−1δ̂ . (3.4) 

In (3.4), the vector and matrices have dimension as follows, 

  s by 1 δ̂

 H’ (m+g) by s 

 W’ (m+g) by (m+g) 

 z' (m+g) by 1 

where s is the total number of states to be estimated (including the δGPS states); m is the 
dimension of measurements excluding the PMU measurements; g is the number of PMU 
phase angle measurements.  Note that in the over determined case m+g > s.  Experiments 
using the augmented weighted least squares method will be denoted by WLS. 

A variation on this method of the state estimation is to replace the estimated values for 
the voltage phase angles associated with PMU measurements with the measurements 
made by the PMU, after the state estimation is completed.  This will generally decrease 
the amount of error in the answer.  WLSp denotes experiments using this method of 
replacing the voltage phase angle measurements after the estimation. 
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3.4 Solution by Direct Substitution  
An alternative approach offered in this report is concept of direct substitution.  The 
approach denominated “direct substitution” is offered as an alternative to the direct 
implementation of weighted least squares estimation described in section 3.3.  DS 
denotes experiments using direct substitution.  Again starting with Equation (3.1), 
multiplying out the right hand side of the equation yields 

 GPSHHz δδη 211 +=+  

and GPSGPSz δ= . 

Substitute the PMU measurements for the voltage phase angles,  

 112 δη HzHz GPS =−+ . 

The state estimation equation for direct substitutions is  

 ( )GPSzHzH 211̂ −+= + ηδ . (3.5) 

In (3.5), the vectors and matrices have dimensions as follows 

  (s-g) by 1         H1 m by (s -- g) δ̂

 H1
+ (s -- g) by m         z m by 1 

 η m by 1         H2 m by g 

 zGPS  g by 1. 

 

3.5 Metrics for Comparing WLS to Direct Substitution 
The residual vector is typically used to determine the fit of the measurements to the 
model in power system state estimation.  The residual is used because when state 
estimation is being conducted for an actual system, the ‘true’ values of the states are not 
known.  The residual vector as discussed earlier is xHzr ˆ−= .  It is convenient to use the 
2-norm of the r as an index of the agreement of the measurement equations, 

 2
2

rrr t=  

xHzr ˆ−=  
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For comparing weighted least squares to direct substitution there are several reasons why 

the residual may be inappropriate.  The first reason is that the z and  vectors are of 

two different dimensions.  The second reason is that the introduction of weights into the 
Hx=z expression causes a weighted residual to be not comparable to the unweighted 
counterpart. 

⎥
⎦

⎤
⎢
⎣

⎡

GPSz
z

In this study the IEEE 14 bus system is used [25].  A benefit of using a widely publicized 
test system is the exact solution is known and solution techniques among researchers may 
be compared.  In this study, it is possible to examine the deviation of  from the “exact” 
value of x.  Normally this comparison is not possible but because of the use of a test bed 
with a known solution, it is possible to use normalized error, N.E., to assess the accuaracy 
of , 

x̂

x̂

 
2

2
ˆ

exact

exact

x
xx

NE
−

= . (3.6) 

The normalized error has benefits for comparing direct substitution to weighted least 
squares.  The normalization permits comparison of residual norms for residual vectors of 
different dimensions.  Table 3.1 shows the various measurements of error. 
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Table 3.1 List of various measurements of error in the state vector 

Normalized Error 
2

2
ˆ

exact

exact

x
xx

NE
−

=  

Norm of the Residual 22
x̂Hzr −=  

Weighted Residual Norm 
22

x̂HWzWrw −=  

RMS of Residual 2
ˆ1 xHz

m
Rrms −=  

 

3.6 Design of the Experiments  

In this section, two experiments are offered to illustrate the differences between direct 
substitution and weighted least squares method.  Appendix C lists all the experiments.  
The focus will be minimizing the normalized error and effects of different noise to signal 
levels. 

The IEEE 14 bus system depicted in Figure 3.1 consists of 14 buses, 3 have generators 
and the other 11 are considered load buses.  The system also has 3 transformers.  The 
base case is known, and listed with the systems line and bus data in Appendix A.  The 
system is observable, meaning there are sufficient measurements of all the line power 
flows to calculated the bus voltage phase angle.  Note that in state estimation of |Vbus| is 
ignored in these experiments.  Thes issues of estimating |Vbus| are discussed in [2].  If the 
fully decoupled system model is used, the estimation of |Vbus| will have negligible impact 
on phase angle estimation.  Since the foregoing experiments focus on phase angle 
measurements and their use in state estimation, the estimation of |Vbus| is excluded.  The 
linear state estimator being used is based on the dc-load flow model of the system,  

 ( ) ( )
12

2121

12

2121
21

sin
x

VV
x

VVP
δδθθ −

≈
−

=→ . (3.6) 

In (3.6), P1→2 is the active power flowing in line 1→2; |Vi| are bus voltage magnitudes; δi 
are bus voltage phase angles; and xij is the primitive line reactance of line ij.  

The measurement vector consists of 33 measurements of active power flows in selected 
transmission lines and net power injections at selected buses.  The state vector contains 
the voltage angles at the buses. In this case, the redundancy of measurements is 2.75.  
There are 2.75 measurements for each state attempting to be estimated.  This is the base 
case, with no PMU measurements.  Appendix C lists all the experiments done in the 
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report, the experiments performed in this chapter are the WLS-1, DS-1, and WLSp-1.  
These experiments examine impacts of placing one PMU in the system.  

The placement of PMUs to increase the accuracy of the state estimation is studied in the 
experiments.  The placement of the PMU devices will be determined by the placement of 
the PMUs on the buses which gives the least error in the state vector.  Another objective 
in the experiments is the comparison of the direct substitution estimation, DS, versus the 
augmented weighted least squares estimation, WLS.  To examine which method of 
incorporating the PMU measurement into the system is better. 

 

 

Figure 3.1 One-line diagram of IEEE 14 bus system (taken directly from [25]) 

3.7 Description of the Code 

The MATLAB script created for experiments WLS-1 and DS-1 uses the information 
already calculated for the IEEE 14 bus system such as the power flows, voltage angle 
measurements, and line impedances.  The for measurement vector, z, for the 
measurements made the SCADA devices.  The noise to signal ratio of all SCADA 
measurements is set a standard value.  Weighted least squares state estimation is based on 
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the assumption that the noise in the system is normally distributed.  The program then 
creates the base case, meaning there are no measurements added, because the noise is 
normally distributed, the program runs 1000 trials and finds the average.  Following base 
case the program runs 1000 trials assuming there is a PMU located at swing bus and one 
located at another bus, and again returns the average value of normalized error.  The trials 
consist of finding the voltage angle measurements by direct substitution and weighted 
least squares.  This step is repeated assuming there is a PMU at each of the various 
busses. 

3.8 Results from the MATLAB 
After conducting experiment DS-1-0.3 Figure 3.2 was created.  From Figure 3.2 it is 
determined that the best place to put the PMU is on bus 11 if using direct substitutions.  
Improvement seen in the normalized error is a decrease of about 48% of the normalized 
error for the base case.  This is a significant improvement in the accuracy of the estimate 
of the voltage angles. 

Figure 3.3 is the result from experiment WLS-1-0.3.  Figure 3.3 is the result of using 
weight lease squares for the determination of voltage angles.  The weight put on the 
SCADA measurements is 1 and the weight of the PMU measurements is 300.  A 
cautionary note the difference in weight can cause the pseudoinverse of H to appear 
singular if chosen to be too great of range.  Experimental results showed that levels 
chosen are within acceptable range for this system.  Bus 11 was determined to be the best 
placement of the PMU.  Improvement seen in the normalized error decreases to about 
50% of the normalized error for the base case when the voltage phase angle of the Bus 11 
is known in experiment WLS-1-0.3.   

The results of Experiments WLS-1-0.3 and DS-1-0.3 displayed in Figure 3.2 and Figure 
3.3 and Table 3.2 are similar for both the direct substitution method and weighted least 
squares augmentation method for incorporating PMU measurements into the state 
estimation.  Another observation about the results is the how close the results are for 
placing a PMU at bus 9 or at bus 11.  The average normalized error for directed 
substitution with the placement of one PMU at any of the buses was found to be 0.0988 
and for weighted least squares augmentation was 0.1008. 
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Figure 3.2 Normalized error of DS-1-0.3 per bus placement of PMU 
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Figure 3.3 Normalized error of WLS-1-0.3 bus placement 
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Table 3.2 Normalized error of  as PMU location is varied δ̂

Bus of DS-1-0.3 WLS-1-0.3 
PMU Normalize Error  % of Base Case Normalized Error % of Base Case 

Base Case 0.15 100% 0.15 100% 
2 0.1203 80.23% 0.1355 90.34% 
3 0.1357 90.48% 0.1339 89.28% 
4 0.0988 65.93% 0.1100 73.38% 
5 0.0973 64.91% 0.1153 76.89% 
6 0.0887 59.17% 0.0869 57.98% 
7 0.0909 60.64% 0.0939 62.65% 
8 0.1192 79.50% 0.1243 82.89% 
9 0.0729 48.60% 0.0767 51.15% 
10 0.0853 56.87% 0.0777 51.80% 
11 0.0724 48.30% 0.0753 50.24% 
12 0.1048 69.91% 0.0994 66.28% 
13 0.1026 68.41% 0.0997 66.49% 
14 0.0986 65.78% 0.0945 63.01% 

 

3.9 Noise Dependency 
Does the selection of the appropriate bus to place the PMU at vary with the amount of 
noise in SCADA measurements?  The experiments to test noise interaction with the 
optimal placement of the PMU varied noise to signal ratio from 0.1 to 1.0 and found that 
the bus with the smallest normalized error stayed almost constant for both direct 
substitution and weighted least squares.  The experiments conducted were WLS-1-0.1 to 
WLS-1-1.0 and DS-1-0.1 to DS-1-1.0. 

For direct substitution it was found that for all noise levels the best improvement in 
normalized error was bus 9 except for the noise to signal level 0.3, which bus 11 
minimized normalized error.  Table 3.3 shows the values of the normalized error for 
varying levels of noise.  A note should be made about the closes of the normalized error 
with a PMU at bus 11 and bus 9.  The normalized error improvement seen by placing a 
PMU at either bus 9 or bus 11 is significantly greater then placing the PMU at any other 
location in the system.   

For weight least squares similar results were found.  The noise to signal values, which 
caused the smallest, normalized error to not be bus 11.  Again it should be noted that in 
Table 3.4 the second smallest normalized error is when there is a PMU placed at bus 9.   
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Table 3.3 Normalized error as bus placement and noise level varied for DS-1 

 Noise to Signal Ratio 
Bus Number 0.1 0.3 0.5 0.7 0.9 
Base Case 0.0482 0.1499 0.2465 0.3266 0.4458 

2 0.0384 0.1203 0.1922 0.2630 0.3491 
3 0.0454 0.1357 0.2162 0.3120 0.3916 
4 0.0336 0.0988 0.1645 0.2252 0.2912 
5 0.0303 0.0973 0.1647 0.2252 0.2905 
6 0.0312 0.0887 0.1596 0.2123 0.2720 
7 0.0301 0.0909 0.1541 0.2065 0.2698 
8 0.0381 0.1192 0.2035 0.2858 0.3674 
9 0.0241 0.0729 0.1211 0.1714 0.2145 
10 0.0281 0.0853 0.1376 0.1946 0.2532 
11 0.0251 0.0724 0.1239 0.1754 0.2181 
12 0.0358 0.1048 0.1759 0.2507 0.3155 
13 0.0347 0.1026 0.1590 0.2425 0.2998 
14 0.0337 0.0986 0.1576 0.2260 0.2931 

  

Table 3.4 Normalized error as bus placement and noise level varied for WLS-1 

 Noise to Signal Ratio 
Bus Number 0.1 0.3 0.5 0.7 0.9 
Base Case 0.0482 0.1499 0.2465 0.3266 0.4458 

2 0.0452 0.1355 0.2224 0.3065 0.4025 
3 0.0436 0.1339 0.2190 0.3044 0.3816 
4 0.0363 0.1100 0.1805 0.2482 0.3262 
5 0.0375 0.1153 0.1866 0.2621 0.3342 
6 0.0294 0.0869 0.1523 0.2153 0.2710 
7 0.0310 0.0939 0.1542 0.2124 0.2778 
8 0.0407 0.1243 0.1984 0.2677 0.3537 
9 0.0253 0.0767 0.1257 0.1794 0.2232 
10 0.0263 0.0777 0.1256 0.1842 0.2368 
11 0.0249 0.0753 0.1227 0.1718 0.2183 
12 0.0350 0.0994 0.1703 0.2479 0.3034 
13 0.0333 0.0997 0.1735 0.2234 0.2931 
14 0.0334 0.0945 0.1588 0.2200 0.2837 

 

Figure 3.4 is the normalized error when a PMU is placed at bus 11 and the noise to signal 
ratio varies from 0.1 to 1.0.  There are two notes about this figure: 1) all the lines are 
linear and 2) no real significant difference in between the various methods.   
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Figure 3.4 Comparison of normalized error at bus 11 

3.10 Conclusions 
In this chapter the case of placing one PMU in system was examined.  The two primary 
methods used to incorporate the PMU measurements into the state estimation.  One was 
to add the measurements to the weighted least squares method as an additional 
measurement with significant weight compared to other measurements.  The other was to 
eliminate the equations related to the estimate of the voltage phase angle the PMU 
measured, direct substitution.  Both methods showed significant improvement in the 
voltage angle estimate with the incorporation of the PMU measurement.  The method of 
direct substitution did produce a smaller normalized error for the noise to signal ratio of 
0.3.   

When the noise to signal ratio is varied the plots of the normalized error for direct 
substitution, augmenting the weighted least squares, and adjusted weighted least squares 
appear to be on the same linear line.  The experiment of “adjusting” the weighted least 
squares estimate after the state estimation did not result in significant improvement in the 
normalized error.  This is to be expected when the difference between the estimate and 
the actual voltage phase angle measurement is small.  Also in this series of experiments 
there was only one PMU added thus the change in estimate and adjusted estimate would 
be small.  While the noise was varied there was still significant improvements in the state 
estimation by incorporating just one PMU into the system. 
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4. Experiments Utilizing Multiple PMU Measurements in State 
Estimators 

4.1 Adding PMU Measurements to a State Estimator 
In Chapter 3 the experiments DS-1 and WLS-1 performed all assumed that only one PMU 
measurement was integrated into the state estimation.  In Chapter 4 the experiments to be 
performed are going to be done assuming such that two measurements are known.  The 
experiments done in this chapter will examine changes in normalized error, and effects of 
noise to signal ratio on the state estimation.  Again the two methods being examined in this 
report are to add PMU measurements into the state estimator with significant weight on these 
new measurements; or to eliminate the equations that correspond to the measured states.  The 
examination of the optimal placement of two PMUs will be conducted on the IEEE 14 bus 
system depicted in Figure 3.1 with more details about the system in Appendix A. 

In the tests reported in chapter, the state estimation of the bus phase angles is taken to be 
divorced from the voltage magnitude estimates.  Only estimation of δ is considered.  
Appendix C lists all experiments. 

4.2 Description of the MATLAB Script 
The MATLAB script created for experiment DS-2 uses the information already calculated 
about the IEEE 14 bus system such as the power flows, voltage angle measurements, and line 
impedances.  Appendix B lists MATLAB scripts used. The noise to signal ratio of all 
SCADA measurements is assumed to be 30%.  This is the noise source for experiments 
WLS-2 and DS-2.  The noise vector is created by using the “randn” function in MATLAB.  
The “randn” function creates pseudorandom numbers which are normally distributed with 
zero meant and unit standard deviation.  Least squares state estimation is based on the 
assumption that the noise in the measurements is normally distributed.  In the tests, a base 
case is generated using one PMU measurement.  The program runs 5000 trials in a Monte 
Carlo simulation.  The swing bus is used as a reference phasor.  Therefore, a PMU should be 
located at the swing bus to obtain an ‘absolute phase angle [24].  In this section, the 
placement of two PMUs (in addition to the cited swing bus reference measurement) is 
considered.  The two main types of tests are denoted WLS-2 and DS-2 (weighted least 
squares and “direct substitution” as described in Chapter 3). 

The script for WLS-2 is similar to DS-2 except for the integration of the PMU measurements.  
The PMU measurements are now integrated into the state estimation through weighted least 
squares method.  In WLS-2 Equation 3.4 is used for determination of the estimate of the 
voltage phase angle at the busses.  The number of trials is 5000.  The weighting matrix used 
has weight of 100 for all the PMU measurements and a weight of 0.3 for all other 
measurements. 

4.3 Results from Direct Substitution of Two PMU Measurements 
The previous chapter determined the optimal placement of one PMU in the IEEE 14 bus 
system as being bus 11 in experiment DS-1-0.3.  Experiment DS-2-0.3 examines optimal 
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location of two PMUs measurements in the system based on the smallest normalized error.  
The MATLAB script described in Section 4.2 was run at each of the buses, 2 to 14, and the 
optimal placement of two PMUs is bus 2 and bus 11. 

The normalized error of the system when the PMUs are placed at bus 2 and bus 11 is 
0.059932.  Note that the normalized error as utilized here, is the error between estimated 
voltage phase angle and actual voltage phase angle.  The normalized error for PMUs at bus 2 
and bus 11 is 83.2% of normalized error of a single PMU at bus 11 and 40.0% of the 
normalized error of having no PMU measurements of the system.  Figure 4.2 is a graphical 
representation of normalized error of all possible combination of the 2 PMU measurements.  
The optimal placement of the 2 PMUs includes the bus in which was determined to be the 
optimal placement of 1 PMU. 

4.4 Results from Weighted Least Squares Method of Two PMU Measurements 
The previous chapter determined the optimal placement of one PMU in the IEEE 14 bus 
system as being bus 11 for experiment WLS-1-0.3.  This experiment examines optimal 
location of two PMUs measurements in the system based on the smallest normalized error.  
The MATLAB script described in Section 4.2 was run at each of the buses, 2 to 14, and the 
optimal placement of two PMUs is bus 6 and bus 11. 

In experiment WLS-2-0.3 the normalized error of the system is minimized when the PMUs 
are placed at bus 6 and bus 11 is 0.057167.  The normalized error for PMUs at bus 6 and bus 
11 is 78.3% of normalized error of a single PMU at bus 11 and 38.1% of the normalized error 
of having no PMU measurements of the system.  Figure 4.3 is a graphical representation of 
normalized error of all possible combination of the 2 PMU measurements.  The optimal 
placement of the 2 PMUs includes the bus in which was determined to be the optimal 
placement of 1 PMU. 

4.5 Effect of Noise on Placement of PMUs 
The experiment to test noise interaction with the placement of the PMU varied noise to signal 
ratio from (0.1) to (0.6).  The placement of the two PMUs for direct substitution remains the 
same for all levels of noise tested, bus 2 and bus 11.  Figure 4.3 shows a comparison between 
normalized errors.  In Figure 4.3 also is the plot of normalized error versus noise to signal 
ratio of direct substitution of one PMU measurement.  The slope of the linear fit model of 
direct substitution of with two PMU measurements is less than the slope of the linear fit 
model of direct substitution with only one PMU measurement.  It is expected that noise 
would have less of impact as the number of measurements without noise increases. 

The weighted least squares method used in WLS-2 did not produce similar results to these of 
DS-2.  As the noise to signal ratio was varied from 0.1 to 0.6, the optimal combination of 
voltage phase angle measurements changed.  Table 4.1 shows different 
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Figure 4.1 Normalized error for two PMU measurements in DS-2-0.3 
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Figure 4.2 Normalized error for two PMU measurements in WLS-2-0.3 

 



 

combinations that were found to be optimal.  Figure 4.4 shows a plot of the minimum 
normalized error versus signal to noise ratio.  The upper line is that of WLS-1, the 
weighted least squares method done with one PMU measurement.  The lower line is 
WLS-2 in which there are two PMU measurements. 
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Figure 4.3 Normalized error vs. noise to signal for DS-1 and DS-2 

 

Table 4.1 Placement of two PMUs at varying signal to noise ratio in experiment WLS-2 

Noise to Signal Ratio Optimal Bus Combination Normalize Error 
0.1 Bus 6 and Bus 9 0.01859 
0.2 Bus 6 and Bus 9 0.03768 
0.3 Bus 6 and Bus 11 0.05717 
0.4 Bus 6 and Bus 11 0.07443 
0.5 Bus 6 and Bus 10 0.09288 
0.6 Bus 6 and Bus 11 0.11040 

 

Anther comparison on signal to noise ratio is that of WLS-2 and DS-2.  In comparison 
weighted least squares method has less slope than that of the direct substitution method as 
can be seen in Figure 4.5.  The slopes are 0.2009 for direct substitution and 0.1881 for 
weighted least squares method.   

The foregoing remark about lower slope in plots of normalized error versus noise to 
signal ratio may be interpreted as the following observation:  The WLS method gives a 
more robust estimate with regard to the impact of noise.  One last note about Figure 4.5 is 
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the WLSp-2 plot in which it can be seen that it improves the robustness of the estimate 
even further.   
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Figure 4.4 Normalized error vs. noise to signal for WLS-1 and WLS-2 
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Figure 4.5 Normalized error vs. noise to signal for DS-2 and WLS-2 
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4.6  Additional of PMU Measurements 
To further study the impact of PMUs measurements on the state estimation of the system, 
an examination the normalized error as the penetration of the PMU measurements 
continue to increase was done.  The Figure 4.7 is the normalized error of augmenting the 
z vector with PMU measurements.  The weights used were 100 for the PMU 
measurements and 0.3 for the non-PMU measurements.  The noise to signal ration for 
non-PMU measurements is 0.3.  The WLSp graph is that adjusted weighted least squares 
values.  The graph indicates a negative exponential trend to the number of PMU added.  
As the penetration reaches high levels the amount of improvement in the state estimation 
is only decreasing less and less for each additional PMU.  
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Figure 4.6 Normalized error vs. number of PMUs added 

 

The difference between the WLS and WLSp is expected as the penetration of PMUs 
increases.  The WLS has estimates of the voltage phase angles measured by the PMU but 
the WLSp is adjusted by placing the values of voltage phase angle measurement in for 
PMU measured buses.  This is a small difference in value per bus, but as the number of 
buses with PMUs increase so does the difference in norms. 
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4.7 Examination of the Variance of the E-vector 

The error -xactual is now examined and this error is denominated as E.  Note that this 
error is the true error in the state estimate – a quantity that is rarely known; however in 
this contrived example, the true value of the states is known, and therefore the true error 
is available.  Note that E is a vector of the same dimension as x.  The previous section 
examined the improvements in the normalized vector as the number of PMUs increase.  
The normalized error is 

x̂

 
2

2
ˆ

..
actual

actual

x
xx

EN
−

=  

and this quantity can now be written as 

 
2

2..
actualx
E

EN = . 

The E vector measures the difference between the estimate of x and the actual values.  
The noise in the system measurements is assumed to be normally distributed and thus the 
difference between the state estimate and the actual state is assumed to also be normally 
distributed. 

At this point, consider the elements of vector E, namely {e1, e2, … , es}.  Assume that the 
scalar mean of this ensemble is zero – an assumption that will be revisited later.  The 
variance of {eI} is  

 
s

e
s

i
i

E

∑
== 1

2

2σ . 

When  is replaced by the measurement made by the PMU as is the case in the adjusted 
weighted least squares method, then the ith element of E, namely ei, becomes zero.  If 
there are g PMUs in the system, and the PMU measurements are assumed to be perfect, 
the Ecorrected vector is  
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The variance of {ecorrected-I} is  
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If s >> g, the sample the variance of {ecorrected-i} can be written as, 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

s
g

EEcorrected
122 σσ . (4.1) 

The variance of {ecorrected-i}  is related to the L2 norm by 

 2
2 correctedEcorrected sE σ= . 

To investigate the validity of (4.1), consider the case when no PMUs are in the IEEE 14 
bus system and the noise to signal ratio was (0.3) and examined.  The sample mean of 
{ei} is -0.00048, which is in the same order of magnitude as all the elements ei.  The 
variance of {ei} is 1.625E-7.  The selection of which ei should be set to zero was 
determined by the difference of ei and the mean.  Two cases were examined: 1) optimal 
selection case -- replacing the ei with the largest difference with zero and 2) worst 
selection case -- replacing the ei with the smallest difference with zero.  Zeroing the 
largest ei is similar to placing the PMU at the bus which has the largest error between the 
estimate voltage phase angle and actual. 

Figure 4.7 shows the results of the two cases studied and the predicted value using 
Equation (4.1).  A reason for variation between the results and predicted values is that the 
mean of {ei} is not zero.  Figure 4.8 shows that as ei are replaced with zeros, the mean of 
the remaining {ei} approaches zero. 

The upper curve in 4.7 shows what will happen if the worst location for the PMU is 
chosen, and the lower curve shows the improvement which can be seen if best location is 
chosen based on reducing the variance of {ei}.  The prediction line is a good 
approximation of the results in the improvement of the variance of {ei} if chosen with 
reason.  
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4.8 Conclusions 
In this chapter it was examined the impacts of having multiple PMUs monitoring the 
system.  The two primary methods used to incorporate the PMU voltage phase angle 
measurements into the system were direct substitution and weighted least squares.  The 
weighted least squares were then adjusted after the state estimation to produce WLSp.   

The weighted least squares method was shown to be better than direct substitution for the 
incorporating two PMU measurements into state estimation.  A drawback about the 
weighted least squares method was as the noise level varied the optimal location of the 
two PMUs varied, which was not observed with the direct substitution method.  The post 
state estimation replacement of the estimated state with the PMU measurement also 
allowed for lower normalized error even further.  The cases of when the noise to signal 
ratio was large and when the penetration of the PMU measurements in the system was 
high, the adjusted weighted least squares estimate was best.  This is due to the fact that 
the adjusted weighted least squares estimate removed any error that was present in the 
estimate of phase angle in which was measured by a PMU. 
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5. Conclusions and Future Work 

5.1 Conclusions  
In Chapter 3 the case of placing one PMU in a power system was examined.  Two 
primary methods used to incorporate the PMU measurements into the state estimation.  
One was to add the measurements to the weighted least squares method as an additional 
measurement with significant weight compared.  The other method is to eliminate the 
equations that correspond to the respective phase, that is direct substitution.  Both 
methods showed significant improvement in the voltage angle estimate with the 
incorporation of one PMU measurement.  The method of direct substitution did produce a 
smaller normalized error for the noise to signal ratio of (0.3).  However, on the basis of 
limited experimentation with the IEEE 14 bus system, it is concluded that to include one 
PMU measurement, it is better (i.e., more accurate estimate) to use weighted least squares 
rather than direct substitution.  

When the noise to signal ratio is varied, the plots of the normalized error for the method 
direct substitution, the method of augmenting the weighted least squares, and the method 
of adjusted weighted least squares appear to exhibit similar accuracy.  The experiment of 
replacing the weighted least squares estimate with the PMU measurement after the state 
estimation did not result in significant improvement in the normalized error.  This is to be 
expected when the difference between the estimate and the actual voltage phase angle 
measurement is small.  Also in the series of experiments presented in Chapter 3 there was 
only one PMU added thus the change in estimate and adjusted estimate would be small.  
For all levels of noise, there were still significant improvements in the state estimation by 
incorporating just one PMU into the system. 

Chapter 4 examined the impacts of having multiple PMUs monitoring the system.  The 
two primary methods used to incorporate the PMU voltage phase angle measurements 
into the system were direct substitution and weighted least squares.  As an additional test, 
the weighted least squares estimate corresponding to PMU measurements were discarded 
and replaced by the PMU measurements after the state estimation to produce a test series 
denoted WLSp.   

The weighted least squares method was shown to be better than direct substitution for 
incorporating two PMU measurements into the state estimation.  This conclusion applies 
at all levels of noise tested.  A drawback of the weighted least squares method is that the 
optimal location of the two PMUs is dependent on the noise level.  This is not observed 
using direct substitution.  The post state estimation adjustment (i.e., discard estimate and 
replace with PMU measurement) to state vector also allowed for lower normalized error.  
The cases in which the noise to signal ratio was large and when the penetration of the 
PMU measurements in the system was high, the weighted least squares estimate with 
replacement of estimates with PMU measurements was best.   

The general conclusion, on the basis of tests done, indicates that the weighted least 
squares method of incorporating PMU voltage phase angle measurements into the state 
estimate is the most versatile.  The weighted least squares method allows for significant 
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weight to be placed on the measurements made by the PMUs; the direct substitution 
method holds the value of the bus voltage phase angle measured.  The weighted least 
squares method allows freedom of the estimator to adjust the values of the bus angle 
measurements to minimize ||Hx-z||2, which is a feature that direct substitution does not 
exhibit.  The post estimation adjustment of the bus angles with PMU data to measured 
values does provide lower normalized error than retaining the estimated phase angles. 
This ‘correction’ may not be significant except in cases of high measurement error or 
high penetration of PMUs. 

5.2 Future Work 
The work done in this report has made advancements in the selection of optimal 
placement of PMUs and the incorporation of the PMU measurements into the state 
estimator but there is still more work that could be done in this area.  Some of the topics 
that would help in the advancement in topics of studied in this report are: 

• Much larger tests 
• Include magnitude of voltage in the state estimation 
• Further attempt at the analysis of equations to obtain mathematically analytic 

expression of error reduction due to PMU measurement use 
• Affects of correlated (common mode) noise 
• The effect of nonsimultaneous measurements in systems with PMU 

measurements 
• System totally monitored by PMUs no state estimation 
• Cost-benefit analysis of adding “one more” PMU. 

The work done was on a 14 bus system, would similar results come from a study of the 
57 bus system?  The work was of the linear equation of power flow voltage what impact 
would including the voltage magnitude have on the state estimation with PMU devices.  
In this report there was an examination of the least squares bounds as described in [14]. 
But the least square bounds were not comparable to the results of the experiments further 
examination should be made.  The noise used in the report was pseudorandom noise 
independent from noise at other buses, what happens when the noise at buses are 
correlated on each other?  Experiments WSL-13-0.3 and WLSp-13-0.3 looked at the case 
of having the system totally monitored by PMUs what are the benefits and costs of doing 
this.   

 

32 



 

 

REFERENCES 

[1] E. Iwata, “Report faults Ohio utility,” USA Today, November 20, 2003, pp. 1A. 
[2] F. Schweppe, J. Wildes, D. Rom, “Power system static state estimation: parts I, II, 

and III,” Power Industry Computer Conference, June 1969. 
[3] P. Zarco, A. Exposito, “Power system parameter estimation: survey” IEEE 

Transactions on Power Systems, Vol. 15, No. 1, February 2000, pp. 216-222. 
[4] M. E. El-Hawary, “Bad data detection of unequal magnitudes in state estimation of 

power systems,” IEEE Power Engineering Review, Vol. 22, No. 4, April 2002, pp. 
57-60. 

[5] B. Gou, A. Abur, “An improved measurement placement algorithm for network 
observability,” IEEE Transactions on Power Systems, Vol. 16, No. 4, November 
2001, pp 819-824. 

[6] A. Monticelli, State Estimation in Electric Power Systems, Boston, Kluwer Academic 
Publishers,1999. 

[7] A. J. Wood, B. F. Wollenberg, Power Generation Operation and Control, New York, 
Wiley, 1984. 

[8] F. C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, 1973. 
[9] A. Abur, A. G. Exposito, Power System State Estimation: Theory and 

Implementation, New York, Marcel Dekker, 2004 
[10] I. O. Habiballah, “Modified two-level state estimation approach [for power systems],” 

IEE Proceedings on Generation, Transmission and Distribution, Vol. 143, No. 2, 
March 1996, pp. 193-199. 

[11] A. Monticelli, “Electric power system state estimation,” Proceedings of the 
IEEE, Vol. 88, No. 2, Feb. 2000 pp. 262 – 282. 

[12] J. B. Carvalho, F. M. Barbosa, “A modern state estimation in power system energy.” 
International Conference on Electric Power Engineering, 1999 PowerTech Budapest 
99, Sept. 1999, pp. 270. 

[14] O. Alsac, N. Vempati, B. Stott, A. Montilcelli, “Generalized state estimation,” IEEE 
Transactions on Power Systems, Vol. 13, No. 3, Aug. 1998  
pp. 1069 – 1075. 

[15] M. V. F. Pereia, N. J. Balu, “Composite generation/transmission reliability 
evaluation,” Proceedings of the IEEE, Vol. 80, No. 4, April 1992,  
pp. 470 – 491. 

[16] G. H. Golub, C. F. Van Loan, Matrix Computations, Baltimore, Johns Hopkins 
University Press, 1983. 

[17] K. Chow, J. Shin, S. Hyun, “Optimal placement of phasor measurement units with 
GPS receiver,” Proceedings of the Power Engineering Society Winter Meeting, Vol. 
1, January 2001, pp. 258-262. 

[18] A. G. Phadke, “Synchronized phasor measurements ~ a historical overview,” 
Proceedings of the Transmission and Distribution Conference and Exhibition 2002: 
Asia/Pacific, Vol. 1, Oct 2002, pp. 476-479. 

33 



 

[19] W. Lewandowski, J. Asoubib, W. J. Klepczynski, “GPS: primary tool for time 
transfer,” Proceedings of the IEEE, Vol. 87, No. 1. Jan. 1999, pp. 163-172.   

[20] B. Milosevic, M. Begovic, “Nondominated sorting genetic algorithm for optimal 
phasor measurement placement,” IEEE Transactions on Power Systems, Vol. 18, No. 
1, February 2003, pp. 69-75. 

[21] G. B. Denergi, M. Invernizzi, F. Milano, M. Fiorina, P. Scarpellini, “A security 
oriented approach to PMU positioning for advance monitoring of a transmission 
grid,” Proceedings of the International Conference on Power System Technology, 
Vol. 2, October 2002, pp. 798-803. 

[22] R. Zivanovic, C. Cairns, “Implementation of PMU technology in state estimation: an 
overview,” IEEE AFRICON 4th, Vol. 2, September 1996, pp. 1006-1011. 

[23] I. Kamwa, R. Grondin, “PMU configuration for system dynamic performance 
measurement in large multiarea power systems,” IEEE Transactions on Power 
Systems, Vol. 17, No. 2 May 2002, pp. 385-394. 

[24] A.G. Phadke, B. Pickett, M. Adamiak, M. Begovic, G. Benmouyal, R. O. Burnett, Jr., 
T.W. Cease, J. Goossens, D. J. Hansen, M. Kezunovic, L. L. Mankoff, P. G.  
McLaren, G. Michel, R. J. Murphy, J. Nordstrom, M. S. Sachdev, H. S. Smith, J. S. 
Thorp, M. Trotignon, T. C. Wang, M. A. Xavier, “Synchronized sampling and phasor 
measurements for relaying and control,” IEEE Transactions on Power Delivery, Vol. 
9, No. 1, 1994, pp. 442-452. 

[25] R. Christie, “Power System Test Archive” 
http://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm. 

34 



 

A. IEEE14 Bus Test Bed System Information 

 

Table A.1 Solved delta values for IEEE 14 bus system 

Bus Delta 
Number (radians)

2 -0.08692
3 -0.22201
4 -0.18029
5 -0.15324
6 -0.24819
7 -0.23335
8 -0.23318
9 -0.26075
10 -0.26354
11 -0.25813
12 -0.26302
13 -0.26459
14 -0.27995
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Table A.2 Line impedances and power flows for the 14 bus system 

From To 
Impedances

(P. U.) 
Power Flow

(P. U.) 
1 2 0.0592 1.6251 
1 5 0.2230 0.7399 
2 3 0.1980 0.7180 
2 4 0.1763 0.5631 
2 5 0.1739 0.4063 
3 4 0.1710 -0.2509 
4 5 0.0421 -0.6676 
4 7 0.2091 0.2744 
4 9 0.5562 0.1555 
5 6 0.2520 0.4106 
6 11 0.1989 0.0566 
6 12 0.2558 0.0655 
6 13 0.1303 0.1415 
7 8 0.1762 -0.0011 
7 9 0.1100 0.2793 
9 10 0.0845 0.0369 
9 14 0.2704 0.0777 
10 11 0.1921 -0.0313 
12 13 0.1999 0.0087 
13 14 0.3480 0.0480 
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Table A.3 H matrix for the 14 bus test system 

-16.9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -4.484 0 0 0 0 0 0 0 0 0

5.051 -5.051 0 0 0 0 0 0 0 0 0 0 0
5.672 0 -5.672 0 0 0 0 0 0 0 0 0 0
5.751 0 0 -5.751 0 0 0 0 0 0 0 0 0

0 5.8469 -5.847 0 0 0 0 0 0 0 0 0 0
0 0 23.75 -23.75 0 0 0 0 0 0 0 0 0
0 0 4.782 0 0 -4.782 0 0 0 0 0 0 0
0 0 1.798 0 0 0 0 -1.798 0 0 0 0 0
0 0 0 3.9679 -3.97 0 0 0 0 0 0 0 0
0 0 0 0 5.028 0 0 0 0 -5.028 0 0 0
0 0 0 0 3.909 0 0 0 0 0 -3.909 0 0
0 0 0 0 7.676 0 0 0 0 0 0 -7.68 0
0 0 0 0 0 5.677 -5.677 0 0 0 0 0 0
0 0 0 0 0 9.0901 0 -9.09 0 0 0 0 0
0 0 0 0 0 0 0 11.834 -11.8 0 0 0 0
0 0 0 0 0 0 0 3.6985 0 0 0 0 -3.698
0 0 0 0 0 0 0 0 5.206 -5.206 0 0 0
0 0 0 0 0 0 0 0 0 0 5.003 -5 0
0 0 0 0 0 0 0 0 0 0 0 2.873 -2.873

16.9 0 0 -4.484 0 0 0 0 0 0 0 0 0
-33.4 5.0513 5.672 5.7511 0 0 0 0 0 0 0 0 0
5.051 -10.9 5.847 0 0 0 0 0 0 0 0 0 0
5.672 5.8469 -41.85 23.747 0 4.7819 0 1.798 0 0 0 0 0
5.751 0 23.75 -37.95 3.968 0 0 0 0 0 0 0 0

0 0 0 3.9679 -20.6 0 0 0 0 5.028 3.909 7.676 0
0 0 4.782 0 0 -19.55 5.677 9.0901 0 0 0 0 0
0 0 0 0 0 9.0901 0 -24.62 11.83 0 0 0 3.698
0 0 0 0 0 0 0 11.834 -17 -5.206 0 0 0
0 0 0 0 5.028 0 0 0 5.206 -10.23 0 0 0
0 0 0 0 3.909 0 0 0 0 0 -8.912 5.003 0
0 0 0 0 0 0 0 0 0 0 5.003 -7.88 2.873
0 0 0 0 0 0 0 3.6985 0 0 0 2.873 -6.572
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B. MATLAB Scripts for State Estimation 

B.1  Script for a Single PMU in the 14 Bus System 
 
%///////////////////////////////////////////////////% 
%   Mark Rice                                       % 
%   May 13,2004                                     % 
%   ASU Research                                    % 
%                                                   % 
%   Look at the RMS of Error in X when States are   % 
%   known Now Examing the IEEE 14 bus system        % 
%///////////////////////////////////////////////////% 
 
clear; 
 
% Number of Buses is 14 
% Number of Measurments is ???? 
 
X=[ -0.086917397; 
    -0.222005881; 
    -0.180292512; 
    -0.153239908; 
    -0.24818582; 
    -0.233350521; 
    -0.233175988; 
    -0.26075219; 
    -0.263544717; 
    -0.258134196; 
    -0.263021118; 
    -0.264591915; 
    -0.279950812]; 
 
H=[-16.90045631 0 0 0 0 0 0 0 0 0 0
 0 0; 
    0 0 0 -4.483500717 0 0 0 0 0 0 0 0
 0; 
    5.051270395 -5.051270395 0 0 0 0 0 0 0 0
 0 0 0; 
    5.671506352 0 -5.671506352 0 0 0 0 0 0 0
 0 0 0; 
    5.751092708 0 0 -5.751092708 0 0 0 0 0 0
 0 0 0; 
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    0 5.84692744 -5.84692744 0 0 0 0 0 0 0 0
 0 0; 
    0 0 23.74732843 -23.74732843 0 0 0 0 0 0 0
 0 0; 
    0 0 4.781943382 0 0 -4.781943382 0 0 0 0 0
 0 0; 
    0 0 1.797979072 0 0 0 0 -1.797979072 0 0 0
 0 0; 
    0 0 0 3.967939052 -3.967939052 0 0 0 0 0 0
 0 0; 
    0 0 0 0 5.027652086 0 0 0 0 -5.027652086 0
 0 0; 
    0   0 0 0 3.909151323 0 0 0 0 0 -3.909151323 0
 0; 
    0 0 0 0 7.676364474 0 0 0 0 0 0 -
7.676364474 0; 
    0 0 0 0 0 5.676979847 -5.676979847 0 0 0 0
 0 0; 
    0 0 0 0 0 9.09008272 0 -9.09008272 0 0 0
 0 0; 
    0 0 0 0 0 0 0 11.83431953 -11.83431953 0 0
 0 0; 
    0 0 0 0 0 0 0 3.69849841 0 0 0 0
 -3.69849841; 
    0 0 0 0 0 0 0 0 5.206435154 -5.206435154 0
 0 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 0
 2.873398081 -2.873398081 
    16.90045631 0 0 -4.483500717 0 0 0 0 0 0
 0 0 0; 
   -33.37432577 5.051270395 5.671506352 5.751092708 0 0 0 0
 0 0 0 0 0; 
    5.051270395 -10.89819783 5.84692744 0 0 0 0 0 0
 0 0 0 0; 
    5.671506352 5.84692744 -41.84568467 23.74732843 0 4.781943382 0
 1.797979072 0 0 0 0 0; 
    5.751092708 0 23.74732843 -37.9498609 3.967939052 0 0 0
 0 0 0 0 0; 
    0   0 0 3.967939052 -20.58110694 0 0 0 0 5.027652086
 3.909151323 7.676364474 0; 
    0 0 4.781943382 0 0 -19.54900595 5.676979847 9.09008272 0
 0 0 0 0; 
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    0 0 0 0 0 9.09008272 0 -24.62290066 11.83431953 0
 0 0 3.69849841; 
    0 0 0 0 0 0 0 11.83431953 -17.04075468 -
5.206435154 0 0 0; 
    0 0 0 0 5.027652086 0 0 0 5.206435154 -
10.23408724 0 0 0; 
    0 0 0 0 3.909151323 0 0 0 0 0 -
8.912153124 5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
7.876399882 2.873398081; 
    0 0 0 0 0 0 0 3.69849841 0 0 0
 2.873398081 -6.57189649]; 
 
Z=[ 1.46894367057742 
   0.68705123739101 
   0.68236845993463 
   0.52957755784123 
   0.38142690938835 
  -0.24389504182095 
  -0.64242707207473 
   0.25372039499965 
   0.14466481718386 
   0.37673959205256 
   0.05001697334871 
   0.05799342480380 
   0.12593916481507 
  -0.00099082032364 
   0.24908343787606 
   0.03304765681415 
   0.07100607294119 
  -0.02816952673586 
   0.00785870022001 
   0.04413222516608 
  -0.78189243318641 
  -0.12442925615220 
   0.92626350064555 
   0.52972437482976 
   0.04931148157940 
   0.14279003032591 
   0.00562777768057 
   0.14502970812072 
   2.74913508750368 
   0.02184744661286 
   0.05013472458379 
  -0.03627352494607 
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   0.11513829782732]; 
 
%/ Noise set at 30% % 
Noiselist=[.1,.2,.3,.4,.5,.6,.7,.8,.9,1]; 
for n=1:size(Noiselist,2) 
    noise=Noiselist(n); 
    Stored=0; 
    Uppers=0; 
    trials=1000; 
    s=size(X); 
    sizex=s(1,1) 
    KA=cond(H); 
    stNXP=0; 
    stSw=0; 
    stNXPw=0; 
    StoreEX=0; 
    SizeZ=size(Z); 
    counter1=0; 
     
    % Creation of the covariance Matrix 
    W=(0.3)^2*eye(SizeZ(1,1)); 
     
     
    for i=1:trials 
        eta=noise*(randn(SizeZ(1,1),1)).*Z; 
        Zn=Z+eta; 
        Xhat1=pinv(H)*Zn; 
        %Ex=X-Xhat1; 
        %StoreEX=StoreEX+abs(Ex); 
        %Ex2=Ex.*Ex; 
        %S=sqrt(sum(Ex2)/(s(1,1))); 
        %Stored=Stored+S; 
        %Rhols=norm(H*Xhat1-Zn); 
        %theta=asin(Rhols/norm(Z)); 
        %Upper=(norm(eta)/norm(Z))*(2*KA/cos(theta)+tan(theta)*cond(transpose(H)*H)); 
        %Uppers=Uppers+Upper; 
        NXP=norm(X-Xhat1)/norm(X); 
        stNXP=stNXP+NXP; 
         
        %Now Time to examine the happenings of WLS 
         
        XhatW=(transpose(H)*W*H)^-1*transpose(H)*W*Zn; 
        NXPw=norm(X-XhatW)/norm(X); 
        %Sw=sqrt((transpose(X-XhatW)*(X-XhatW))/s(1,1)); 
        stNXPw=NXPw+stNXPw; 
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        %stSw=Sw+stSw; 
         
        %counter1=counter1+1; 
         
    end 
     
    %NormXp=norm(X); 
    %AvgEX=StoreEX/trials; 
    %ExpS=Stored/trials; 
    %UpperB=Uppers/trials; 
    AvgNXP(1,n)=stNXP/trials; 
    %AvgWerror=stSw/trials; 
    AvgNXPw(1,n)=stNXPw/trials; 
     
    %counter2=0; 
    %counter3=0; 
     
    %NormHds(1,1)=norm(transpose(H)*H) 
    %NormHwls(1,1)=norm(transpose(H)*W*H) 
     
    %Examining Condition Numbers 
     
    %KAds=KA; 
    %KAwls=cond(sqrt(W)*H); 
     
     
    %now time to examine what happens when one of the states is known.% 
     
    Ws=(0.3)*eye(SizeZ(1,1)+1); 
    Ws(1,1)=100; 
     
    for k=1:sizex 
        Hp=H; 
        Xp=X; 
        H1=H(:,k); 
        X1=X(k,1); 
        Zp=Z; 
        %   Zp=Z-H1*X1; 
        SizeZp=size(Zp); 
        Hp(:,k)=[]; 
        Xp(k,:)=[]; 
        sp=size(Xp); 
        Storedp=0; 
        KA=cond(Hp); 
        stNXP=0; 
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        Uppers=0; 
        stNormR=0; 
        stNXPwp=0; 
         
        %Routine for the Creation of adding a precise Measurement to WLS 
         
        Hw=H; 
        [height,width]=size(Hw); 
        Hw=[zeros(1,width);Hw]; 
        Hw(1,k)=1; 
        stSw=0; 
        stNXPw=0; 
         
        %somethting Funky 
         
        sTdeltaX=0; 
         
        % investigating changes in H 
         
        %NormHds(k+1,1)=norm(transpose(Hp)*Hp); 
        %NormHwls(k+1,1)=norm(transpose(Hw)*Ws*Hw); 
         
        % Examining Condtion Number 
         
        %KAds(k+1,1)=cond(Hp); 
        %KAwls(k+1,1)=cond(sqrt(Ws)*Hw); 
         
        for i=1:trials 
             
            eta=noise*(randn(SizeZp(1,1),1)).*Zp; 
            Zn=Zp+eta; 
            Zn=Zn-X1*H1;  %Allows the noise to be just on the measurmentent 
            Xhat=pinv(Hp)*Zn; 
            Ex=Xp-Xhat; 
            Ex2=Ex.*Ex; 
            Sp=norm(Xp-Xhat)/norm(Xp); 
            Storedp=Storedp+Sp; 
            %normR=norm(Hp*Xhat-Zn); 
            %stNormR=stNormR+normR; 
             
            % Finding the Bound Limits 
            %Rhols=norm(Hp*Xhat-Zn); 
            %theta=asin(Rhols/norm(Zp)); 
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%Upper=(norm(eta)/norm(Zp))*(2*cond(Hp)/cos(theta)+tan(theta)*cond(transpose(Hp)*Hp)
); 
            %Uppers=Uppers+Upper; 
            NXP=norm(Xp-Xhat)/norm(Xp); 
            stNXP=stNXP+NXP; 
             
            %Finding the WLS Solution 
            Zw=[X(k);Z+noise*randn(size(Z)).*Z]; 
            XhatW=(transpose(Hw)*Ws*Hw)^-1*transpose(Hw)*Ws*Zw; 
            NXPw=norm(X-XhatW)/norm(X); 
            Sw=sqrt((transpose(X-XhatW)*(X-XhatW))/s(1,1)); 
            stNXPw=NXPw+stNXPw; 
            stSw=Sw+stSw; 
            XhatWp=XhatW; 
            XhatWp(k)=X1; 
            NXPwp=norm(X-XhatWp)/norm(X); 
            stNXPwp=NXPwp+stNXPwp; 
             
            %B/c I am clueless Lets examining the change in Error at each of the busses 
            %sTdeltaX=sTdeltaX+abs(Xp-Xhat); 
             
            %counter2=counter2+1; 
             
             
        end   
        %ExpS(k+1,1)=Storedp/trials; 
        %UpperB(k+1,1)=Uppers/trials; 
        AvgNXP(k+1,n)=stNXP/trials; 
        %AvgWerror(k+1,1)=stSw/trials; 
        AvgNXPw(k+1,n)=stNXPw/trials; 
        %NormXp(k+1)=norm(Xp); 
        %AvgR(k)=stNormR/trials; 
        AvgNXPwp(k,n)=stNXPwp/trials; 
         
         
        %attempting to atribute the Correct changes in X to the right place 
        %AvgEXp=sTdeltaX/trials; 
        %Avgerrorp(:,k)=AvgEXp; 
        %l=0; 
        %j=0; 
        %while l<12 
        %    l=l+1; 
        %    j=j+1; 
        %    if j==k 
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        %        AvgEx(j,k)=0; 
        %        j=j+1; 
        %    end 
        %    AvgEx(j,k)=AvgEXp(l,1); 
        %end 
         
         
        %counter3=counter3+1; 
    end 
end 
%ExpS 
%Lexps=-log10(ExpS); 
 
% M=[0:1:s(1,1)]; 
%figure 
%bar(M,ExpS) 
%title('RMS Error of X') 
 
% figure 
% bar(M,AvgNXP); 
% title('Avg Error in X') 
 
%figure 
%bar(M,UpperB) 
%title('Bounds as H changes') 
 
% figure 
% bar(M,AvgNXPw) 
% title('WLS error') 
 
%figure 
%bar(M,NormXp) 
%title('Norm of Xp') 
 
%figure 
%bar(AvgR) 
%title('Residual of Direct Subsitution') 
 

B.2  Script for Examining Two PMU in the 14 Bus System 
 
%///////////////////////////////////////////////////% 
%   Mark Rice                                       % 
%   May 13,2004                                     % 
%   ASU Research                                    % 
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%                                                   % 
%   Look at the RMS of Error in X when States are   % 
%   known Now Examing the IEEE 14 bus system        % 
%///////////////////////////////////////////////////% 
 
clear; 
 
% Number of Buses is 14 
% Number of Measurments is ???? 
 
X=[ -0.086917397; 
    -0.222005881; 
    -0.180292512; 
    -0.153239908; 
    -0.24818582; 
    -0.233350521; 
    -0.233175988; 
    -0.26075219; 
    -0.263544717; 
    -0.258134196; 
    -0.263021118; 
    -0.264591915; 
    -0.279950812]; 
 
H=[-16.90045631 0 0 0 0 0 0 0 0 0 0
 0 0; 
    0 0 0 -4.483500717 0 0 0 0 0 0 0 0
 0; 
    5.051270395 -5.051270395 0 0 0 0 0 0 0 0
 0 0 0; 
    5.671506352 0 -5.671506352 0 0 0 0 0 0 0
 0 0 0; 
    5.751092708 0 0 -5.751092708 0 0 0 0 0 0
 0 0 0; 
    0 5.84692744 -5.84692744 0 0 0 0 0 0 0 0
 0 0; 
    0 0 23.74732843 -23.74732843 0 0 0 0 0 0 0
 0 0; 
    0 0 4.781943382 0 0 -4.781943382 0 0 0 0 0
 0 0; 
    0 0 1.797979072 0 0 0 0 -1.797979072 0 0 0
 0 0; 
    0 0 0 3.967939052 -3.967939052 0 0 0 0 0 0
 0 0; 
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    0 0 0 0 5.027652086 0 0 0 0 -5.027652086 0
 0 0; 
    0   0 0 0 3.909151323 0 0 0 0 0 -3.909151323 0
 0; 
    0 0 0 0 7.676364474 0 0 0 0 0 0 -
7.676364474 0; 
    0 0 0 0 0 5.676979847 -5.676979847 0 0 0 0
 0 0; 
    0 0 0 0 0 9.09008272 0 -9.09008272 0 0 0
 0 0; 
    0 0 0 0 0 0 0 11.83431953 -11.83431953 0 0
 0 0; 
    0 0 0 0 0 0 0 3.69849841 0 0 0 0
 -3.69849841; 
    0 0 0 0 0 0 0 0 5.206435154 -5.206435154 0
 0 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 0
 2.873398081 -2.873398081 
    16.90045631 0 0 -4.483500717 0 0 0 0 0 0
 0 0 0; 
   -33.37432577 5.051270395 5.671506352 5.751092708 0 0 0 0
 0 0 0 0 0; 
    5.051270395 -10.89819783 5.84692744 0 0 0 0 0 0
 0 0 0 0; 
    5.671506352 5.84692744 -41.84568467 23.74732843 0 4.781943382 0
 1.797979072 0 0 0 0 0; 
    5.751092708 0 23.74732843 -37.9498609 3.967939052 0 0 0
 0 0 0 0 0; 
    0   0 0 3.967939052 -20.58110694 0 0 0 0 5.027652086
 3.909151323 7.676364474 0; 
    0 0 4.781943382 0 0 -19.54900595 5.676979847 9.09008272 0
 0 0 0 0; 
    0 0 0 0 0 9.09008272 0 -24.62290066 11.83431953 0
 0 0 3.69849841; 
    0 0 0 0 0 0 0 11.83431953 -17.04075468 -
5.206435154 0 0 0; 
    0 0 0 0 5.027652086 0 0 0 5.206435154 -
10.23408724 0 0 0; 
    0 0 0 0 3.909151323 0 0 0 0 0 -
8.912153124 5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
7.876399882 2.873398081; 
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    0 0 0 0 0 0 0 3.69849841 0 0 0
 2.873398081 -6.57189649]; 
 
Z=[ 1.46894367057742 
   0.68705123739101 
   0.68236845993463 
   0.52957755784123 
   0.38142690938835 
  -0.24389504182095 
  -0.64242707207473 
   0.25372039499965 
   0.14466481718386 
   0.37673959205256 
   0.05001697334871 
   0.05799342480380 
   0.12593916481507 
  -0.00099082032364 
   0.24908343787606 
   0.03304765681415 
   0.07100607294119 
  -0.02816952673586 
   0.00785870022001 
   0.04413222516608 
  -0.78189243318641 
  -0.12442925615220 
   0.92626350064555 
   0.52972437482976 
   0.04931148157940 
   0.14279003032591 
   0.00562777768057 
   0.14502970812072 
   2.74913508750368 
   0.02184744661286 
   0.05013472458379 
  -0.03627352494607 
   0.11513829782732]; 
 
%/ Noise set at 30% % 
noise=.6; 
Stored=0; 
Uppers=0; 
trials=5000; 
s=size(X); 
sizex=s(1,1) 
KA=cond(H); 
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stNXP=0; 
stSw=0; 
stNXPw=0; 
StoreEX=0; 
SizeZ=size(Z); 
counter1=0; 
 
% Creation of the covariance Matrix 
W=(.3)^2*eye(SizeZ(1,1)); 
Ws=(.3)*eye(SizeZ(1,1)+1); 
Ws(1,1)=100; 
% buslist=[2 3 4 5 6 7 8 9 10 11 12 13 14]; 
% Creation of the Base of 8 has a PMU on it 
% for bus=1:13 
%     buslistd=buslist;     
    PMU=10; 
%     buslistd(PMU)=[]; 
    Hptwo=H; 
    Xptwo=X; 
    H1two=H(:,PMU); 
    HPMU1=H1two; 
    X1two=X(PMU,1); 
    XPMU1=X1two; 
    Zptwo=Z; 
    SizeZptwo=size(Zptwo); 
    Hptwo(:,PMU)=[]; 
    Xptwo(PMU,:)=[]; 
     
    Hwtwo=H; 
    [height,width]=size(Hwtwo); 
    Hwtwo=[zeros(1,width);Hwtwo]; 
    Hwtwo(1,PMU)=1; 
     
    %  
    % for i=1:trials 
    %     eta=noise*(randn(SizeZ(1,1),1)).*Z; 
    %     Zn=Z+eta; 
    %     Zn=Zn-X1two*H1two; 
    %     Xhat1=pinv(Hptwo)*Zn; 
    %     %Ex=Xptwo-Xhat1; 
    %     %StoreEX=StoreEX+abs(Ex); 
    %     %Ex2=Ex'*Ex; 
    %     %S=sqrt((Ex2)/(s(1,1))); 
    %     %Stored=Stored+S; 
    %     %Rhols=norm(H*Xhat1-Zn); 
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    %     %theta=asin(Rhols/norm(Z)); 
    %     %Upper=(norm(eta)/norm(Z))*(2*KA/cos(theta)+tan(theta)*cond(transpose(H)*H)); 
    %     %Uppers=Uppers+Upper; 
    %     NXP=norm(Xptwo-Xhat1)/norm(Xptwo); 
    %     stNXP=stNXP+NXP; 
    %      
    %     %Now Time to examine the happenings of WLS 
    %      
    %      Zw=[X(PMU);Z+noise*randn(size(Z)).*Z]; 
    %      XhatW=(transpose(Hwtwo)*Ws*Hwtwo)^-1*transpose(Hwtwo)*Ws*Zw; 
    %      NXPw=norm(X-XhatW)/norm(X); 
    %      stNXPw=stNXPw+NXPw; 
    %    % counter1=counter1+1; 
    %      
    % end 
    %  
    % %NormXp=norm(X); 
    % %AvgEX=StoreEX/trials; 
    % %ExpS=Stored/trials; 
    % %UpperB=Uppers/trials; 
    % AvgNXP=stNXP/trials; 
    % %AvgWerror=stSw/trials; 
    % AvgNXPw=stNXPw/trials; 
     
    %counter2=0; 
    %counter3=0; 
     
    %NormHds(1,1)=norm(transpose(H)*H) 
    %NormHwls(1,1)=norm(transpose(H)*W*H) 
     
    %Examining Condition Numbers 
     
    %KAds=KA; 
    %KAwls=cond(sqrt(W)*H); 
     
     
    %now time to examine what happens when one of the states is known.% 
     
    Ws=(noise)*eye(SizeZ(1,1)+2); 
    Ws(2,2)=100; 
    Ws(1,1)=100; 
    k=1; 
     
    s=size(Xptwo); 
    sizex=s(1,1) 
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    for k=1:sizex 
         
         
        Hp=Hptwo; 
        Xp=Xptwo; 
        H1=Hp(:,k); 
        X1=Xp(k,1); 
        Zp=Z; 
        SizeZp=size(Zp); 
        Hp(:,k)=[]; 
        Xp(k,:)=[]; 
        sp=size(Xp); 
        Storedp=0; 
        %KA=cond(Hp); 
        stNXP=0; 
        %ppers=0; 
        %stNormR=0; 
         
        %Routine for the Creation of adding a precies Measurement to WLS 
         
        Hw=Hwtwo; 
        [height,width]=size(Hw); 
        Hw=[zeros(1,width);Hw]; 
        Hw(1,k)=1; 
        stSw=0; 
        stNXPw=0; 
        stNXPwp=0; 
         
         
        for i=1:trials 
             
            eta=noise*(randn(SizeZp(1,1),1)).*Zp; 
            Zn=Zp+eta; 
            Zn=Zn-X1*H1-XPMU1*HPMU1;  %Allows the noise to be just on the 
measurmentent 
            Xhat=pinv(Hp)*Zn; 
            Ex=Xp-Xhat; 
            NXP=norm(Xp-Xhat)/norm(Xp); 
            stNXP=stNXP+NXP; 
             
             
            %Finding the WLS Solution 
            Zw=[X(k);X(PMU);Z+noise*randn(size(Z)).*Z]; 
            XhatW=(transpose(Hw)*Ws*Hw)^-1*transpose(Hw)*Ws*Zw; 
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            NXPw=norm(X-XhatW)/norm(X); 
            %Sw=sqrt((transpose(X-XhatW)*(X-XhatW))/s(1,1)); 
            stNXPw=NXPw+stNXPw; 
            %stSw=Sw+stSw; 
            XhatWp=XhatW; 
            XhatWp(PMU)=X(PMU); 
            XhatWp(k)=X(k); 
            NXPwp=norm(XhatWp-X)/norm(X); 
            stNXPwp=stNXPwp+NXPwp; 
             
             
             
        end   
        %ExpS(k+1,1)=Storedp/trials; 
        %UpperB(k+1,1)=Uppers/trials; 
        AvgNXP(k+1,1)=stNXP/trials; 
        %AvgWerror(k+1,1)=stSw/trials; 
        AvgNXPw(k+1,1)=stNXPw/trials; 
        %NormXp(k+1)=norm(Xp); 
        %AvgR(k)=stNormR/trials; 
        AvgNXPwp(k,1)=stNXPwp/trials; 
         
        %attempting to atribute the Correct changes in X to the right place 
        %AvgEXp=sTdeltaX/trials; 
        %Avgerrorp(:,k)=AvgEXp; 
        %l=0; 
        %j=0; 
        %while l<12 
        %    l=l+1; 
        %    j=j+1; 
        %    if j==k 
        %        AvgEx(j,k)=0; 
        %        j=j+1; 
        %    end 
        %    AvgEx(j,k)=AvgEXp(l,1); 
        %end 
         
         
    end 
     
%     [NEd(bus),bus2d]=min(AvgNXP); 
%     [NEw(bus),bus2w]=min(AvgNXPw); 
%     [NEp(bus),bus2p]=min(AvgNXPwp); 
%     Bus2d(bus)=buslistd(bus2d); 
%     Bus2w(bus)=buslist(bus2w); 
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%     Bus2p(bus)=buslist(bus2p); 
% end 
 

B.3  Script to Examine Impact of Multiple PMUs on the 14 Bus System 

clear; 
 
% Number of Buses is 14 
% Number of Measurments is ???? 
 
X=[ -0.086917397; 
    -0.222005881; 
    -0.180292512; 
    -0.153239908; 
    -0.24818582; 
    -0.233350521; 
    -0.233175988; 
    -0.26075219; 
    -0.263544717; 
    -0.258134196; 
    -0.263021118; 
    -0.264591915; 
    -0.279950812]; 
 
H=[-16.90045631 0 0 0 0 0 0 0 0 0 0
 0 0; 
    0 0 0 -4.483500717 0 0 0 0 0 0 0 0
 0; 
    5.051270395 -5.051270395 0 0 0 0 0 0 0 0
 0 0 0; 
    5.671506352 0 -5.671506352 0 0 0 0 0 0 0
 0 0 0; 
    5.751092708 0 0 -5.751092708 0 0 0 0 0 0
 0 0 0; 
    0 5.84692744 -5.84692744 0 0 0 0 0 0 0 0
 0 0; 
    0 0 23.74732843 -23.74732843 0 0 0 0 0 0 0
 0 0; 
    0 0 4.781943382 0 0 -4.781943382 0 0 0 0 0
 0 0; 
    0 0 1.797979072 0 0 0 0 -1.797979072 0 0 0
 0 0; 
    0 0 0 3.967939052 -3.967939052 0 0 0 0 0 0
 0 0; 
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    0 0 0 0 5.027652086 0 0 0 0 -5.027652086 0
 0 0; 
    0   0 0 0 3.909151323 0 0 0 0 0 -3.909151323 0
 0; 
    0 0 0 0 7.676364474 0 0 0 0 0 0 -
7.676364474 0; 
    0 0 0 0 0 5.676979847 -5.676979847 0 0 0 0
 0 0; 
    0 0 0 0 0 9.09008272 0 -9.09008272 0 0 0
 0 0; 
    0 0 0 0 0 0 0 11.83431953 -11.83431953 0 0
 0 0; 
    0 0 0 0 0 0 0 3.69849841 0 0 0 0
 -3.69849841; 
    0 0 0 0 0 0 0 0 5.206435154 -5.206435154 0
 0 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 0
 2.873398081 -2.873398081 
    16.90045631 0 0 -4.483500717 0 0 0 0 0 0
 0 0 0; 
   -33.37432577 5.051270395 5.671506352 5.751092708 0 0 0 0
 0 0 0 0 0; 
    5.051270395 -10.89819783 5.84692744 0 0 0 0 0 0
 0 0 0 0; 
    5.671506352 5.84692744 -41.84568467 23.74732843 0 4.781943382 0
 1.797979072 0 0 0 0 0; 
    5.751092708 0 23.74732843 -37.9498609 3.967939052 0 0 0
 0 0 0 0 0; 
    0   0 0 3.967939052 -20.58110694 0 0 0 0 5.027652086
 3.909151323 7.676364474 0; 
    0 0 4.781943382 0 0 -19.54900595 5.676979847 9.09008272 0
 0 0 0 0; 
    0 0 0 0 0 9.09008272 0 -24.62290066 11.83431953 0
 0 0 3.69849841; 
    0 0 0 0 0 0 0 11.83431953 -17.04075468 -
5.206435154 0 0 0; 
    0 0 0 0 5.027652086 0 0 0 5.206435154 -
10.23408724 0 0 0; 
    0 0 0 0 3.909151323 0 0 0 0 0 -
8.912153124 5.003001801 0; 
    0 0 0 0 0 0 0 0 0 0 5.003001801 -
7.876399882 2.873398081; 
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    0 0 0 0 0 0 0 3.69849841 0 0 0
 2.873398081 -6.57189649]; 
 
Z=[ 1.46894367057742 
   0.68705123739101 
   0.68236845993463 
   0.52957755784123 
   0.38142690938835 
  -0.24389504182095 
  -0.64242707207473 
   0.25372039499965 
   0.14466481718386 
   0.37673959205256 
   0.05001697334871 
   0.05799342480380 
   0.12593916481507 
  -0.00099082032364 
   0.24908343787606 
   0.03304765681415 
   0.07100607294119 
  -0.02816952673586 
   0.00785870022001 
   0.04413222516608 
  -0.78189243318641 
  -0.12442925615220 
   0.92626350064555 
   0.52972437482976 
   0.04931148157940 
   0.14279003032591 
   0.00562777768057 
   0.14502970812072 
   2.74913508750368 
   0.02184744661286 
   0.05013472458379 
  -0.03627352494607 
   0.11513829782732]; 
 
%/ Noise set at 30% % 
noise=.3; 
Stored=0; 
Uppers=0; 
trials=1000; 
s=size(X); 
sizex=s(1,1); 
KA=cond(H); 
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stNXP=0; 
stSw=0; 
stNXPw=0; 
StoreEX=0; 
SizeZ=size(Z); 
counter1=0; 
 
% Creation of the covariance Matrix 
W=(.3)^2*eye(SizeZ(1,1)); 
Ws=(.3)*eye(SizeZ(1,1)+1); 
Ws(1,1)=100; 
 
 
PMU=6; 
 
Hptwo=H; 
Xptwo=X; 
H1two=H(:,PMU); 
HPMU1=H1two; 
X1two=X(PMU,1); 
XPMU1=X1two; 
Zptwo=Z; 
SizeZptwo=size(Zptwo); 
Hptwo(:,PMU)=[]; 
Xptwo(PMU,:)=[]; 
 
Hwtwo=H; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU)=1; 
 
 
Ws=(noise)*eye(SizeZ(1,1)+13); 
Ws(2,2)=100; 
Ws(1,1)=100; 
Ws(3,3)=100; 
Ws(4,4)=100; 
Ws(5,5)=100; 
Ws(6,6)=100; 
Ws(7,7)=100; 
Ws(8,8)=100; 
Ws(9,9)=100; 
Ws(10,10)=100; 
Ws(11,11)=100; 
Ws(12,12)=100; 
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Ws(13,13)=100; 
k=1; 
 
s=size(Xptwo); 
sizex=s(1,1) 
 
PMU2=9; 
 
% Hptwo2=Hptwo; 
% Xptwo2=Xptwo; 
% H1two2=H(:,PMU2); 
% HPMU2=H1two2; 
% X1two2=X(PMU2,1); 
% XPMU2=X1two2; 
% Zptwo2=Z; 
% SizeZptwo=size(Zptwo); 
% Hptwo(:,PMU2)=[]; 
% Xptwo(PMU2,:)=[]; 
 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU2)=1; 
 
PMU3k=10; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU3k)=1; 
 
PMU4=2; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU4)=1; 
 
PMU5=12; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU5)=1; 
 
PMU6=13; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
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Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU6)=1; 
 
PMU7=4; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU7)=1; 
 
PMU8=3; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU8)=1; 
 
PMU9=7; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU9)=1; 
 
PMU10=5; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU10)=1; 
 
PMU11=1; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU11)=1; 
 
PMU12=8; 
Hwtwo=Hwtwo; 
[height,width]=size(Hwtwo); 
Hwtwo=[zeros(1,width);Hwtwo]; 
Hwtwo(1,PMU11)=1; 
 
 
 
loc=[11]; 
 
for k=1:size(loc,2) 
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    PMU3=loc(k)'; 
     
     
    Hw=Hwtwo; 
    [height,width]=size(Hw); 
    Hw=[zeros(1,width);Hw]; 
    Hw(1,PMU3)=1; 
    stSw=0; 
    stNXPw=0; 
    stNXPwp=0; 
     
     
    for i=1:trials 
         
%         eta=noise*(randn(SizeZp(1,1),1)).*Zp; 
%         Zn=Zp+eta; 
%         Zn=Zn-X1*H1-XPMU1*HPMU1;  %Allows the noise to be just on the 
measurmentent 
%         Xhat=pinv(Hp)*Zn; 
%         Ex=Xp-Xhat; 
%         NXP=norm(Xp-Xhat)/norm(Xp); 
%         stNXP=stNXP+NXP; 
                 
        %Finding the WLS Solution 
        Zw=[X(PMU3);X(PMU12);X(PMU11);X(PMU10); 
X(PMU9);X(PMU8);X(PMU7);X(PMU6);X(PMU5);X(PMU4); 
X(PMU3k);X(PMU2);X(PMU);Z+noise*randn(size(Z)).*Z]; 
        XhatW=(transpose(Hw)*Ws*Hw)^-1*transpose(Hw)*Ws*Zw; 
        NXPw=norm(X-XhatW)/norm(X); 
        %Sw=sqrt((transpose(X-XhatW)*(X-XhatW))/s(1,1)); 
        stNXPw=NXPw+stNXPw; 
        %stSw=Sw+stSw; 
        XhatWp=XhatW; 
        XhatWp(PMU)=X(PMU); 
        XhatWp(k)=X(k); 
        NXPwp=norm(XhatWp-X)/norm(X); 
        stNXPwp=stNXPwp+NXPwp; 
                         
    end   
    %ExpS(k+1,1)=Storedp/trials; 
    %UpperB(k+1,1)=Uppers/trials; 
    %AvgNXP(k+1,1)=stNXP/trials; 
    %AvgWerror(k+1,1)=stSw/trials; 
    AvgNXPw(k+1,1)=stNXPw/trials; 
    %NormXp(k+1)=norm(Xp); 
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    %AvgR(k)=stNormR/trials; 
    %AvgNXPwp(k,1)=stNXPwp/trials; 
     
        
end 
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C. Summary of Experiments Performed 
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Table C.1 Experiments Performed 

Experiment     System
Used 

Noise  
Level 

Number 
of PMUs 

Method of 
Estimation Weight Objective

WLS-1-0.1 IEEE 14 Bus 0.1 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.2 IEEE 14 Bus 0.2 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.3 IEEE 14 Bus 0.3 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.4 IEEE 14 Bus 0.4 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.5 IEEE 14 Bus 0.5 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.6 IEEE 14 Bus 0.6 
 

1  (1) PMU=100 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

Other=0.3 

WLS-1-0.7 IEEE 14 Bus 0.7 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-0.8 IEEE 14 Bus 0.8 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLS-1-0.9 IEEE 14 Bus 0.9 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-1-1.0 IEEE 14 Bus 1.0 1 (1) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.1 IEEE 14 Bus 0.1 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.2 IEEE 14 Bus 0.2 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.3 IEEE 14 Bus 0.3 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.4 IEEE 14 Bus 0.4 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.5 IEEE 14 Bus 0.5 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.6 IEEE 14 Bus 0.6 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.7 IEEE 14 Bus 0.7 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

DS-1-0.8 IEEE 14 Bus 0.8 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-0.8 IEEE 14 Bus 0.8 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

DS-1-1.0 IEEE 14 Bus 1.0 1 (2) 1 To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.1 IEEE 14 Bus 0.1 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.2 IEEE 14 Bus 0.2 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 
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WLSp-1-0.3 IEEE 14 Bus 0.3 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.4 IEEE 14 Bus 0.4 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.5 IEEE 14 Bus 0.5 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.6 IEEE 14 Bus 0.6 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

 



 
Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLSp-1-0.7 IEEE 14 Bus 0.7 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.8 IEEE 14 Bus 0.8 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-0.9 IEEE 14 Bus 0.9 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLSp-1-1.0 IEEE 14 Bus 1.0 1 (3) PMU=100 
Other=0.3 

To find the optimal location of the PMU and 
examine the impact of noise on the 
estimation 

WLS-2-0.1 IEEE 14 Bus 0.1 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLS-2-0.2 IEEE 14 Bus 0.2 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLS-2-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLS-2-0.4 IEEE 14 Bus 0.4 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLS-2-0.5 IEEE 14 Bus 0.5 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLS-2-0.6 IEEE 14 Bus 0.6 2 (1) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.1 IEEE 14 Bus 0.1 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.2 IEEE 14 Bus 0.2 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.3 IEEE 14 Bus 0.3 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.4 IEEE 14 Bus 0.4 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.5 IEEE 14 Bus 0.5 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

DS-2-0.6 IEEE 14 Bus 0.6 2 (2) 1 To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLSp-2-0.1 IEEE 14 Bus 0.1 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLSp-2-0.2 IEEE 14 Bus 0.2 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLSp-2-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLSp-2-0.4 IEEE 14 Bus 0.4 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLSp-2-0.5 IEEE 14 Bus 0.5 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLSp-2-0.6 IEEE 14 Bus 0.6 2 (3) PMU=100 
Other=0.3 

To find the optimal location of 2 PMUs and 
examine the impact of noise on the 
estimation 

WLS-3-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 3rd PMU 
and the impact of 3 PMUs on the estimation 

WLS-4-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 4th PMU 
and the impact of 4 PMUs on the estimation 

WLS-5-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 5th PMU 
and the impact of 5 PMUs on the estimation 

WLS-6-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 6th PMU 
and the impact of 6 PMUs on the estimation 

WLS-7-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 7th PMU 
and the impact of 7 PMUs on the estimation 

WLS-8-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 8th PMU 
and the impact of 8 PMUs on the estimation 

WLS-9-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 9th PMU 
and the impact of 9 PMUs on the estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLS-10-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 10th 
PMU and the impact of 10 PMUs on the 
estimation 

WLS-11-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 11th 
PMU and the impact of 11 PMUs on the 
estimation 

WLS-12-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 12th 
PMU and the impact of 12 PMUs on the 
estimation  

WLS-13-0.3 IEEE 14 Bus 0.3 2 (1) PMU=100 
Other=0.3 

To find the optimal location of the 13th 
PMU and the impact of 13 PMUs on the 
estimation 

WLSp-3-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 3rd PMU 
and the impact of 3 PMUs on the estimation 

WLSp-4-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 4th PMU 
and the impact of 4 PMUs on the estimation 

WLSp-5-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 5th PMU 
and the impact of 5 PMUs on the estimation 

WLSp-6-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 6th PMU 
and the impact of 6 PMUs on the estimation 

WLSp-7-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 7th PMU 
and the impact of 7 PMUs on the estimation 

WLSp-8-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 8th PMU 
and the impact of 8 PMUs on the estimation 

WLSp-9-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 9th PMU 
and the impact of 9 PMUs on the estimation 
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Table C.1 Experiments Performed 

Experiment System  
Used 

Noise 
Level 

Number 
of PMUs 

Method of 
Estimation Weight  Objective

WLSp-10-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 10th 
PMU and the impact of 10 PMUs on the 
estimation 

WLSp-11-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 11th 
PMU and the impact of 11 PMUs on the 
estimation 

WLSp-12-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 12th 
PMU and the impact of 12 PMUs on the 
estimation  

WLSp-13-0.3 IEEE 14 Bus 0.3 2 (3) PMU=100 
Other=0.3 

To find the optimal location of the 13th 
PMU and the impact of 13 PMUs on the 
estimation 

 
 70 (1) Uses PMU measurements as augmented rows in Hx=z 

(2) Uses PMU measurements substituted for xi in the Hx=z, and eliminates xi 
(3) Uses PMU measurements as augmented rows in Hx=z, and then sets xi to the PMU measurements. 
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