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Abstract— We formulate a two-settlement equilibrium in com-
petitive electricity markets as a subgame-perfect Nash equilib-
rium in which each generation firm solves a Mathematical Pro-
gram with Equilibrium Constraints (MPEC), given other firms’
forward and spot strategies. We implement two computational
approaches, one of which is based on a Penalty Interior Point
Algorithm and the other is based on a steepest descent approach.
We apply the algorithm to a six node illustrative example.

I. INTRODUCTION

The last decade has witnessed a fundamental transformation
of the electric power industry around the world from one
dominated by regulated vertically integrated monopolies to
an industry where electricity is produced and traded as a
commodity through competitive markets. In the US, this
transformation was pioneered in the late 1990s by California
and the northeastern power pools including Pennsylvania-
New Jersey-Maryland (PJM) Interchange, New York and
New England, which established markets for electricity. A
recent arrival is the ERCOT market in Texas. Lessons from
the accumulated experience in the early-restructured markets
are being incorporated in market reforms and new market
designs. While there are significant differences among the
many implemented and proposed market designs that vary in
terms of ownership structure, level of centralization and the
authority of the system operator, most market designs in the
US have adopted or are in the process of adopting a multi
settlement system approach where forward transactions, day
ahead transactions and real time balancing transactions are
settled at different prices. Theoretical analysis and empirical
evidence suggests that forward trading reduces the incentives
of sellers to manipulate spot market prices by reducing the
sensitivity of sellers’ profits to spot prices fluctuations. Thus
forward trading is viewed as an effective way of mitigating
market power at real time. However, due to the complexity
of the problem, it is not clear to what extent suppliers are
willing to engage in forward transactions. Furthermore it is
not well understood whether forward trading may in fact help
generators with market power in the spot market to lock in or
even increase Oligopoly rents.

1Research supported by the National Science Foundation Grant ECS-
0224779 with the University of California.

In this paper, we formulate the two-settlement competitive
electricity market as a two-period game, and its equilibrium
as a subgame-perfect Nash equilibrium (see [8]), in which
each firm faces a Mathematical Programming problem with
(linear) Equilibrium Constraints (MPEC) given other firms’
commitments in forward contracts. We implement two solution
approaches which are based on Penalty Interior Point Algo-
rithm (PIPA) and Steepest Descent Method and apply it to a
6-node and 8-line illustrative example, For the specific data
and simplifying assumptions of the example, both approaches
give the same result showing that in the equilibrium, firms
commit all their generation capacities in forward transactions
and adjust their positions in the spot market responding to
contingencies and demand realization. This result could be
a consequence of the assumption about linear cost functions
for the generators. We plan to explore this issue in future
work under the more realistic assumption of quadratic cost
functions.

Since our model relies on solving a Complementarity Prob-
lem and Mathematical Program with Equilibrium Constraint
(MPEC), we shall first introduce these concepts. A Mixed
Complementarity Problem (MCP) is defined as follows: find
vector x ∈ Rn such that x ≥ 0, f(x) ≥ 0, f(x)T x = 0 and
g(x) = 0, where functions f : Rn → Rn and g : Rn → Rm

are given. If f(x) and g(x) are affine functions, the MCP
is a Mixed Linear Complementarity Problem (mixed LCP). If
g(x) is omitted, it becomes a Linear Complementarity Problem
(LCP) (see [7]).

A MPEC (see [15]) is an optimization problem with two sets
of variables, x and y, in which some or all of its constraints
are defined by a parametric variational inequality (sometimes
called complementarity system) with y as its primary variables
and x as the parameter vector. Specifically, suppose that f :
Rn+m → R and F : Rn+m → Rm are given functions,
Z ⊆ Rn+m is a non-empty closed set, and C : Rn → Rm is
a set-valued map with (possibly empty) closed convex values.

The MPEC is defined as:
min f(x, y)
subject to:
(x, y) ∈ Z and y ∈ S(x)

where S(x) is the solution set of the variational inequality
defined by the pair (F (x), C(x)); i.e. y ∈ S(x) if and only if
y ∈ C(x) and (v − y)T F (x, y) ≥ 0 for all v ∈ C(x).
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The rest of this paper is arranged as follows. Related
research on models with transmission constraints and forward
markets are reviewed in the following section, section III
presents the model assumptions and the mathematical formu-
lation. Two approaches for solving the problems are given in
section IV. An example, numerical results and conclusions are
presented in sections V and VI.

II. RELATED RESEARCH

We review models of spot energy markets with transmission
constraints as well as models that include forward markets.
Most of the spot market models with transmission constraints
assume either perfect competition or an oligopoly based on the
Cournot conjectural variation. Assuming that the agents act as
price takers in the transmission market allows such models
to be solved as complementarity problems or variational
inequalities.

Wei and Smeers [20] consider a Cournot model with
regulated transmission prices. They solve the variational in-
equalities to determine unique long-run equilibria in their
models. In subsequent work, Smeers and Wei [19] consider a
separated energy and transmission market, where the system
operator conducts a transmission capacity auction with power
marketers purchasing transmission contracts to support bilat-
eral transactions. They conclude that such market converges
to the optimal dispatch for a large number of marketers.
Borenstein and Bushnell [3] use a grid search algorithm that
iteratively converges to a Cournot model based on data from
the California market.

Hobbs et al [12] calculate a Cournot equilibrium under
the assumptions of linear demand and cost functions, which
leads to a linear mixed complementarity problem. In a market
without arbitrageurs, non-cost based price differences can arise
because the bilateral nature of the transactions gives firms
more degrees of freedom to discriminate between electricity
demand at various nodes. This is equivalent to a separated
market as in [19]. In the market with arbitrageurs, any non-
cost differences are arbitraged by trades who buy and sell
electricity at nodal prices. This equilibrium is shown to be
equivalent to a Nash-Cournot equilibrium in a POOLCO-type
market. In another paper [13], Hobbs presents an oligopolistic
market where each firm submits a linear supply function to
the Independent System Operator (ISO). He assumes that firms
can only manipulate the intercepts of the supply functions, but
not the slopes, while power flows and pricing strategies are
constrained by the ISO’s linearized DC optimal power flow.
Each firm in this model faces an MPEC problem with spatial
price equilibrium as the inner problem.

Work in forward markets has focused on the welfare enhanc-
ing properties of forward markets and the commitment value
of forward contracts. The basic model in Allaz [1] assumes
that producers meet in a two period market where there is
some demand uncertainty in the second period. Allaz shows
that generators have a strategic incentive to contract forward
if other producers do not. This result can be understood
using the concepts of strategic substitutes and complements
of Bulow, Geneakoplos and Klemperer [4]. In these terms,

the availability of the forward market makes a particular
producer more aggressive in the spot market. Due to the
strategic substitutes effect, this produces a negative effect on
its competitors’ production. The producer with access to the
forward market can therefore use its forward commitment to
improve its profitability to the detriment of its competitors.
Allaz shows, however, that if all producers have access to
the forward market, it lead to a prisoners’ dilemma type of
effect, reducing profits for all producers. Allaz and Vila [2]
extend this result to the case where there is more than one time
period where forward trading takes place. For a case without
uncertainty, they establish that as the number of periods when
forward trading takes place tends to infinity, producers lose
their ability to raise market prices above marginal cost and
the outcome thanks to the competitive solution.

von der Fehr and Harbord [9] and Powell [18] study
contracts and their impact on an imperfectly competitive
electricity spot market: the UK pool. von der Fehr and Harbord
[9] focus on price competition in the spot market with capacity
constraints and multiple demand scenarios. They find that con-
tracts tend to put downward pressure on spot prices. Although,
this provides disincentive to generators to offer such contracts,
there is a countervailing force in that selling a large number
of contracts commits a firm to be more aggressive in the spot
market, and ensures that it is dispatched into its full capacity
in more demand scenarios. Powell [18] explicitly models re-
contracting by Regional Electricity Companies (RECs.) after
the maturation of the initial portfolio of contracts set up after
deregulation. He adds risk aversion on the part of RECs to
earlier models. Generators act as price setters in the contract
market. He shows that the degree of coordination has an
impact of the hedge cover demanded by the RECs, and points
to a “free rider” problem which leads to a lower hedge cover
chosen by the RECs.

Newbery [16] analyzes the role of contracts as a barrier to
entry in the England and Wales electricity market. He extends
earlier work by modeling equilibria of supply functions in
the spot market. He further shows that if entrants can sign
base load contracts and incumbents have enough capacity, the
incumbent can sell enough contacts to drive down the spot
price below the entry deterring level, resulting in more volatile
spot prices if producers coordinate on the highest profit SFE.
Capacity limit however may imply that incumbents cannot
play a low enough SFE in the spot market and hence cannot
deter entry. Green [11] extends Newbery’s model showing
that when generators compete in SFEs in the spot market,
together with the assumption of Cournot conjectural variations
in the forward market, imply that no contracting will take place
unless buyers are risk averse and willing to provide a hedge
premium in the forward market. He shows that forward sales
can deter excess entry, and increase economic efficiency and
long-run profits of a large incumbent firm faced with potential
entrants.

III. THE MODEL

A. Introduction and assumptions

We introduce a model for calculating the equilibrium quan-
tities and prices of electricity over a given network for a given
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period that is denoted as period 2. We consider two markets,
the spot market that operates at period 2, and a forward market
that operates at a preceding period that we denote as period
1.

We model the spot market in the topology of the trans-
mission network through the DC approximation of Kirchoff’s
laws. Specifically, flows on lines can be calculated by a power
transfer distribution factor (PTDF) which gives the proportion
of flow on a particular line resulting from an injection of one
unit at a particular node and a corresponding withdrawal at an
arbitrary (but fixed) “slack bus”[6]. Different PTDF matrices
with corresponding probabilities characterize uncertainty re-
garding the realized network topology in the spot market. To
avoid non-convex issue in the spot market (see [5], [17]), we
assume that agents do not game the transmission prices. For
simplicity we assume that all nodes are both demand nodes
and generation nodes and that there is exactly one firm owning
generation facility at each node. The capacities of the facilities
(as well as of the lines) are unknown at period 1 and are subject
to stochastic fluctuations in period 2. To further simplify the
formulation we assume no wheeling fees.

Firms enter contracts in the forward market (which is
organized in zones that may include several nodes) in period 1,
which are settled financially in period 2, based on a weighted
average of the nodal prices corresponding to the nodes in
each respective zone. The weights are typically based on
historical load ratio for each node. We assume that risk neutral
speculators take opposite positions to the firms and that by
anticipating any arbitrage opportunities the forward price in
a zone is set equal to the expected weighted nodal prices (of
the same zone) from the spot market. We plan to relax this
assumption in future work to capture how lack of liquidity (or
high risk aversion) on the buyers side might be reflected in a
high risk premium embedded in the forward prices.

We view the two settlement in the electricity market as a
complete information game with two periods. Our formulation
approach is to model the equilibrium in this two period
model as a subgame-perfect Nash equilibrium. We model
the second period of the game as a subgame with three
stages. In the first stage Nature determines the state of the
world (and thus settles the actual capacities of the generation
facilities and the transmission lines as well as the shape of
the demand and cost functions at each node). In the second
stage, firms anticipate arbitrage in stage three and compete in
a Nash-Cournot manner. In the third stage, the system operator
arbitrages any non-cost differences in nodal energy prices so
that there is no spatial discrimination in energy prices subject
to transmission congestion.

Specifically, the equilibrium is determined by considering
three classes of optimization problems:

Problem Gg: generation firms’ decision problems in the
second stage of the spot market.

Problem S: The system operator decision problem in the
third stage of the spot market.

Problem Fg: The generation firms’ decision problems in the
forward market in which the preceding problems are imbedded
and whose solutions provide the equilibrium entities.

B. Notation

(1) Sets:

• N : the set of all nodes
• Z: the set of all zones
• L: the set of all transmission lines
• C: the set of all states of contingencies
• G: the set of all generation firms
• NG

g : The set of nodes at which firm g owns generating
facilities.

• NZ
z : The set of nodes in zone z. We denote by

• z(i) the zone where node i resides.

(2) Decision variables:
The variables related to the spot markets are:

• fz: The forward price in zone z.
• xg,z: The forward quantity of firm g in zone z.

The variables related to the forward markets are:

• rc
i : Adjustment quantity into/from node i by the system

operator in state c.
• qc

i : The quantity generated at node i in state c.

(3) Parameters:

• qc
i : Capacity of generating facility at node i in state c.

• pc
i (·): Inverse demand function at node i in state c.

We assume that the inverse demand function is linear
where pc

i (q) = ac
i − bc

iq,
• si(·): Cost function at node i. We assume that the cost

function is linear where si(q) = diq.
• Kc

l : capacity limit of line l in state c.
• Dc

l,i : Power transfer distribution factor in state c on line
l with respect to node i.

• xg,z: An upper bound on the forward quantity xg,z , which
we assume to be the total capacity of firm g facilities in
zone z at the “normal” state.

• ρg: Firm g’s risk-aversion coefficient.

C. The Formulation

The no-arbitrage assumption implies that the forward price
is equal to the expected value of weighted spot nodal prices.
That is:

fz = E[
∑

i∈NZ
z

δip
c
i (q

c
i + rc

i )] (p1)

where δi (δi ≥ 0 ,
∑

i∈NZ
z

δi = 1) are weights (typically
based on historical data) that are used to settle the forward
contracts.

In stage two of the second period, for a given state c, each
firm g solves the following profit maximization problem :

Gg : max
qc

i

∑
i∈NG

g

πc
g − ∑

z∈Z

fzxg,z

subject to:
0 ≤ qc

i ≤ qc
i i ∈ NG

g (g1)

where πc
g =

∑
i∈NG

g

[pc
i (q

c
i + rc

i )q
c
i − si(qc

i )] is the profit of firm

g in state c in the spot market.
Following the preceding problems, the system operator

solves the following social welfare maximization problem:

S : max
rc

i

∑
i∈N

[
∫ rc

i

0
pc

i (q
c
i + wi)dwi]

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3



subject to:∑
i∈N

rc
i = 0 (s1)

−Kc
l ≤ ∑

i∈N

Dc
l,ir

c
i ≤ Kc

l , l ∈ L (s2)

qc
i + rc

i ≥ 0, i ∈ N (s3)
To rational for the system operator’s problem, is that in the

absence of wheeling fees, it is possible to generate profit by
buying/selling dwi units of electricity from/to node i while
selling/buying it to/from other nodes until the prices in the
nodes are equal, or until some transmission lines are saturated.

Since the nodal inverse demand functions as well as the cost
functions are assumed to be linear, both problem Gg and S are
concave quadratic programming problems, which implies that
first order necessary conditions (the KKT conditions) are also
sufficient. Thus, we can replace problems Gg and S by their
KKT conditions.

Let αc be the Lagrangian multiplier to constraint (s1), λc
l−

and λc
l+ be the Lagrangian multipliers to constraint (s2), and

βc
i be the Lagrangian multipliers to constraint (s3). Then

the KKT conditions for problem S (including the feasibility
constraints) are:
for c ∈ C , l ∈ L , i ∈ N∑

j∈N

rc
j = 0 (KKT1)

ac
i − bc

i (q
c
i + rc

i ) − αc + βc
i

+
∑
t∈L

(λc
t−Dc

t,i − λc
t+Dc

t,i) = 0 (KKT2)

λc
l− ≥ 0 (KKT3)∑

j∈N

Dc
l,ir

c
j + Kc

l ≥ 0 (KKT4)

λc
l−(

∑
i∈N

Dc
l,ir

c
i + Kc

l ) = 0 (KKT5)

λc
l+ ≥ 0 (KKT6)

Kc
l − ∑

j∈N

Dc
l,jr

c
j ≥ 0 (KKT7)

λc
l+(Kc

l − ∑
j∈N

Dc
l,jr

c
j) = 0 (KKT8)

βc
i ≥ 0 (KKT9)

qc
i + rc

i ≥ 0 (KKT10)
βc

i (q
c
i + rc

i ) = 0 (KKT11)
Similarly, let ηc

i and γc
i be the Lagrangian multipliers

associated with constraint (g1), then the KKT conditions for
problem Gg are:
for c ∈ C , i ∈ N

ac
i − 2bc

iq
c
i − bc

ir
c
i − di+

δib
c
ixg,z(i) − γc

i + ηc
i = 0 (KKT12)

γc
i ≥ 0 (KKT13)

qc
i − qc

i ≥ 0 (KKT14)
γc

i (q
c
i − qc

i ) = 0 (KKT15)
ηc

i ≥ 0 (KKT16)
qc
i ≥ 0 (KKT17)

ηc
i q

c
i = 0 (KKT18)

In period 1, each firm g determines the forward quantities
(bounded by the capacities of the facilities of firm g) by
maximizing the value of the forward transactions subject
to the KKT conditions (KKT1-KKT18) which represent the
anticipated actions in period 2. Thus firm g optimization
problem in period 1 is:

F : max
xg,z

∑
z∈Z

fzxg,z − E[πg] + ρg

2 var(πg)

subject to:
xg,z ≤ xg,z z ∈ Z (f1)
and constraints (p1), (KKT1-KKT18)

D. Conversion to MPEC

For the purpose of converting problem F to Mathematical
Program with Equilibrium Constraints (MPEC), we define

• xg: The vector of firm g’s forward variables.
xg = [xg,z, z ∈ Z]

• x: The vector of all firms’ forward variables.
x = [xg, g ∈ G]

• y: The vector of lagrangian multipliers for all inequality
constraints.

y =

⎡
⎢⎢⎢⎢⎣

ηc
i

γc
i

βc
i c ∈ C, i ∈ N, l ∈ L

λc
l−

λc
l+

⎤
⎥⎥⎥⎥⎦

• v: The vector of adjustment quantities rc
i and the multi-

pliers αc.

v =
[

rc
i

αc c ∈ C, i ∈ N

]
• w: The slackness of the inequality constraints.

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

qc
i

qc
i − qc

i

qc
i + rc

i c ∈ C, i ∈ N, l ∈ L∑
j∈N

Dc
l,jr

c
j + Kc

l

Kc
l − ∑

j∈N

Dc
l,jr

c
j

⎤
⎥⎥⎥⎥⎥⎥⎦

(w1)

Then constraints (KKT1-KKT18) and (w1) become a Mixed
LCP with respect to w, y and v with x being the parameter.
Note that v can be solved from constraints (KKT1) and
(KKT2), we can eliminate v from this mixed LCP, to obtain:

w = a + Ax + My
w ≥ 0, y ≥ 0
wT y = 0

where a, A, and M are suitable vector and matrices derived
from (KKT1-KKT18) and (w1).

Thus the two-settlement equilibrium can be converted to an
Equilibrium Problem with Equilibrium Constraints, in which
each firm faces (given other firms’ commitments) an MPEC
problem:

min
xg,y,w

f(x, y, w)

subject to:
xg,z ≤ xg,z ∀z ∈ Z (f1)
w = a + Ax + My (EC1)
w ≥ 0, y ≥ 0 (EC2)
wT y = 0 (EC3)

where f(x, y, w) is the objective function of problem F
expressed in term of x, y, and w.

Theorem 1: If rc
i are the same for all i ∈ N for any

given state c, and they are greater then di, then the left-
hand inequality of constraint (g1) and costraint (s3) are never
binding in the optimal solution.

Proof: This is not hard to see: In problem Gg , generating
some small quantity at any node i always dominates generating
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nothing; and in problem S, dispatching all generated quantity
on any node to other nodes will never maximize social welfare.

Theorem 2: The conditions of Theorem 1 implies that M
is symmetric and positive semi-definite.

Proof: Note that the left-hand inequality of (g1) and
constraint (s3) are never binding in the optimal solution by
the assumption of theorem 1. Thus, we can drop these two
constraints, as well as the corresponding multiplies, from the
LCP problem.

Also note that the LCP problem above can be divided
into sub-problems according to the states of contingencies,
therefore it suffices to prove M is symmetric and positive
semi-definite for each state.

For any state c, let e ∈ R|N | be a vector with all ones, B be
a diagonal matrix with bii = bc

i ,∀i ∈ N , and D be a matrix
with Dl,i = Dc

l,i,∀l ∈ L,∀i ∈ N . It can be shown that

M =

[
0 0 0
0 DQDT −DQDT

0 −DQDT DQDT

]
+

[
H−1 H−1BQDT −H−1BQDT

DQBH−1 DQBH−1BQDT −DQBH−1BQDT

−DQBH−1 −DQBH−1BQDT DQBH−1BQDT

]

where Q = B−1 − B−1eeT B−1

eT B−1e
is symmetric positive semi-

definite and H = −BQB+2B is symmetric positive definite.
Moreover, note that M can be written as:

M =

⎡
⎣ 0

(DQDT )
1
2

−(DQDT )
1
2

⎤
⎦[

0 (DQDT )
1
2 −(DQDT )

1
2

]
+

⎡
⎣ H− 1

2

DQBH− 1
2

−DQBH− 1
2

⎤
⎦[

H− 1
2 H− 1

2 BQDT −H− 1
2 BQDT

]
Therefore, M must be symmetric positive semi-definite.

Following the monograph [7], the LCP problem (EC1-
EC3) satisfies the w-uniqueness condition, thus it also has a
unique solution given that problems S and Gg are both non-
degenerate.

IV. SOLUTION APPROACHES

The EPEC in the forward market are constrained in non-
convex regions the (EC1-EC3), therefore we cannot write
down the optimality conditions for each agent and aggregate
them into a large problem which we can solve directly. We
attempt to solve for an equilibrium, if at least one exists,
by iteratively finding best responding strategies, that is, we
sequentially solve each firm’s optimization problem using as
data optimal value from previously solved problems. Thus,
starting from a feasible vector of forward variables x, we
solve for x1 using x−1 as data in the first firm’s optimization
problem, where “x−1” means all firms’ forward variables
except for firm 1’s; then use x−2 to solve x2, and so on. In
each iteration, we solve a MPEC problem for one firm. Based
on the technologies solving MPEC problems, we develop two
approaches, namely iterative Response Surface Method (RSM)
and iterative Penalty Interior Point Algorithm (PIPA).

A. Approach 1: iterative RSM

In this approach, we solve MPEC problems using Response
Surface Method (RSM) by iteratively searching steepest de-
scent (SD) direction. For some small positive value ε, called
step size, we define xg’s neighborhood set as all feasible
points with the format (xg,z ± ε,∀z ∈ Z). Thus point xg’s
neighborhood set contains at most 2|Z| points. When searching
steep descent direction, we test the responding objective value
for each point in the neighborhood set of xg combined with
x−g, by solving w and y through PATH solver [8], and the
only point with highest objective value is kept for next search.
Figure 1 illustrates the case when |Z| = 2.

(xg,1,xg,2)

S*

Fig. 1. Neighborhood set and SD direction

The following describes this approach:

1. (Initiation) Select initial values of x0 and ε0. k := 0.
2. (Main loop) Let xk+1 := xk, increase k by 1, let g := 1
3. (Steepest descent direction search) Let s∗ be the point

with highest objective value in the neighborhood set of
xk

g . If s∗ has a worse objective value than xk
g , go to step

4; else let xk
g := s∗ and repeat this step.

4. (Next firm) If g < |G|, increase g by 1 and go to step 3.
5. (Termination check) If (xk = xk−1) and (εk is small

enough), stop and a solution is found; otherwise, set
εk+1 := εk/2, then go to step 2.

B. Approach 2: iterative PIPA

In this approach, we solve MPEC problems using Penalty
Interior Point algorithm (PIPA). See the monograph [15] for
more details regarding PIPA. Our key idea of penalty interior
point method is as follows. Assume we have a MPEC problem:

min f(x, y, w, v)
Subject to :
x ∈ X
F (x, y, w, v) = 0
y ≥ 0, w ≥ 0
yT w = 0

where x ∈ Rn, y ∈ Rm, w ∈ Rm, v ∈ Rl. We define two
auxiliary functions:
the constraints violation function

ψ(x, y, w, v) = F (x, y, w, v)T F (x, y, w, v) + wT y,

and the penalized objective function

Pα(x, y, w, v) = f(x, y, w, v) + αψ(x, y, w, v)
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Given a point (x, y, w, v) ∈ Rn×Rm
++×Rm

++×Rl, we solve
a quadratic program whose solution yields a descent direction
for the function Pα. A one-dimension search is carried out
along this direction so as to decrease Pα. This new (x, y, w, v)
is then the starting point for the next search.

The PIPA algorithm solves above MPEC problem in the
following steps.

0. (Initiation) let (x0, y0, w0, v0) ∈ X ×Rm
++ ×Rm

++ ×Rl

be given. Let ρ satisfying
ρ (y0)T w0

m ≤ min
1≤i≤m

y0
i w0

i

and σ0 ≤ min(ρ, 0.1). Set r := 0, α0 := 1.2.
1. (Direction generation) let the unique optimal solution of

the quadratic programming be (dxr, dyr, dwr, dvr):
min(dfr

x)dx +(dfr
y )dy +(dfr

w)dw +(dfr
v )dv +0.5(dx)T dx

subject to:
xr + dx ∈ X
−

√
‖ F r ‖2

2 +(wr)T yre ≤ dx ≤
√

‖ F r ‖2
2 +(wr)T yre

(dF r
x )dx + (dF r

y )dy + (dF r
w)dw + (dF r

v )dv = −F r

diag(wr)dy + diag(yr)dw = −diag(wr)yr + σr
(yr)T wr

m e
where F r = F (xr, yr, wr, vr).

Let αr = αp
r−1 where p is the smallest integer such that

(dfr
x)dxr + (dfr

y )dyr + (dfr
w)dwr + (dfr

v )dvr

−αp
r−1(2 ‖ F r ‖2

2 +(1 − σr)(yr)T wr)
≤ ψ(xr, yr, wr, vr)

2. (Step size determination) define a linear function
gr(τ) = (1 − ρ)σr

(yr)T wr

m - τ( min
1≤i≤m

dyr
i dwr

i − ρ (dyr)T dwr

m )

Let τr be the unique root of the function gr(τ) for τ ∈ (0, 1)
if this root exists; let τr = 0.95 if gr(τ) has no root in (0,1].
Let τr = τr0.95k where k is the smallest nonnegative integer
such that

xr(τr) = xr + τrdxr

yr(τr) = yr + τrdyr

wr(τr) = wr + τrdwr

vr(τr) = vr + τrdvr

ψ(xr(τr), yr(τr), wr(τr), vr(τr)) ≤ ψ(xr, yr, wr, vr)
Pαr

(xr(τr), yr(τr), wr(τr), vr(τr)) −Pαr
(xr, yr, wr, vr)

≤ 0.5τr((dfr
x)dxr + (dfr

y )dyr + (dfr
w)dwr + (dfr

v )dvr)
−αr(2 ‖ F r ‖2

2 +(1 − σr)(yr)T wr)
≤ −0.5τrψ(xr, yr, wr, vr)
3. (Termination check) Define xr+1 = xr(τr), yr+1 =

yr(τr), wr+1 = wr(τr), vr+1 = vr(τr). If stopping rule
is satisfied, terminate; otherwise choose σr+1 to be a scalar
satisfying 0 < σr+1 ≤ σr and return to step 1 with r replaced
by r + 1.

The following gives the detail of this approach:

1. (Initiation) Select initial values of x0, k := 0
2. (Main loop) Let xk+1 := xk, increase k by 1, let g := 1.
3. (PIPA) Calculate xk

g while treating xk
−g as constants

through PIPA algorithm.
4. (Next firm) If g < |G|, increase g by 1 and go to step 3.
5. (Termination check) If the error ‖ xk−1−xk ‖ is enough

small, stop and a solution is found; otherwise, go to step
2.

As you will see, these approaches succeed with our formu-
lation and the example. However, one has to be careful with

1

2 3

4 5

6

Zone 1

Zone 2

Fig. 2. An example

TABLE I

STATE OF CONTINGENCIES

state Probability Type and Description
1 .82 Normal state:

Data is set as in table II.
2 .03 Demand uncertainty:

All demands increase by 10%.
3 .03 Demand uncertainty:

All demands decrease by 10%.
4 .03 Network uncertainty:

Line 2-4 goes down.
5 .03 Network uncertainty:

Line 3-5 goes down.
6 .03 Generation uncertainty:

Facility at node 4 goes down.
7 .03 Generation uncertainty:

Facility at node 2 goes down.

these approaches, if they are applied to some general EPEC
problems. It might happen that:

1. Neither of these two approaches can guarantee conver-
gence.

2. Neither of these two approaches can only find pure-
strategy equilibria. Therefore, they will fail if applied to
games with only mixed-strategy equilibria. For example,
if these approaches are applied to a zero-sum matching-
penny game, they will never converge.

3. Noting that both approaches search for local minimum
point, we can only guarantee that the limiting point,
if any, is only the firms’ locally best responses to one
another. To test the limiting point is actually Nash equi-
librium, we have to verify that it is the firms’ globally
best responses to one another. This verification can only
be done by grid search. If the verification fails, we need
to start over.

V. A NUMERICAL EXAMPLE

In this example, we consider the setup in which the market
has two zones (see figure 2). Each zone has three nodes. Zone
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TABLE II

NODAL INFORMATION IN THE NORMAL STATE.

Node Inverse demand function weight marginal cost capacity PTDF on line 2-4 PTDF on line 3-5
1 70 -50q 50% 20 1.8 0.5 0.5
2 70 -100q 25% 20 0.9 0.6 0.4
3 70 -100q 25% 20 0.9 0.4 0.6
4 70 -50q 40% 20 1.8 -0.1 0.1
5 70 -100q 20% 20 1.8 0.1 -0.1
6 70 -50q 40% 20 1.8 0 0

TABLE III

RESULTS FROM ITERATIVE RSM APPROACH: SOLVE FIRM 1’S MPEC

PROBLEMS FIRST

k x1,1, x1,2 x1,1, x1,2 x1,1, x1,2

x2,1, x2,2 x2,1, x2,2 x2,1, x2,2

0 0.0000,0.0000 0.0000,0.0000 0.0000,0.0000
0.0000,0.0000 0.5000,1.0000 0.3000,2.0000

1 2.7000,1.8000 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000 0.9000,3.6000

2 2.7000,1.8000 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000 0.9000,3.6000
... ... ...

10 2.7000,1.8000 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000 0.9000,3.6000

TABLE IV

RESULTS FROM ITERATIVE RSM APPROACH: SOLVE FIRM 2’S MPEC

PROBLEMS FIRST

k x1,1, x1,2 x1,1, x1,2

x2,1, x2,2 x2,1, x2,2

0 2.0000,1.0000 0.5000,0.1000
0.0000 0.0000 0.0000,0.0000

1 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000

2 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000
... ...

10 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000

1 has nodes 1, 2 and 3, while nodes 4, 5, and 6 are in zone
2. There are two firms in the market: firm 1 and firm 2. Firm
1 owns generating facilities at node 1, 2 and 4 while the firm
2 owns generating facilities at other three nodes. There are
eight transmission lines, each of which has the same electric
characteristics except that the flow gates, line 2-4 and line 3-5,
are more likely to be congested.

The uncertainty of the spot market is classified into seven
states of contingencies. Six out of seven states are of uncer-
tainty with small independent probabilities, two are of demand
uncertainty, two are of network uncertainty and the rest two
are of generation uncertainty (see table I). Table II lists the
nodal information in the normal state. We also set up the
forward commitment upper bound to (x1,1, x1,2, x2,1, x2,2) =
(2.7, 1.8, 0.9, 3.6)

We test these two algorithms from a set of different starting
points (see table III through table VI). We also test these
algorithms in different firms’ orders: in some cases, we solve
firm 1’s forward commitment followed by solving firm 2’s
commitment; in other cases, we first find firm 2’s forward

TABLE V

RESULTS FROM ITERATIVE PIPA APPROACH: SOLVER FIRM 1’S MPEC

PROBLEMS FIRST

k x1,1, x1,2 x1,1, x1,2 x1,1, x1,2

x2,1, x2,2 x2,1, x2,2 x2,1, x2,2

0 0.0000,0.0000 0.0000,0.0000 0.0000,0.0000
0.0000,0.0000 0.5000,1.0000 0.3000,2.0000

1 2.6997,1.7998 2.6998,1.7998 2.6998,1.7999
0.9000,3.5999 0.9000,3.5999 0.9000,3.5999

2 2.7000,1.8000 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000 0.9000,3.6000

3 2.7000,1.8000 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000 0.9000,3.6000

TABLE VI

RESULTS FROM ITERATIVE PIPA APPROACH: SOLVER FIRM 2’S MPEC

PROBLEMS FIRST

k x1,1, x1,2 x1,1, x1,2

x2,1, x2,2 x2,1, x2,2

0 2.0000,1.0000 0.5000,0.1000
0.0000 0.0000 0.0000,0.0000

1 2.7000,1.8000 2.6999,1.8000
0.9000,3.5999 0.9000,3.5994

2 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000

3 2.7000,1.8000 2.7000,1.8000
0.9000,3.6000 0.9000,3.6000

commitment, then find firm 1’s. All of these trials give us the
same result: in the two-settlement Nash Equilibrium, all firms
commit all their generating capacities in the forward contracts.

VI. CONCLUSION REMARKS

In this paper, we model the two-settlement system as a two-
period game with multiple states of the world in the second
period. Because we assume, linear demand functions and
constant marginal generation cost the spot market equilibrium
can be computed as a linear complementarity problem. In
period 1, firms solve an expected utility maximization problem
subject to the equality between the forward price and the
expected weighted spot prices, and the linear complementarity
problem defining the spot market equilibria in period two.
This problem is non-convex and generally hard to solve. We
introduce two approaches: An iterative PIPA and an iterative
RSM. For the example we tested, both approaches generate
the same results: all firms commit their capacities in the
forward markets in the two-settlement Nash Equilibrium. At
this time, we are not sure whether this outcome is due to the
particular choices of parameters in our example (for instance
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TABLE VII

GENERATION QUANTITIES IN THE SPOT MARKET

state node node node node node node
1 2 3 4 5 6

1 1.280 0.640 0.190 0.650 0.685 1.370
2 1.330 0.665 0.215 0.700 0.710 1.420
3 1.230 0.615 0.165 0.600 0.660 1.320
4 1.280 0.640 0.190 0.650 0.685 1.370
5 1.280 0.640 0.190 0.650 0.685 1.370
6 1.288 0.625 0.213 0.000 0.741 1.521
7 1.392 0.000 0.253 0.706 0.699 1.412

the probabilities we assigned to congested states), whether it
is due to the assumption of linear cost function, or due to
other aspects of our formulation. Our next task is to generalize
the cost functions to quadratic curves and perform extensive
sensitivity runs on the various parameters.

Our current tests show that the iterative RSM approach is
faster than the iterative PIPA approach. Both approaches are
sensitive to the number of nodes. However, the iterative PIPA
approach is more sensitive to the number of state contingencies
while the iterative RSM approach is more sensitive the number
of zones and step size relative to the size of the feasible region.

There is another open question: Will the two approaches
work out the same results as in section V if only a dominating
strategy, but not the best response, is solved in each round? Our
experiments show that both approaches give the same results.
However, we speculate that only the iterative RSM approach
will work in the same way for more general cases. The PIPA-
based approach could give different answers, or even fails to
converge, if only a dominating strategy is found in each round
as PIPA does not necessarily generate a sequence of points
with decreasing objective values, as pointed by Luo, Pang and
Ralph [15].

Finally, as indicated earlier, we also plan to relax the no-
arbitrage assumption between the forward and spot market
replacing it with a market clearing condition that sets the
forward price based on expected demand functions in the spot
market. We expect that such a condition enhances generators
market power and will enable generators to raise forward
prices above the expected spot prices while increasing their
profits.
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