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ABSTRACT

In electric power system instabilities such as subsyn-
chronous resonance or interarea oscillations, two complex
modes can approach each other in frequency and then inter-
act by changing damping so that one of the modes becomes
unstable. Selecting changes in parameters to minimize this
interaction is difficult by trial and error. By analyzing the
interaction as a perturbation of a weak resonance, we calcu-
late sensitivities that indicate the parameters to be changed
to minimize the interaction and stabilize the system. The
method is illustrated with a simple example of two coupled
linear oscillators. The use of sensitivity methods to change
the type of the interaction is also demonstrated.

1. INTRODUCTION

A power system mode is an eigenvalue of the linearized sys-
tem and its associated eigenvector. Since the modes deter-
mine the power system stability and small signal transient
performance, understanding the behavior of the complex
modes is fundamental to avoiding power system oscillations
[9, 2, 8]. Indeed, a better understanding and suppression of
low frequency interarea oscillations or subsynchronous res-
onance could relax some of the constraints on larger bulk
power transfers and increase power system security.

An exact coincidence of complex eigenvalues in both
frequency and damping is called a resonance. There are two
types of resonance : strong and weak [3]. Strong resonance
has a nondiagonalizable linearization and weak resonance
has a diagonalizable linearization. As parameters vary, the
power system modes vary and it is not uncommon for two
complex eigenvalues to pass near resonance. For a com-
prehensive review up to 2000 see [3] and for more recent
work see [6, 7, 4, 5]. Only a subset of oscillatory power
system problems involve resonant eigenvalues and there are

∗Vincent Auvray is a visiting scholar at the University of Wisconsin
and a F.N.R.S. research fellow at the University of Liège, Belgium. Fund-
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Fig. 1. Eigenvalue interactions as a parameter t is varied.
The dots indicate the initial eigenvalue positions. (a) shows
eigenvalues initially moving together in frequency interact-
ing by changes in damping so that one eigenvalue becomes
unstable. (b) shows a minimized eigenvalue interaction that
retains stability.

some established and useful mitigation methods for subsyn-
chronous resonance and interarea oscillations.

Near a weak resonance, as a parameter t is changed, two
eigenvalues initially approaching each other in frequency
can interact and move in damping so that one of the eigen-
values becomes unstable as shown in Figure 1(a). Simi-
lar interactions cause subsynchronous resonance instabili-
ties [4] and instabilities in models of interarea oscillations
[5]. Let δ be the maximum separation between the eigen-
values in damping (maximum difference in their real parts)
as the parameter t is changed. In this paper we compute the
sensitivity of δ with respect to other parameters of the prob-
lem so that changes in these other parameters can be made
to reduce δ, so as to minimize the interaction and stabilize
the system as shown in Figure 1(b). This systematic pro-
cedure to minimize the interaction does not require insight
into the relatively complicated eigenvalue movements near
weak resonance and their relation to the parameters of the
problem, nor does it require exhaustively recomputing the
root locus for each parameter by trial and error.



2. INTERACTION NEAR A WEAK RESONANCE

The power system differential equations are assumed to de-
pend smoothly on a real parameter t that parameterizes the
eigenvalue movement in the complex plane. That is, t is the
root locus parameter. The system Jacobian evaluated at the
operating equilibrium is the real matrix J(t) and has two
complex eigenvalues of interest λ1(t) and λ2(t).

The eigenvalues do not vary smoothly at weak reso-
nance. However, the following function can be shown to
smoothly depend on the parameters [5, 3] :

µ(t) = (λ1(t) − λ2(t))2/4. (1)

µ determines the separation of the eigenvalues in both mag-
nitude and angle. That is, µ determines the relative position
of the eigenvalues. The distance between the eigenvalues is
|λ1 − λ2| = 2

√
|µ|. In particular, the condition for coinci-

dent and resonant eigenvalues is µ = 0. Moreover, the rela-
tive direction of the eigenvalues is ∠(λ1−λ2) = 1

2∠µ+kπ,
for some integer k. Dobson [5] shows that close to a weak
resonance, the locus t �→ µ(t) for real t describes to sec-
ond order a parabola in the complex plane passing near the
origin. In this paper, we propose a method to modify the
eigenvalue movement.

3. STABILIZING THE INTERACTION

We first introduce a measure of the interaction of the eigen-
values near weak resonance. Suppose that the two eigen-
values resonate weakly for some t, say t = 0. Dobson [5]
shows that this implies µt(0) = µ(0) = 0, where the sub-
script denotes differentiation. A weak resonance is thus a
root of µ of multiplicity at least two. We make the generic
assumption that A = 1

2µtt(0) �= 0; i.e., t = 0 is a double
root. A Taylor expansion around t = 0 gives

µ(t) = At2 + o(|t|2). (2)

Equation (2) implies that the eigenvalues approach each other
along a line of angle θ = 1

2∠A as t → 0.
To model the proximity to a weak resonance, the Ja-

cobian is supposed to depend smoothly on an additional
parameter ε such that there is weak resonance at (t, ε) =
(0, 0). For small fixed ε �= 0, the eigenvalues pass close to
weak resonance as t passes through 0. Define d as the length
of the projection of λ1 − λ2 on the direction perpendicular
to θ. For θ = π

2 , d is the size of the difference in damping
between the eigenvalues. We have

d = |λ1 − λ2|| sin(∠(λ1 − λ2) − θ)| (3)

= 2
√
|µ|| sin(

1
2
∠µ − θ)|. (4)

Equation (4) shows that d(t) can be defined as a function
d(µ(t)) of µ alone. One can see that d(µ) ≤ K if, and only

if, in the complex plane the point µe−2iθ is contained inside
the parabola parametrized by

ν(s) = (s2 − K2

4
) + iKs, s ∈ R. (5)

We propose to measure the extent of the eigenvalue interac-
tion by

δ(η, ε) = max
|t|≤η

d(µ(t, ε)), (6)

where η > 0.
Let us construct an approximation µa of µ that will al-

low us to modify the shape of the locus of µ and, in partic-
ular, influence the quantity (6). The system Jacobian evalu-
ated at the operating equilibrium is supposed to depend on a
vector of parameters p = (p1, p2, ..., pm) that can be varied
to modify the eigenvalue interaction. The nominal parame-
ter vector is p = 0 and the eigenvalues resonate weakly for
(t, ε, p) = (0, 0, 0).

One key mathematical step is to consider the variables t,
ε and p as complex. Recall that for (ε, p) = (0, 0), t = 0 is a
real double root of µ. Let us show that for small (ε, p), this
root generically perturbs to two complex single roots r1 and
r2. We suppose that J , and thus µ, is analytic in t, ε and p.
It follows from the Weierstrass preparation theorem [1] that
there exist unique continuous functions r1(ε, p) and r2(ε, p)
defined for (ε, p) in a sufficiently small neighborhood of
(0, 0) and such that ri(0, 0) = 0, µ(ri(ε, p), ε, p) = 0 and
ri is analytic at the points (ε, p) where r1 �= r2. We thus
generically suppose that r1 and r2 are distinct at the points
considered.

Define the following approximation to µ

µa(t, ε, p) = A(t − r1(ε, p))(t − r2(ε, p)). (7)

For real t, µa(t, ε, p) traces a parabola in the complex plane
as t varies. The approximation (7) can be intuitively jus-
tified by the following reasoning. In a neighborhood of
(0, 0, 0), µ can be expanded as

µ(t, ε, p) = At2 + 2B(ε, p)t + C(ε, p) + o(|(t, ε, p)|2) (8)

= A(t − q1(ε, p))(t − q2(ε, p)) + o(|(t, ε, p)|2),

where q1, q2 = A−1(−B ±
√

B2 − AC) are the roots of
the quadratic polynomial in t of (8). To obtain µa, we drop
the high-order term o(|(t, ε, p)|2) and replace q1 and q2 by
r1 and r2.

Using approximation (7) we define

δa(η, ε, p) = max
{t|t∈R,|t|≤η}

d(µa(t, ε, p)) (9)

and for large enough η, evaluate this quantity with geomet-
ric relation (5) as

δa(η, ε, p) =
√
|A|

√
(�(r1 − r2))2 + (	(r1 + r2))2.

(10)



We hence propose to use δa(η, ε, p) and its vector of
derivatives δa

p(η, ε, p) = (∂δa

∂p1
, . . . , ∂δa

∂pm
) as approximations

of δ(η, ε, p) and δp(η, ε, p) for small enough p.
A, r1(ε, p) and r2(ε, p) can be approximated by fitting

a parabola to the observed µ locus for fixed (ε, p). Section
6 discusses the computation of the root sensitivities ripk

=
∂ri

∂pk
. The sensitivity vector δa

p can be used to select and
change parameters to stabilize the interaction, for example
by a gradient descent incrementally minimizing δa.

4. EXAMPLE

This section gives a simple example to illustrate the use of
the sensitivities. We incrementally reduce δ to stabilize a
system, changing the interaction of Figure 1(a) into the one
in Figure 1(b).

Following [4], consider the 2 coupled linear oscillators

ẍ + ẋ + t2x = p1ẏ, (11)

ÿ + p3ẏ + 100y = p2ẋ. (12)

The parameters p1 and p2 control their coupling, while p3

controls the damping of the second oscillator. In state space
form, (11) and (12) can be written as

d

dt




x
ẋ
y
ẏ


 =




0 1 0 0
−t2 −1 0 p1

0 0 0 1
0 p2 −100 p3







x
ẋ
y
ẏ


 . (13)

Suppose that initially (p1, p2, p3) = (1, 1, 0.89) and t
varies from 8 to 12. The locus of the eigenvalues of posi-
tive frequency is numerically computed and shown in Fig-
ure 1(a). Using equation (1), we can plot µ and observe
that it describes a parabola around the origin. This suggests
that the eigenvalues are passing close to a weak resonance.
By numerically fitting a parabola to this observed µ, the
roots r1 and r2 are found to be approximately 9.00448 −
i0.104793 and 11.0016 − i0.00997545.

Let us iteratively minimize δa. The nth step of the opti-
mization modifies the vector p of parameters as follows

p(n) = p(n−1) − cδa
p(p(n−1)) (14)

where c is a constant step size. The eigenvalue loci for the
first steps of this process are shown in Figure 2.

5. CHANGING INTERACTION TYPE

It is known that there are two types of perturbations from
a weak resonance : type A and type B [5]. In type A the
eigenvalues do not pass each other as the parameter is varied
and in type B, the eigenvalues pass each other. Examples
of type A and B interactions are shown in Figure 3. This
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Fig. 2. First steps of gradient descent minimizing δa.
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Fig. 3. Type A and type B eigenvalue interactions.

difference can be described in terms of the approximating
parabola µa. The interaction is type A if the parabola does
not pass around the origin and type B if the parabola does
pass around the origin [5].

We show how the roots r1 and r2 of (7) determine the
type of interaction. Following [5], consider the function
f : R → C; k �→ Ak that defines the line through the
origin parallel to the principal axis of the parabola. The in-
tersection of this line with the parabola generically occurs
for k = k∗ and t = t∗. The eigenvalue interaction is type A
if k∗ > 0, while it is type B if k∗ < 0. One can show that

k∗ = −	(r1)	(r2)

[
1 +

(�(r1 − r2)
	(r1 + r2)

)2
]

. (15)

Hence, the two eigenvalues have a type A or B interaction
if r1 and r2 are, respectively, on opposite sides or the same
side of the real axis.

The sensitivities ripk
can be used to select parameters

to move the roots r1, r2 from the same side of the real axis
to opposite sides of the real axis, turning, for example, the
type A interaction of Figure 3(a) to the type B interaction of
Figure 3(b).

6. THE ROOT SENSITIVITIES ripk

For notational convenience, we omit the dependence on ε.
Taking the derivative of µ(ri(p), p) = 0 w.r.t. pk gives

µt(ri(p), p)ripk
(p) + µpk

(ri(p), p) = 0. (16)



If we make the generic assumption that µt(ri(p), p) �= 0,
we have

ripk
(p) = −µpk

(ri(p), p)
µt(ri(p), p)

. (17)

Furthermore, the previous assumption that r1(p) �= r2(p)
implies that (ri(p), p) are single roots and thus strong reso-
nances.

Now we evaluate the sensitivity µs(s0) where µ and J
are analytic functions of a complex parameter s and where
there is a strong resonance at s0. Let λ1(s0) = λ2(s0) = λ0

and let us make the generic assumption that the remain-
ing eigenvalues λi(s0), i = 3, . . . , n are distinct. Let v1

be a right eigenvector and v1g a generalized right eigen-
vector of J(s0) related to λ0 and let vi, i = 3, . . . , n be
right eigenvectors of J(s0) related to, respectively, λi(s0),
i = 3, . . . , n.

The theory of versal deformation presented in [10] states
that there exists smooth matrices C(s) and V (s) defined in
a neighborhood of s0 such that

J(s) = C(s)V (s)(C(s))−1. (18)

C(s) and V (s) are not explicitly specified, but we know that
C(s) is invertible, C(s0) = (v1, v1g, v3, . . . , vn) and

V (s) =




α(s) 1
µ(s) α(s)

λ3(s)
. . .

λn(s)


 , (19)

where α(s0) = λ0. One immediately notes that the first
element of the second row is µ. Also, recall that µ(s0) = 0.

The left and right eigenvectors of V (s0) related to λ0

are lV (s0) = (0, 1, 0, . . . , 0) and rV (s0) = (1, 0, 0, . . . , 0)T.
Hence, taking the derivative of (19),

µs(s0) = lV (s0)Vs(s0)rV (s0)

= lV (s0)

[
C−1JsC + C−1JCs + (C−1)sJC

]
rV (s0)

= lJ(s0)

[
Js + JCsC

−1 + C(C−1)sJ
]
rJ(s0)

= lJ(s0)

[
Js + λ0CsC

−1 + λ0C(C−1)s

]
rJ(s0)

= lJ(s0)Js(s0)rJ(s0), (20)

where lJ(s0) and rJ(s0) are the left and right eigenvectors
of J(s0) related to λ0 obtained by transforming lV (s0) and
rV (s0) according to

lJ(s0) = (C(s0))−1lV (s0) and rJ(s0) = C(s0) rV (s0). (21)

Combining (17) and (20), we obtain

ripk
(p) = − liJpk

(ri(p), p)ri

liJt(ri(p), p)ri
, i = 1, 2, (22)

where li and ri are the eigenvectors of J(ri(p), p) with their
scaling specified by (21). However, the scaling of the eigen-
vectors cancels in the quotient of (22). Hence, it is not nec-
essary to compute C(s0). The eigenvectors can be com-
puted from J(ri(p), p) with any scaling.

7. CONCLUSION

We have shown that the interaction between two eigenval-
ues as they pass near weak resonance is governed by two
complex roots. (The two roots r1 and r2 are complex val-
ues of the root locus parameter that zero the square of the
difference between the two interacting eigenvalues and that
determine strong resonances.) Using quadratic approxima-
tions, we compute the sensitivity of these roots to parameter
variations so that parameter changes to move the roots can
be selected to minimize the interaction and also to change
the interaction type. The method is illustrated in a simple
example. Application to more realistic examples, particu-
larly to minimize loss of damping due to eigenvalue reso-
nance, is the next step of research.
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