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Abstract: Centralized wide area control design using system-
wide data has been suggested to enhance large interconnected 
power systems dynamic performance. Because of the nature 
of wide area interconnections, communication delay cannot be 
ignored in the wide area control. A long time delay may cause 
a detrimental effect to system stability and degrade system 
robustness. The general Linear Fractional Transformation 
(LFT) method to describe the time delay uncertainty can lead 
to a conservative design. In this paper, a Gain Scheduling 
(GS) method based on Linear Matrix Inequality (LMI) is 
proposed to design a dynamic controller to accommodate time 
delays in supervisory Power System Stabilizer (PSS) design. 
The new approach achieves better performance than the 
general LFT method, and the order of the controller remains 
the same with that of the system plant. 
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1.   INTRODUCTION 
 

The general configuration of a modern power system is 
that power sources and consumers are widely dispersed.  
Generators and loads may be over 1000 miles apart in large 
systems such as in the Western Electricity Coordination 
Council (WECC) system. The interconnection of different 
control areas can improve system security and economy of 
operation. In recent years, as a consequence of the 
deregulation of the electric power industry in the United 
States, the number of bulk power exchanges over long 
distances between control areas has greatly increased. 
However the development of generation is much slower than 
the load increase. According a report from the Electric Power 
Research Institute [1], generation capacity margin has 
consistently decreased in the past 20 years. For example, the 
generation capacity margin in 2000 was only one third of that 
in 1983. Transmission network expansion in this period also 
has been stagnant. During the decade from 1988 to 1998, the 
expansion of transmission capacity was only a half of the 
increase of electricity demand, while in 1999 to 2009, the ratio 
was predicted to drop to 17% [1].  All these factors will drive 
tie lines to operate near their maximum capacity, especially 
those connected to the heavy load areas such as southern 
California.  

As explained in [4], stressed operating conditions can 
increase the possibility of inter-area oscillation between 
different control areas and even breakup of the whole 
system. The two famous WECC cases in the summers of 
1996 and 2000 were both associated with poorly damped 
inter-area oscillations under conditions of high power 
transfer on long paths [8]. How to achieve maximum 
available transfer capability as well as a high level of 
power quality and security has become a major concern. 
This concern stimulates the need for a better system 
control, leading to damping improvement. 

 
There are several control methods employed in power 

systems with regard to system stability enhancement. A 
distributed control scheme is usually applied to local 
power systems, such as Power System Stabilizer (PSS), 
voltage regulators, and some protective relay systems. 
Although local optimization is realized to a certain degree 
during tuning, the controller cannot guarantee performance 
when the operating point changes and inappropriate 
coordination among the local controllers occurs. This 
failure of coordination may cause serious problems such as 
undamped inter-area oscillations. To solve these problems, 
centralized controllers using wide area or global signals 
have been suggested since the 1990s. It is found that if 
remote signals are applied to the controller design, the 
system dynamic performance can be enhanced for the 
inter-area oscillations [2]. The basic mechanism of 
damping remains as the production of damping torque in 
synchronous generators through the use of appropriate 
field excitation. This excitation comes from a supervisory 
PSS. 

 
In recent years, the fast development of 

communication technology, low price communication 
devices, and various communication media make it 
possible to provide the control center with the real time 
signals from remote areas. However, the use of centralized 
controller entails inputs that may arrive after a certain 
communication delay. In distributed control systems such 
as protective relay systems, the time delay or latency is 
usually less than 10 ms. Unlike the small time delay in 
local control, in wide area power systems the time delay 
can vary from tens to several hundred milliseconds or 
more. In the Bonneville Power Administration (BPA) 
system, the latency of fiber optic digital communication is 
approximated as 38 ms, while latency using modems via 
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microwave is over 80 ms [3]. The delay of a signal feedback 
in a wide area power system is usually considered to be on the 
order of 100 ms [2]. If routing delay is included, and if a large 
number of signals are to be routed, there is a potential of not 
only experiencing longer delays but also variability in these 
delays. The large delay can be also caused by waiting for 
synchronized signals from different areas.  

 
Time delay can make the control system have less 

damping features. There is a danger of losing synchronism 
due to time delay. In order to satisfy specifications for wide 
area control systems, the design of a controller must take into 
account this delay in order to provide a controller that is 
robust, not only for the range of operating conditions desired, 
but also for the uncertainty in delay [2]. The impact of time 
delay on robust controller designs has been ignored in power 
systems for a long time, but becomes a pertinent topic in 
recent years with the proposal of wide area power system 
control.   

 
In this paper, two topics from advanced control theory are 

applied to the cited problem of supervisory PSS (SPSS) 
design with uncertain delay. As an illustration of the concept, 
a four-machine system is used as the test bed for the delayed-
input wide-area or SPSS design. Speed deviations from the 
local generators are measured and send to the controller 
center. The LMI 

∞H  method is used to design the supervisory 
PSS. It is found that if a controller is designed for delay-free 
system but applied to the delayed-input system, the closed-
loop system may lose stability.  

 
In control systems, time delay can be represented by the 

Pade approximation [11] and the delay uncertainty can be 
described by a Linear Fractional Transformation (LFT) [7]. 
Although the fixed controller designed based on LFT can keep 
the system stable over the delay uncertainty range, the closed-
loop performance is very conservative, resulting in a much 
larger ∞H  norm for the closed-loop system gain as compared 
to the delay-free system.  

 
In this paper, a Gain Scheduling (GS) method is proposed 

to accommodate time delay instead of the general LFT 
method. GS control is a well-known engineering practice. But 
the main breakthrough occurred in 1991 with the papers of 
Packard, Becker and Zhou [10]. The main idea of GS control 
is to design a parameter-dependent controller that ensures a 
stable closed-loop system for a given ∞H  bound from w 
(noise) to z (controlled signal). The parameters are measured 
in real time and the desired GS -based controller is dynamic, 
not fixed. This approach has been applied in various areas 
such as aircraft control and process control [9]. Unlike a 
normal robust controller, the GS -based approach provides a 
dynamic controller for the different variables (in this case, 
time delay). Simulation shows that system performance with 
this controller is better than that with the normal robust 
controller. And the GS approach can be implemented with 
little extra cost compared to the normal robust controller. 

2.  Linear Fractional Transformation and 

 Gain Scheduling Method 
 
Linear Fractional Transformation  

 
A time delay uncertainty can be described in a state 

space realization, which includes a feedback 
interconnection of a constant matrix and a matrix with 
dynamic parameters. This  realization is called a Linear 
Fractional Transformation [7]. Let the time delay be given 
by 

td ba δτ +=  (1) 
where both a and b are constants and ]1,1[−∈tδ . The LFT 

of dτ/1  is shown in Fig. 1, where 22
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Fig.1 LFT representation of dτ/1  

 
The term dτ/1 can be represented by a constant 

matrix and an uncertainty matrix, 
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Suppose the exponential form of time delay sde τ− in the 
Laplace domain is replaced by a first-order Pade 
approximation, 
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with td δτ 125.0175.0 +=   where ]1,1[−∈tδ . This covers 
an uncertain time delay from 50 ms to 300 ms. The block 

diagram of sde τ− is shown in Fig. 2. 
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Fig.2 Block diagram of time delay sde τ−
  

 
The term dτ/1  is then replaced by the upper-loop 

LFT with an associated matrix M ,  
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By connecting the time delay block with a delay-free 
system Gm, which includes an uncertainty mδ , the system 

in Fig. 3 can be constructed and is suitable for the robust 
controller design.  The LMI design based on this structure 
is conservative for most cases and can be partially 
improved by µ  synthesis [10]. 
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Fig. 3 System connection with the time delay block 

 
 
Gain Scheduling Method 
       

 The main concept of Gain Scheduling control is to 
design a parameter-dependent controller that ensures closed-
loop system stability with a given ∞H  bound from w to z [6]. 
The parameter is measured in real time and the desired GS-
based controller is dynamic instead of fixed. Rather than 
seeking a single robust Linear Time Invariant (LTI) controller 
for the entire operating range, GS designs an LTI controller 
for each operating point and switches controllers smoothly 
when the operating conditions changes. Conditions for the 
existence of a parameter-dependent controller that guarantees 
stability and H ∞  performance for the closed-loop system are 
given in the form of LMI [9]. These conditions are based on a 
scaled version of the small-gain theorem, with a symmetric 
scaling matrix. This GS design method is not only for linear 
parameter-dependent systems, but also is applicable to time-
varying or nonlinear systems whose linearized dynamics are 
well approximated by parameter-dependent models [6]. 

 
Provided that the parameter values are measured in real 

time, it is desirable to use controllers that incorporate such 
measurements to adjust to the current operating conditions. 
Such controllers are scheduled by parameter measurements. 
This control strategy typically achieves higher performance in 
the case of large variations in operating conditions [6]. 

 
If a system plant is expressed as  
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The objective of H∞  controller design using GS is to seek a 
parameter-dependent controller in the form 
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Given the convex decomposition 
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In other words, the controller state-space at the operating 
point q is obtained by convex interpolation of the LTI 
vertex controllers 
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This yields a smooth scheduling of the controller matrices 
by the parameter measurements q. This synthesis problem 
can be reduced to the following LMI problem: find two 
symmetric matrices R and S such that 
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and N12 and N21 are bases of the null spaces of (B2
T, D12

T) 
and (C2, D21) respectively [6]. And the controller format 
can be derived from R, S and γ . 

 
The parameter q may be an index of operating 

conditions or a signal interested to the designers. Many 
implementations of the GS control use a MATLAB LMI 
toolbox which provides a set of commands to realize the 
GS-based H ∞  controller design. 

 
This method can be applied to the controller design 

for a system with time delay uncertainty. Consider a 
delayed-input system without the controller in Fig.4.  
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Fig. 4 Delayed-input system 

 
If the time delay block is approximated by the first 

order Pade Approximation in (3), the state expression for 
the delay is then derived as 
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Substitute q for 1/ dτ , then  
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After connecting the system plant model and the time 
delay block, the delayed-input system plant can be 
depicted as in Fig. 5. 
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System Plant with Time Delay
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Fig. 5 System connection and the  

parameter-dependent form  
 

The lower part of Fig. 5 is the standard parameter-
dependent model and GS-based 

∞H controller design can be 
implemented upon this model. 

 
 

3. RESULTS OF CASE STUDIES  
 

A 4-generator system in Fig. 6 is used as a test system to 
illustrate the robust control design cited above. This system 
has been used by many studies on PSSs. It is assumed that no 
local PSSs are installed. Each generator measures the local 
speed deviation and sends it to the SPSS, which then sends 
back a signal to adjust the exaction system of each generator. 
The modeling of nominal system plant is similar to that in [5], 
but with four inputs and four outputs. The SPSS acts with the 
synchronized signals from each area. 

 
Before designing the SPSS, five operating conditions 

resulting in different tie line (Bus5-Bus6) flows from 0 to 400 
MW are tested for the open loop system. It is found that the 
greater the power flowing through the tie line, the lesser the 
smallest damping ratio for the inter-area modes. Unstable 
inter-area modes occur when the tie line flow is over 400 
MW. The 400 MW tie line flow case is chosen as the nominal 
operating point in this study. The objective of the SPSS is to 
provide system stability and good damping over the tie line 
flow changing from 0 to 400 MW. Fig.7 describes the 
connection between the SPSS controller and the system plant. 
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Fig. 6 A four-machine system with SPSS 
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Fig.7 SPSS controller 
 

The state space expression of the SPSS controller is  
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where 
 [ ]'ω∆=kU      [ ]'sk VY ∆=  . 

'ω∆ = delayed speed deviations 
'sV∆ = SPSS signals before delay 

 
Three robust control designs for SPSS are compared: a 

normal ∞H controller design ignoring time delay (denoted 

as NHND), a normal ∞H controller design considering 
time delay uncertainty in LFT (denoted as NHDU), and a 
GS-based ∞H controller design (GSHD). For illustration 
purposes, a step response test is used. A step input is added 
to Generator 1 reference signal ( 1refV∆ ) and the speed 

deviation of Generator 3 is monitored. The value of time 
delay in the following figures is the sum of signal 
upstream and downstream propagation time and other 
process time involved, which can be measured or 
estimated. Since the SPSS controller acts with 
synchronized signals from each area, the time delay in 
each communication channel is assumed to be the same. 

 
The normal ∞H controller design ignoring time delay 

(NHND) is tested to evaluate the controller robustness 
over the operating range. The ∞H  norm of the closed loop 
system is within 0.012 to 0.0138 when the tie line flow 
changes from 0 to 400 MW. The step responses in time 
domain (Fig. 8) also demonstrate that the closed loop 
system is stable under disturbances. The generator speed 
and frequency are kept nearly constant. But the NHND 
controller can only provide damped response up to 50 ms 
time delay. The large speed deviation due to a longer time 
delay in Fig. 9 can lead to separation of the interconnected 
system into two isolated systems. 
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Fig. 8 Step response of Generator 3 speed deviation with 

NHDU for different tie line flows 
 

 
Fig. 9 Step response of Generator 3 speed deviation with 

NHND for different time delays 
 

At this point, the normal ∞H controller considering time 
delay uncertainty (NHDU) is designed using LMI. The time 
delay uncertainty within the range of 50 to 300 ms is 
described by an LFT. It is found that NHDU can keep the 
system stable even with a large time delay. However the ∞H  
norm of the closed loop system is about 0.47 for different time 
delays, which is much larger than the NHND design. The step 
responses in time domain (Fig. 10) also illustrate large final 
values of the speed deviation, about –0.025 pu. This 
corresponds to 0.15 Hz lower than the nominal frequency for 
a 60 Hz system. This is an unacceptable operating regime. 

 
Fig. 10 Step response of Generator 3 speed deviation 

with NHDU for different time delays 
 

Unlike the NHDU fixed controller, the GSHD 
approach automatically switches the controller when time 
delay changes. Compared to the normal design, a real-time 
measurement or estimation of the time delay is needed for 
switching controllers. The delay can be derived by 
comparing the signal time tag and the current time or other 
methods. The ∞H  norm of the closed loop system is kept 
at about 0.04 for different time delays. The frequency 
deviation is only 0.03 Hz lower than the nominal 
frequency according to the results in Fig. 11. Moreover, 
the order of the GSHD controller remains the same with 
that of the system plant. 
 

 
Fig. 11 Step response of Generator 3 speed deviation 

with GSHD for different time delays 
 
Fig. 12 compares the step response of Generator 3 

speed deviation with the three controllers when there is a 
50 ms time delay. The GSHD design can achieve a better 
performance than the NHDU design. 
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Fig. 12 Comparisons of the system performance with 

three controllers for a 50 ms time delay 
 
 

4. CONCLUSIONS 
 

In an interconnected wide area power system, the 
centralized power system stabilizer utilizes signals which 
arrive after a certain time delay. This time delay is not only 
large but also uncertain compared to that experienced in a 
local system. If the supervisory PSS is designed for a delay-
free system but applied to the delayed-input system, the 
closed-loop system response may be unacceptable. Using the 
general LFT method to describe the time delay uncertainty 
may lead to a conservative system performance, which is not 
capable to keep the system frequency in an acceptable range. 
A Gain Scheduling method based on LMI is proposed to 
accommodate different time delays in this paper. This 
approach produces a dynamic controller and automatically 
changes the exact format when time delay varies. Simulation 
shows that this controller not only keeps the system stable 
under different time delays, but also results in good system 
performance such as the ∞H  norm of the closed-loop system.  
Moreover the controller order remains the same with that of 
the system plant. And the GS approach can be implemented 
with little extra cost compared to the normal robust controller. 
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