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Abstract:  
 
Trajectory sensitivity analysis (TSA) has been applied in control system problems for a long time in such 

areas as optimization, adaptive control etc.  Applications in power systems in conjunction with 

Lyapunov/transient energy functions first appeared in the 80's.  More recently, it has found applications on 

its own by defining a suitable metric on the trajectory sensitivities with respect to the parameters of interest. 

In this paper we present the theoretical as well as practical applications of TSA for dynamic security 

applications in power systems.  We also discuss the technique to compute critical values of any parameter 

that induces stability in the system using trajectory sensitivities. 

 

 1.  Introduction                

Security in power systems became an issue after the Northeast blackout in 1965 [1].  Since then a 

lot of research has been done investigating both static and dynamic aspects of security.  While a lot of 

success has been achieved on the static front [2], such is not the case with dynamic security.  Dynamic 

security assessment (DSA) in power systems comprises of the following main tasks: contingency 

selection/screening, security evaluation, contingency ranking, and limit computation.   Dynamic simulation 

has historically been the main tool, and currently in combination with heuristics and some form of learning, 

it still remains as the tool for DSA in the energy control centers.  Intensive research since the 60’s in 

applying Lyapunov’s direct method has resulted in useful algorithms in the form of transient energy 

function (TEF) technique [3-5] and single machine equivalent (SIME) technique [6].  Artificial neural 

network (ANN) and artificial intelligent (AI) based techniques have also been applied [7, 8].  Of these the 

TEF and SIME techniques are considered the most promising ones by the research community.   In the 

deregulated environment, the existing transmission system often operates at its limit due to inadequate 

capacity and multilateral transactions.  In addition, power systems must be operated to satisfy the transient 

stability constraints for a set of contingencies.  In these situations, dynamic security assessment plays a 

crucial role. There exists a need to replace the repetitive nature of the dynamic simulation for DSA by a 

procedure where complex models can be handled easily in a more direct manner.  The aim of on-line DSA 

is to assess the stability of the system to a set of predefined contingencies.  These contingencies are user 

specified or are chosen automatically through some procedure such as a filtering process.  For each 

contingency if the system is stable, it can also provide a security margin based on the technique used.  For 
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instance, if critical clearing time is computed, the tcr-tcl is the margin.  On the other hand, if the transient 

energy function (TEF) is used, then Vcr-Vcl is the margin.  The security margin can be used to provide the 

operators with guidelines to improve system security while at the same time maintaining economic 

operation.  This is known as security-constrained optimization or preventive rescheduling (See Fig 1). The 

literature on preventive control is largely tied to the TEF method, namely, to enhance the stability margin 

as defined by the difference between critical energy Vcr and energy at clearing Vcl.  However, the need for 

computation of the unstable equilibrium point and the absence of an analytical closed form of the energy 

function makes it difficult to apply for larger and more complex models of machines. 
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                     Fig. 1.  DSA scheme using trajectory sensitivities 

In this paper we review some recent results in applying trajectory sensitivity (TS) techniques [9] to 

DSA and preventive control.  As it will be shown, this new technique has several advantages over all the 

other techniques: 

1. No restriction on complexity of the model. 

2. Extension to systems with discrete events is possible. 

3. Information other than mere stability can be obtained. 

4. Limits to any parameter in the system affecting stability can be studied. 

5. Identification of weak links in the transmission network is possible. 

6. Preventive strategies can be incorporated easily. 

However, the above advantages are obtained at the expense of increased computational cost.  This question 

will also be addressed in this paper.  The paper outline is as follows. 

 In Section 2 we will explain the derivation of the basic theory of trajectory sensitivity analysis 

(TSA) for differential algebraic equation (DAE) form of the system model.  The overall approach to DSA 

using TSA technique will be explained.  In Section 3 we will use the TSA technique to compute critical 

parameter values such as clearing time, mechanical input power, and line reactance.  In Section 4 we will 

explain the dynamic security constrained dispatch problem and its application [10].  In Section 5 we will 

use TSA technique to find weak links, vulnerable relays and the electrical centers of the system for a given 

fault.  This information is useful in proper islanding of the system in a self-healing way [11]. 

 

2.  TRAJECTORY SENSITIVITY ANALYSIS 

Sensitivity theory in dynamic systems has a long and rich history well documented in the books by 

Frank [12] and Eslami [13].  It can be traced back to the work of Bode [14] in designing feedback 

amplifiers where feedback is used to cancel the effect of unwanted disturbances and parameter variations. 

The concept of sensitivity matrix using state space analysis can be used [15].  While bulk of the work is in 

the area of linear time invariant (LTI) systems, the fundamental theory is applicable to nonlinear systems as 

well.  Applications of sensitivity theory or more specifically trajectory sensitivity analysis (TSA) to 

nonlinear dynamic systems are few.  The books of Tomovic [15], Tomovic and Vukobratovic [16], and 

Cruz [17] contain control-oriented applications. 

There have been applications of sensitivity theory to power systems but mostly for linear systems 

such as eigenvalue sensitivity [18].  From a stability point of view it has been applied for computing 

sensitivity of the energy margin while using the transient energy function method [3, 4].  Applications of 

trajectory sensitivity to nonlinear models of power systems are somewhat recent [19]. 

 The application in the linear system arises from the linearization of a nonlinear system around an 

equilibrium point.  Stability of the equilibrium point is evaluated through eigenvalues.  In trajectory 

sensitivity analysis, we linearize around a nominal trajectory and try to interpret the variations around that 

trajectory.  It is a challenge to develop a metric for those variations and relate it to the stability of the 
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nominal trajectory.  In [15] the author hints at the intimate connection between trajectory sensitivity 

analysis and Lyapunov stability but it is not quantified.  In this paper we make an attempt to do so. 

 

3.  Trajectory Sensitivity Theory for Differential Algebraic Equation (DAE) Model 

The development in this section follows Ref [20, 21] where the application to hybrid systems is 

discussed.  A DAE system is a special case of the more general hybrid systems.  A fairly accurate 

description of the power system model is represented by a set of differential algebraic equation of the form 

( , , )x f x y λ=&                                                                 (1) 
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and a switching occurs when 0),,( =λyxs . 

 In the above model, x are the dynamic state variables such as machines’ rotor angles, velocities, 

etc.; are the algebraic variables such as load bus voltage magnitudes and angles; and λ are the system 

parameters such as line reactances, generator mechanical powers, and fault clearing time.  Note that the 

state variables 

y

x  are continuous while the algebraic variables  can undergo step changes at the switching 

instants. 

y

 The initial conditions for (1)-(2) are given by 
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With these definitions, (1)-(2) can be written in a compact form as 

( , )x f x y=&                                                                     (3) 
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The initial conditions for (1)-(2) are 
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                                                                      (5) 

We divide the time interval as consisting of non-switching subintervals and switching instants for which the 

sensitivity model is now developed. 
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Trajectory sensitivity calculation for non-switching periods 

 This section gives the analytical formulae for calculating sensitivities )(
0

tx x  and )(
0

tyx  on the 

non -switching time intervals as discussed in [21].  On these intervals, the DA systems can be written in the 

form   

( , )x f x y=&                                                                     (6) 

),(0 yxg=                                                                     (7) 

Differentiating (6) and (7) with respect to the initial conditions 0x  yields 

0 0 0
( ) ( )x x xx y

x f t x f t y= +&                                                   (8) 

00
)()(0 xyxx ytgxtg +=                                                  (9) 

where ,,, xyx
gff and  are time-varying matrices and are calculated along the system trajectories. yg

 Initial conditions for
0xx  are obtained by differentiating (5) with respect to 0x  as 

Itx x =)( 00
                                                                    (10) 

where I  is the identity matrix.   

Using (10) and assuming that  is nonsingular along the trajectories, initial condition for )( 0tg y

0xy can be calculated from (9) as 

)()]([)( 0
1

000
tgtgty xyx

−−=                                           (11) 

 Therefore, the trajectory sensitivities can be obtained by solving (6) and (7) simultaneously with 

(8) and (9) using any numerical method with (5), (10), and (11) as the initial conditions.   

At switching instants, it is necessary to calculate the jump conditions that describe the behavior of 

the trajectory sensitivities at the discontinuities.  Since we are considering time instants, which do not 

depend on the states, the sensitivities of the states will be continuous whereas those of the algebraic are not.  

When the trajectory sensitivities are known, the perturbed trajectories can be estimated by first-order 

approximation without redoing simulation as 

                                                             
0 0( ) ( )xx t x t x∆ ≈ ∆  (12) 

                                                             
0 0( ) ( )xy t y t x∆ ≈ ∆  (13) 

 

Computation of critical values of parameters using energy function as a metric [22] 

In the literature, trajectory sensitivities have been used [4] to compute the energy margin 

sensitivity with respect to system parameters such as interface line flow, system loading, etc. using TEF 

methods.  In these cases, the critical energy crν , which is the energy at the controlling u.e.p., depends on 

 5



Stability and Control of Dynamical Systems with Applications, D. Liu and P. J. Antsaklis (Eds), Control 
Engineering Series, Birkhauser Boston, 2003. 

the parameters.  Therefore, computation of cr

clt
ν∂
∂

 is necessary while using the TEF method.  This is 

computationally a difficult task.  On the other hand, because the energy function ν(x) is used here only as a 

metric to monitor the system sensitivity for different tcl, we can avoid the computation of crν  and use ν(x) 

directly. 

The process of estimating critical values of parameters will be illustrated using the clearing time 

tcl.  However, the process is appropriate for any parameter that can induce instability such as mechanical 

power PM.  We can use the sensitivity 
clt∂

∂ν
 to estimate tcr directly.  With the classical model for machines, 

the energy function )(xν  for a structure-preserving model is computed as follows.   

The post fault power system can be represented by the DAE model in the center of angle reference 

frame as [3]  

    (14) 
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where m is the number of machines, n0 is the number of buses in the system, and 
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We assume constant real power loads and voltage dependent reactive power load as   
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where and are the nominal steady state reactive power load and voltage magnitude at the ith bus, 

and 

s
iQ s

iV

α is the reactive power load index. 

 

The corresponding energy function is established as [3] 
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where . jiij θθθ −=

 

The sensitivity S of the energy function )(xν with respect to clearing time ( clt=λ ) is obtained 

by taking partial derivatives of (19) with respect to as clt
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The partial derivatives of ,
igω θ% , and V  with respect to tcl are the sensitivities obtained by integrating 

the dynamic system and the sensitivity system as discussed earlier. 

The sensitivity S = 
clt
ν∂

∂
 is computed for two different values of tcl, which are chosen to be less 

than tcr.  Since we are computing only first-order trajectory sensitivities, the two values of tcl must be less 

than tcr by at most 20%.  This might appear to be a limitation of the method.  However, extensive 

experience with the system generally will give us a good estimate of tcr.   Because the system under 

consideration is stable, the sensitivity S will display larger excursions for larger tcl [9].  Since sensitivities 

generally increase rapidly with increases in tcl, we plot the reciprocal of the maximum deviation of S over 

the postfault period as 
1

max( ) min( )S S
η =

−
.  A straight line is then constructed through the two points 

( )1 1,clt η  and ( )2 2,clt η .  The estimated critical clearing time  is the intersection of the constructed 

straight line with the time-axis in the 

,cr estt

( ,clt )η -plane as shown in Fig 2.  As discussed later, this linearity is 

valid for a small region around tcr. 
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Fig. 2.  Estimate of tcr

 

Direct Use of Trajectory Sensitivities to Compute Critical Clearing Time [22] 

In this section we outline an approach using trajectory sensitivity information directly instead of 

via the energy function to estimate the critical clearing time.  To motivate this approach, let us consider a 

SMIB system described by 

0
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The corresponding sensitivity equations are 
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)cos(
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, (0) 0, (0) 0u u= =&  (22) 

where 
clt

u
∂
∂

=
δ

. 

If we plot the phase plane portrait of the system for two values of tcl, one small and the other close 

to tcr and monitor the behavior of sensitivities in the ( ,u u&)-plane we observe that the sensitivity 

magnitudes increase much more rapidly as tcl approaches tcr.  Also, the trajectories in the ( ,u u&)-plane can 

cross each other since the system (22) is time varying, whereas that is not the case for the system (21), 

which is an autonomous system.  Qualitatively, both trajectories in the ( , )δ ω -plane and the ( ,u u&)-plane 

give the same information about the stability of the system, but the sensitivities seem to be stronger 

indicators because of their rapid changes in magnitude as tcl increases.  Hence, we can associate sensitivity 

information with the stability level of the system for a particular clearing time.  When the system is very 

close to instability, the sensitivity reflects this situation much more quickly.  This qualitative relationship 

has been discussed for the general nonlinear dynamic systems by Tomovic [15].  One possible measure of 

proximity to instability may be through some norm of the sensitivity vector.  The Euclidean norm is one 

such possibility.  For the single machine system, if we plot the norm 2u u2+ & as a function of time for 
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different values of tcl, one can get a quick idea about the system stability as shown in Figs. 3 and 4.  For a 

stable system, although the sensitivity norm tends to become a small value eventually, it transiently 

assumes a very high value when tcl is close to tcr. 

Thus, we associate with each value of tcl the maximum value of the sensitivity norm.  The 

procedure to calculate the estimated value of tcr is the same as described in the previous section but using 

the sensitivity norm instead of the energy function sensitivity.  Here, the sensitivity norm for an m-machine 

system is defined as 

SN =

2 2

1

m
ji i

i cl cl clt t t
δδ ω

=
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∑

⎞
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where the jth-machine is chosen as the reference machine. 
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   Fig. 3. Sensitivity norm for small tcl (≈ 50% of tcr) 
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         Fig. 4. Sensitivity norm for tcl close to tcr (≈ 80% of tcr) 
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The norm is calculated for two values of tcl  < tcr.   For each tcl, the reciprocal η of the maximum 

of the norm is calculated.  A line through these two values of η  is then extrapolated to obtain the estimated 

value of tcr.  If other parameters of interest are chosen instead, the technique will give an estimate of critical 

values of those parameters. 

Since this technique does not require computation of the energy function, it can be applied to 

power systems without any restriction on system modeling.  This is a major advantage of this technique. 

 

Numerical Examples  

We consider three systems and application of both energy function based and direct sensitivity 

based metric. These are the 3-machine, 9-bus [23, 24]; the 10-machine, 39-bus [3]; and the 50-machine, 

145-bus [4] systems.  Results are presented in Tables 1-2 and Fig. 5. 

 

Table 1. Results for the 3-machine system 

TEF Sensitivity Sensitivity Norm Actual Faulted 

Bus tcr,est (s) tcr,est (s) tcr (s) 

5 0.354 0.352 0.352 

8 0.333 0.333 0.334 

 

 

Table 2. Results for the 10-machine system 

Sensitivity Norm Actual 
Faulted bus Line Tripped 

tcr,est (s) tcr (s) 

4 4-5 0.210 0.212 

15 15-16 0.204 0.206 

17 17-18 0.169 0.168 

21 21-22 0.122 0.125 

 

 

For the 50-machine system, the estimated value of clearing time for a self-clearing fault at bus 58 

using the sensitivity norm technique is computed.  The corresponding values of η for different values of tcl 

are shown in Fig. 5.  We note that from Fig. 5 that if the two values of tcl are chosen in the close range of tcr 

= 0.315 s, the estimated value of tcr will be quite accurate.  On the other hand, picking arbitrary values of tcl 

may give erroneous results.  Since computing sensitivities is computationally extensive, choosing good 

values of tcl requires judgment and experience.   
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                      Fig. 5. Estimate tcr for fault at bus 58 using norm sensitivity 

 

 

Computation of Critical Loading of Generator 

Next, the sensitivity norm technique is used to estimate the critical value of generator loading, or 

equivalently, the mechanical input power PM.  Two simulations for two values of PM are carried out.  The 

change from normal operating values in PM is distributed uniformly among all loads in the system, so that 

the loading of the rest of the generators is unchanged.  The sensitivity norm is calculated for the two 

specified values of PM and then extrapolated to obtain the estimated value of the critical PM for the chosen 

generator. 

 

The 10-machine system 

 A fault is simulated in the system at bus 21 of the 10-machine system and cleared at tcl = 0.1 s by 

tripping the line 21-22.  The estimated results for a few generators are shown in Table 3. 

 

Table 3. Estimated value of critical input power PM vs. the actual value 

Sensitivity Norm Actual 
Machine Number 

PMcr,est (pu) PM,cr (pu) 

3 10.7 10.4 

5 6.3 6.4 

8 12.4 12.2 
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The 50-machine system 

A self-clearing fault is simulated at bus 58 and cleared at tcl = 0.15 s.  Applying the 

proposed technique, the results obtained for critical value of PM is and shown in Table 4.  To 

validate the results it was verified that with the critical value of PM the system goes unstable. 

 

                              Table 4. Estimated value of critical input power PM vs. the actual value 

Sensitivity Norm Actual 
Machine Number 

PM,est (pu) PM,act (pu) 

4 22.9 22.3 

5 17.0 16.5 

7 4.3 4.2 

12 10.0 9.6 

 

 

Computation of Critical Impedance of a Transmission Line 

The norm sensitivity technique is used to estimate the critical value of a line reactance.  The 3-

machine system is used to illustrate the technique.  A fault is simulated at bus 7 and cleared at tcl = 0.08 s 

by tripping the line 5-7.  Figure 6 shows the corresponding values of η for different values of reactance of 

the line 8-9.  The critical value of the reactance of line 8-9 is 0.246 pu.  It can be seen from Fig. 6 that the 

estimated value of the critical reactance is quite accurate if the two values of the line reactance are picked 

in the close range of the actual critical value. 
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Fig.6. Estimate critical value of the reactance of the line 8-9 
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 Knowing the critical value of a line reactance is very important in controlling power flow path in 

the system by the variable impedance devices.  Such devices belong to a type of devices called flexible ac 

transmission systems (FACTS) that can be very useful in controlling the stability of power systems [25]. 

 

4.  Stability Constrained Optimal Power Flow Formulation [10] 

While Ref [26] formulates the problem in a different way, here we use the relative rotor angles to 

detect the system stability/instability of the power system.   To check the stability of the system for a 

credible contingency, relative rotor angles are monitored at each time step during dynamic simulation.  The 

sensitivities are also computed at the same time.  Although sensitivity computation requires extensive 

computational effort, efficient method to compute sensitivities is available by making effective use of the 

Jacobian which is common to both the system and sensitivity equations [27].  This will reduce the 

computational burden considerably.  We propose that when the relative rotor angle ij i jδ δ δ π= − >  for 

a given contingency, the system is considered as unstable.  This is an extreme case as pointed out in [6], 

and one can choose an angle difference less than π  depending on the system.  Here i and j refer to the most 

and the least advanced generators respectively.  The sensitivities of the rotor angles at this instant are used 

to compute the amount of power needed to be shifted from the most advanced generator (generator i) to the 

least advanced one (generator j) according to the formulae 

                                                     
0

,

max ij

ij ij
i j

ij

i

P

P
δ π

δ δ
δ

=

−
∆ =

∂
∂

 (23) 

                                           and 0
,

new
i iP P P= −∆ i j i j

0
,

new
j jP P P= + ∆  (24) 

where , and 0 ,i jP P0 0
ijδ  are the base loading of generators i and  j, and the relative rotor angle of the two 

respectively at the solution of the OPF problem. ij

iP
δ∂
∂

 is the sensitivity of relative rotor angle with respect 

to the output of the ith-generator;   in this case is the parameter iP λ  in equations stated in Section 3. 

After shifting the power from generator i to generator j according to (24), the system is secure for 

that contingency but it is not an optimal schedule.  We can improve the optimality by introducing new 

power constraints on generation.  The OPF problem with new constraints is then re-solved to obtain the 

new operating point for the system.  The detailed algorithm is discussed in [10] 

 

  5.  Assessment of Transmission Protection System Vulnerability to Angle Stability Problems 

 Power system protection at the transmission system level is based on distance relaying.  Distance 

relaying serves the dual purpose of apparatus protection and system protection.  Significant power flow 

 13



Stability and Control of Dynamical Systems with Applications, D. Liu and P. J. Antsaklis (Eds), Control 
Engineering Series, Birkhauser Boston, 2003. 

oscillations can occur on a transmission line or a network due to major disturbances like faults and 

subsequent clearing, load rejection, etc.  They are related to the swings in the rotor angles of synchronous 

generators.  If the rotor angles settle down to a new stable equilibrium point, the disturbance is classified as 

stable.  Otherwise, it is unstable.  Hence, for stable disturbances, power swings die down with time. 

 In this section, we discuss the application of trajectory sensitivity analysis to detect vulnerable 

relays in the system.  For each contingency we compute a quantity called branch impedance sensitivity, 

which will be used to identify weak links in the system.  Its main advantage is that it can handle systems of 

any degree of complexity in terms of modeling and can be used as an on-line DSA tool. 

 Distance relays are used to detect swings and take appropriate action (tripping or blocking) 

depending on the nature of swing (stable or unstable).  The reason is that a change in transmission line 

power flow translates into a corresponding change in the impedance seen by the relay.  Relay operation 

after fault clearing depends upon the power swing and proximity of the relay to an electrical center. 

 The apparent impedance seen by a relay on a transmission line connecting nodes i and j having 

flow ij ijP jQ+  is given by  

                               
2

2 2 2 2

P Qij i jZ ja p p iP Q P Qij i j i j i j

⎡ ⎤
⎢= +⎢

+ +⎢ ⎥⎣ ⎦

V⎥
⎥  (25) 

 As |Vi| is only a scalar, it cannot differentiate between the quadrants in the R-X plane.  Thus, the 

location of Zapp depends on the direction of P and Q flows.  Clearly, swings are severe when  and/or  

are large and  small.  Under such circumstance Z

ijP ijQ

iV app is small, and hence can cause a relay to trip. 

 Work based upon Lyapunov stability criterion has been reported in [28] to rank relays according 

to the severity of swings.  In [29] relay margin is used as a measure of how close a relay is from issuing a 

trip command.  Basically, it is the ratio of the time of longest consecutive stay of a swing in zone to its time 

dial setting (TDS).  For relays that see swing characteristic outside of their zone settings, the relay space 

margin is used.  It is defined as the smallest distance between the relay characteristic and the swing 

trajectory in R-X plane.  To identify the most vulnerable relay, magnitude of the ratio of swing impedance 

to line impedance is used as a performance parameter.  The most vulnerable relay corresponds to one with 

minimum ratio, where the search space extends over all the relays and time instants of simulation.  

 Reference [30] discusses the challenges to relaying in the restructured power system operation 

scenario.  In such a scenario, there will be varying power flow patterns dictated by the market conditions.  

During the congestion period, relay margins and relay space margins will be reduced.  This may pose 

challenges to system protection design. 

 The vulnerability of a relay to power swings is directly dependent on severity of oscillations in 

power flow observed in the primary transmission line and adjacent transmission lines that are covered by 

backup zones.  Hence, the problem of assessment of transmission protection system vulnerability to power 

swings translates into assessment of oscillations in power flow on a transmission system due to disturbance. 
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 We will show that branch impedance trajectory sensitivity (BITS) (that is, trajectory sensitivity of 

rotor angles to branch impedance), can be used to locate electrical center [9] in the transmission system and 

rank transmission system distance relays according to their vulnerability to tripping on swings. 

 

Electrical center and weakest link in a network 

For power systems that essentially behave as a two-area system under instability, the out-of-step 

relaying can be explained by considering the equivalent generators connected by a tie line.  When the two 

generators fall out of step, i.e., the angular difference between the two generator voltage phasors is 180°, 

they create a voltage zero point on the connecting circuit.  This is known as the electrical center.  A 

distance relay perceives it as a solid 3-phase short-circuit and trips the line.  

 One way to locate the electrical center [31] in a power system is to create a fault with fault 

clearing time greater than the critical clearing time of the circuit breaker to make the resulting postfault 

system unstable.  Through transient stability simulations, one identifies the groups of accelerating and 

decelerating machines in the system.  The sub network interconnecting such groups will contain the 

electrical center.  For the relays contained in the sub network, by simulating the power swing on the R-X 

plane one can locate the relays for which the power swing intersects the transmission line impedance.  This 

line contains the electrical center of the system.  The electrical center will also be observed by the backup 

relays depending upon their zone 2 and 3 setting.  Usually, the relays near the electrical center are highly 

sensitive to power swings.  A well-known property to characterize an electrical center is that the network 

adjoining the electrical center has low voltages. Such characterization is qualitative and can be used as a 

screening tool.  Since natural splitting of the system due to operation of distance relays takes place at the 

electrical center, we refer to such a line (or a transformer) as the weakest link in the network. 

To compress the information of all rotor angles with respect to a given line, for an m-machine 

system the following norm first introduced in [22] is used in the numerical examples section.  The BITS 

norm is computed as follows: 

                                  SN =
2 2

1 1

m m
i

i i

i

x x
α ω

= =

∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑  (26) 

where i i jα δ δ= −  and the jth-machine is chosen as the reference, and x is the transmission line 

reactance. 

 

Numerical Examples 

 A 10-machine, 39-bus system [3] is used for illustrative examples.  The following two cases are 

considered. 

 

Fault at bus 28 
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 The fault is cleared at tcl = 0.06 s by tripping line 28-29 simultaneously from both ends.  Table 5 

captures the normalized indices for a subset of lines, which have high, medium, and low sensitivities.  BITS 

sensitivity norm is computed for all the lines and normalized with respect to the maximum one.  Therefore, 

after normalization, the line with max BITS norm has value 1.  For all other lines, BITS norm is less than 

or equal to 1.  We would characterize the line 29-26 as the most vulnerable line because its rank is 1, and 

its absolute peak norm of 30 822 is also very high.  The normalized indices for all other lines are much 

lower than that of the line 29-26.  Hence, other lines are less vulnerable to the swing.  These inferences 

have been confirmed by using the relay space margin (RSM) concept.  Figures 6 and 7 show the swing 

curves for relay on lines 29-26 and 26-27 respectively. 

 

                                       Table 5. Normalized BITS norm (nominal or 100 % loading) 

Line 
Normalized 

Sensitivity 
RSM |Zmin| 

29-26 1 0.0231 0.0658 

26-27 0.1630 0.1759 0.1841 

26-25 0.1511 0.1870 0.2578 

26-28 0.0111 0.4842 0.5077 

 

 As line 29-26 is the weakest link in the post fault system, it has a large possibility of developing 

the electrical center in case a fault leads to instability (because of larger tcl or system loadings).  To confirm 

the location of the electrical center, tcl was increased from 0.06 s to 0.07 s to create system instability.  The 

small increase of 0.01 s in fault clearing time induced instability.  This indicates that existing system is 

working close to its stability limits. 
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                                                    Fig. 6.  Swing curve for relay on line 29-26 (stable) 

 16



Stability and Control of Dynamical Systems with Applications, D. Liu and P. J. Antsaklis (Eds), Control 
Engineering Series, Birkhauser Boston, 2003. 

0 0.1 0.2 0.3 0.4 0.5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Resistance

R
ea

ct
an

ce

 
                                                 Fig. 7.  Swing curve for relay on line 26-27 (stable) 

  

 The swing trajectory for the relay on line 29-26 located near bus 29 for tcl = 0.07 s is shown in Fig. 

8.  As the trajectory cuts the transmission line characteristic in zone 1, the location of electrical center on 

29-26 is thus established.  This is clearly an unstable case.  The relative rotor angles in this case are show in 

Fig. 9 where machine 9 is the unstable machine. 
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                                         Fig. 8.  Electrical center location on line 29-26 (unstable) 
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                                              Fig. 9.  Relative rotor angles for the unstable case 

 

 Table 6 summarizes actual BITS norms as well as the results for various loading conditions (80%, 

90%, and 100% of the system load).  It can be seen that as system loading increases, the trajectory 

sensitivity also increases.  As the system approaches a dynamical stability limit, the trajectory sensitivity 

for the critical line jumps from 145.17 for 90 % loading case to 30 822 for 100 % loading case.  Thus, a 

high peak value of maximum sensitivity can be used as an indicator of reduced stability margins.  Also, 

note that the sensitivity norm changes rapidly when the system loading approaches the stability boundary.  

Therefore, it can be used as an indicator for system stability margin. 

 

                                    Table 6.  Absolute norm for different loading conditions 

 

Line 80% load 90% load 100% load 

29-26 90.2730 145.1799 30822 

26-27 25.6782 31.7447 5022 

26-25 9.4081 20.0233 4656 

26-28 5.8828 6.8147 343.09 

 

 

Fault at bus 4 

 The fault is cleared at tcl = 0.1 s by tripping line 4-5 simultaneously from both ends.  For this 

scenario, results similar to the case discussed earlier are summarized in Tables 7 and 8.  Electrical center is 

located on line 1-2.  The results replicate the same pattern of behavior as discussed in the previous case.  

From Table 8 it can be seen that peak sensitivity norm is quite low (60 in comparison to 30 822 of Table 6), 
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and the sensitivity norm does not change much with various loading conditions.  It indicates that for this 

fault, the loading conditions are such that the system is still far away from the stability boundary.  In fact, 

the critical clearing time for this fault with the nominal loading condition is 0.29 s. 

 

                                    Table 7. Normalized BITS norm with 100 % load 
 

Line 
Normalized 
sensitivity RSM |Zmin| 

1-2 1 0.1600 0.1900 
1-39 0.9680 0.1694 0.2036 
2-25 0.6196 0.2337 0.2036 

14-15 0.5409 0.3201 0.3310 
 

 
                    
                                 Table 8. Absolute BITS norm for various loading conditions 
 

Line   90% load 100% load 110% load 
1-2 53.7342 57.4645 60.6352 
1-39 51.1508 55.6236 58.0612 
2-25 29.1845 35.6055 53.0692 

14-15 26.5545 31.0798 36.3755 
 

 This section has developed the concept of maximum rotor angle branch impedance trajectory 

sensitivity as a tool for assessing transmission protection system vulnerability to angle stability problems.  

It is used for applications in power systems such as 

i. Ranking transmission lines and relays as vulnerability to swings. The ranking can help to improve 

the relay coordination in the presence of power swings. 

ii. Determining location of electrical center.  Because transmission lines adjoining the electrical 

center have low voltages, other devices such as FACTS could be used to strengthen system 

stability. 

iii. Indicating stability margin.  When BITS is getting higher, it indicates that the operating point of 

system is moving closer to the system stability boundary. 

 
6.  Conclusions 

This paper summarizes a recent approach taken for dynamic security assessment of power systems 

using trajectory sensitivity analysis.  It is independent of model complexity and requires some apriori 

knowledge of the system criticality.  In power systems, years of experience provide this.  Future research 

will involve applying this technique to relieve congestion in deregulated systems. 

Future research should extend the application to exploring the connection between stability and 

sensitivity theory in hybrid dynamical systems which is an emerging area of research in control [32].  
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In power systems, examples include state dependent variation of taps in tap changing transformers or 

switching of FACTS devices for which the theory of trajectory sensitivity analysis is already available [21]. 
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