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Scaling of Normal Form Analysis Coefficients
Under Coordinate Change

Ian Dobson, Senior Member, IEEE, and Emilio Barocio, Member, IEEE

Abstract—Power system normal form analysis has developed co-
efficients and indices in modal coordinates to quantify nonlinear
modal interactions. We study the changes in the coefficients and in-
dices when the power system equations are expressed in different
coordinates or units and show that they can be normalized to be
invariant to coordinate changes and thus intrinsic to the power
system. The results are illustrated on a 4–generator system. An ex-
ample shows that the coefficients and indices not only detect non-
linear interactions but also can become very large near a strong
resonance in the system linearization.

Index Terms—Nonlinear modal behavior, normal form method,
power system dynamics, strong resonance.

I. INTRODUCTION

POWER systems are increasingly operated closer to their
limits. Advances in communications, control, computing,

signal processing, and power electronics are enabling a more
highly controlled power system. Stressed and more highly con-
trolled power systems generally exhibit more nonlinear effects
and dynamic modal interactions. To achieve a high performance
power system that is controlled to reliably operate near its limits,
dynamic modal interactions must be better understood so that
they can be mitigated.

Normal form theory is a standard mathematical tool to re-
move leading order nonlinearities from differential equations
by successive nonlinear coordinate changes near an equilibrium
[1], [2], [6], [13]. Over the last decade, normal form analysis has
been applied to investigate and quantify nonlinear interactions
between power system modes [8], [11], [12], [9], [14]. Applica-
tions include control system design [8], [7], [3] and predicting
interarea separation [11], [12].

Before embarking on a more detailed review of the normal
form analysis method in Section II, we make some brief overall
introductory remarks. The method starts with power system dif-
ferential equations which are expanded in a Taylor series about
a stable equilibrium. The differential equations are then trans-
formed so that the linearization is diagonalized and the equa-
tions are written in modal coordinates. The coefficients of the
quadratic terms in the modal coordinates are the quantities ,
where , and are indices ranging from 1 to , the number
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of state variables. The coefficients determine the size of the
contributions of mode and mode to the differential equa-
tion for mode (see (4) and ([8, Sec. 3.2]). Then the equations
are nonlinearly transformed to be linear up to second order. The
sizes of second order terms in the nonlinear transformation
are used to quantify nonlinear interactions between the modes
([8, Eq. (9)])1 ). The are calculated from the using

(1)

where are the eigenvalues of the power system
linearization.

A second order resonance occurs when two eigenvalues sum
to equal a third eigenvalue. Formula (1) shows that the be-
come large near a second-order resonance in which
vanishes. Nonlinear mode couplings become large near second
order resonance.

When computing a scalar index that describe properties of a
power system, one assumes power system equations expressed
in certain units or coordinates. It is desirable that the index be in-
variant (i.e., it does not change) if it is calculated when the same
power system is expressed in different units or coordinates. A
scalar index that varies depending on the coordinates depends on
both the power system and the arbitrary coordinate system used
to express the power system equations. In contrast, invariance
to coordinate change ensures that the index measures a prop-
erty of the power system alone; that is, an invariant index is in-
trinsic to the power system. A good example is the frequency
and damping of a particular power system mode of oscillation,
these depend only on the power system and do not depend on
the coordinates chosen.

When computing a vector index that describes properties of
a power system, the index is intrinsic to the power system if it
transforms in a standard way when the coordinates are changed.
A good example of intrinsic vector indices are eigenvectors of
the power system linearization. Similar remarks apply to matrix
or tensor indices; the only difference is that the standard coordi-
nate change transformations for matrices and tensors are more
elaborate.

In this paper, the effects of coordinate changes and units on
normal form coefficients and indices are examined. The coeffi-
cients do not transform in a standard way and some of the in-
dices are not invariant to coordinate changes. However, we pro-
pose normalizations of the coefficients and indices to fix this

1One detail to note when reading [8, Eq. (9)] is that (9) is the exact solution
of the differential equations (7) that are valid up to second order, but that (9) is
not the exact solution of the differential equations (3) that are also valid up to
the second order.
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problem. The normalized coefficients and indices are intrinsic
to the power system.

II. NORMAL FORM ANALYSIS PROCEDURE

This section reviews the mechanics of the normal form calcu-
lation of Lin, Vittal, Kliemann, and Fouad [8] and Starrett and
Fouad [11]. We follow much of the notation of [8] for conve-
nience.

The power system dynamics are linearized about a stable
equilibrium and expanded in a Taylor series to obtain

(2)

where is the system state defined rela-
tive to the stable equilibrium, is the Jacobian matrix and the
Hessian defines the coefficients of quadratic terms. When
transients are considered, the initial condition is written as

.
The Jacobian matrix is assumed to be diagonaliz-

able. Equation (2) is transformed to modal coordinates
which diagonalize the matrix . In

particular, is defined to be a matrix whose columns are the
right eigenvectors of . An important detail [8] is that the
right eigenvectors (columns of ) are normalized so that they
have length 1. (An assumption about the normalization of is
needed to unambiguously define the below.) Then

(3)

is a transformation to modal coordinates. Transforming (2) to
the modal coordinates yields

(4)

where are the eigenvalues of .
The are the quadratic coefficients in the coordinates

and are given by

(5)

The coefficients are then defined by (1).
Normal form theory [1], [2], [6], [13] states that the local

nonlinear transformation from to variables given by

(6)

linearizes the differential equations to second order so that

(7)

An initial condition for a transient becomes
in the coordinates and in the coordinates, where

satisfies

(8)

Several measures of the nonlinearity in coordinates were
proposed in [8] and [12] based on the coefficients and the
initial condition of a transient. An interaction coefficient is de-
fined as

(9)

to quantify the effect of second-order terms on the transient so-
lution ([8, Sec. 3.3.2, 3.3.3]). The nonlinear interaction index
for mode is defined as

(10)

where the choice of and maximizes the inter-
action coefficient size [12, Sec. 2.4]. The nonlin-
earity index for mode is defined as ([12, Tables VII, IX],
[7, eq. (11)], [14, eq. (10)])

(11)

We do not address the generalized participation factor anal-
ysis of [11] and [15] in this paper.

III. DEPENDENCE OF COEFFICIENTS AND INDICES ON

COORDINATE SYSTEMS AND UNITS

The coefficients , and the index de-
pend on the coordinate system used to express the power system
differential equations. In particular, the values of these coeffi-
cients and indices vary if the state variables are expressed in
different units.

A. Simple Example

The essence of the problem can be seen in a simple example.
Consider the following scalar differential equation in which the
state variable is measured in megawatts

(12)

If we change the state variable to be , where is measured in
kilowatts, then

(13)

and (12) becomes

(14)

For (12), it is apparent that . is intended to quantify
the nonlinear interaction of mode 1 (the only mode) of system
(12) with itself. But in (14), which represents the same physical
system in different units, we have . It is clear that
the size of the nonlinearity as measured by the coefficient
varies according to the units chosen to express the differential
equation.2 Note that both and are modal coordinates; there
is no unique choice of modal coordinates.

2One way to resolve the issue in this simple one dimensional case is to recog-
nize that the units of� are 1/MJ and the units of �� are 1/kJ. However, con-
sideration of practical power system models with � vectors containing quan-
tities with different units and modal � vectors containing quantities that are
combinations of these units shows that this resolution does not generalize well.
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There are also changes in and the interaction coeffi-
cient when the units are changed. For (12), ,

whereas for (14), . For (12), solving (8) and (3)
gives and

(15)

whereas for (14), and

(16)

B. The Effect of a Linear Transformation of Coordinates

We transform the power system differential equations from
the original coordinates to coordinates and then compute

the coefficients and indices . In
this way, we find out how these coefficients and indices depend
on the coordinate system.

Suppose that the and coordinates are related by an in-
vertible linear transformation according to

(17)

Then the power system equations in coordinates are

where

(18)

(19)

Right eigenvectors in the coordinates are given by the
columns of , but in general these columns will not be of
length 1. Therefore, in accordance with the normalization used
in Section II, we define

(20)

where is a diagonal matrix chosen so that
is normalized to have columns of length 1. A formula for the
diagonal elements of is

(21)

An arbitrary choice about the phase and sign of elements of
can be made if it is agreed that only the magnitude of coefficients
is of interest.3 Now

3Phase or sign of the �� coefficients is neglected here because no applica-
tions or interpretations for this phase have been suggested so far. However,
phase could be treated as follows: Additionally normalize the eigenvectors �
to have standard phase by, for example, requiring the first component of each
eigenvector to have phase zero. Adjust the phase of each� so that �� also has
standard phase. Then, following analysis along the lines of this paper, the nor-
malized �� coefficients (32) would be invariant and phase differences between
these normalized �� coefficients could be meaningful.

Substituting from (19) and (20), using (5) and simplifying yields

(22)

and, since is diagonal, (22) becomes

(23)

Since the eigenvalues are coordinate independent, formula (1)
shows that the transform in the same way as the

(24)

Equations (3), (20), (17) and imply that

(25)

If and satisfy (6), then it can be shown using (24) and (25)
that and satisfy

(26)

Therefore

(27)

Equations (27) and (24) imply that the interaction coefficient
transforms as

(28)

Since and differ by a factor that

only depends on , the and that maximize are
the same as the and that maximize . and
are these maximizing values of and . and therefore and
do not depend on the coordinate system. Now it follows from
(25), (27), and (28) that the indices and transform as

(29)

(30)

That is, index varies with the coordinate change and index
is invariant to the coordinate change. Note that [5] incorrectly
suggests that the index is not invariant.

We consider special cases of the transformation in which
the formula (21) for becomes simpler.

1) Diagonal can be interpreted as a transformation that
changes the units in which the system states are measured.
If is diagonal, then

(31)

Formula (31) generally simplifies to only when
is a multiple of the identity matrix or .

2) If is orthonormal so that , then and all
the coefficients and indices are invariant under . With
the exception of permutations of the system states, or-
thogonal transformations are of limited use for power sys-
tems.
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C. Discussion

The transformation formulas (23), (24), and (28) show how
the coefficients , and change when the co-
ordinates assumed for the power system equations are changed
by a linear transformation. Since the transformation formulas
depend on the matrix which normalizes the columns of ,
these coefficients are neither independent of the coordinates as-
sumed for the differential equations, nor do they transform as a
tensor with respect to those coordinates. Thus, the coefficients

, and are not intrinsic to the power system.
This can be problematic for quantifying nonlinear interactions
with these coefficients. For example, the ranking of these coef-
ficients by size can change when different coordinates are used.
Another problem is that when the operating point changes, the
scaling of the coefficients changes (because the eigenvectors

change and this changes via (21)). This arbitrary change
in scaling muddles comparisons of coefficients obtained at dif-
ferent operating points of the same power system.

For a general linear transformation of the coordinates
assumed for the power system equations, the coefficients

, and transform in way that depends in a
complicated fashion on the linear transformation. A similarly
complicated dependence would also arise in the case of a
nonlinear coordinate transformation such as changing phasors
from polar coordinates to rectangular coordinates.

A diagonal transformation of coordinates (case 1 in Sec-
tion III-B) is an important special case because it represents an
independent rescaling of each of the state variables, or, equiv-
alently, a change in units. In this special case, the matrix is
given by (31) and the coefficients have the nontrivial transfor-
mations (23), (24), and (28). In power system models, there is a
mixed set of units because the state variables include different
physical quantities and these transformations show how the co-
efficients change when, for example, angles are measured in de-
grees instead of radians, or when per unit scaling is introduced
or removed for some of the states.

One perspective to help explain the transformations of the co-
efficients , and is as follows: The idea of
these coefficients is to transform the system to a standard co-
ordinate system, namely modal coordinates that diagonalize the
Jacobian, and to measure the nonlinear interactions in that par-
ticular coordinate system. However, there are no unique modal
coordinates; any given set of modal coordinates can be indepen-
dently rescaled to yield another set of modal coordinates. (There
appears to be no intrinsic way to select one of these sets of modal
coordinates as canonical.) The scaling of the modal coordinates
is chosen by the scaling of the eigenvectors (columns of ). Dif-
ferent coordinate systems for the original power system equa-
tions yield different choices of scalings for the modal coordi-
nates [see (25)] and hence different values of the coefficients.

The index is a constant independent of the coordinate
system [see (30)], but the index varies with the coordinate
system [see (29)]. Recent work applying normal form analysis
[15] mentions the difficulty of quantifying nonlinearity with the

and indices in comparing cases at different operating con-
ditions: “However, using these indices, it was difficult to com-
pare the nonlinearity quantitatively because of the scaling of the

eigenvectors.” This statement is consistent with our results for
the index.

D. Normalized Coefficients and Indices

The lack of invariance of , and described
above can be fixed by redefining these coefficients and indices
with suitable normalization. A normalized interaction coeffi-
cient is

(32)

Normalization (32) is consistent with the way that Thapar et al.
[12] advise that the magnitude of should be assessed
relative to the magnitude of .

A normalized index is

(33)

The new coefficient (32) and index (33) are constants invariant
under linear coordinate change and are intrinsic to the power
system.4 The normalized index in (33) can be interpreted
as the index measured in multiples of the size of the initial
disturbance in mode .

IV. NUMERICAL RESULTS ON 4-GENERATOR SYSTEM

This section computes unnormalized and normalized coeffi-
cients and indices on the 4-generator power system shown in
Fig. 1. The system was obtained from [10] and a static var com-
pensator was added at bus 8 to improve the voltage profile. The
generators are represented by a two-axis model with simple ex-
citation control. Generator, svc, and line data are described in
Appendix A. There are two identical areas, each with two 900
MVA generators. Generators 1, 2, 4 are loaded to 700 MVA and
slack generator 3 is loaded to 751 MVA. Area 1 and area 2 are
loaded to 967 and 1767 MW, respectively. This base case is a
stressed condition.

Selected modes of interest are shown in Table I. Mode 1 is
associated with the static var compensator. Modes 14, 15, 19 are
control modes, mode 16 is associated with flux in generators 3
and 4, and modes 6–11 are electromechanical modes.

A transient was produced by a solid fault applied at bus 10
and cleared in 0.2 s. The normal form analysis described in
Section II was used to compute the unnormalized interaction
coefficients for this transient. Table II shows the magnitude of
selected interaction coefficients for modes of interest. The un-
normalized interaction coefficients in column 4 of Table II were
computed with angle variables expressed in radian. Changing
the units of angles from radian to degrees is a simple example
of a coordinate change. For this coordinate change, the trans-
formation matrix is diagonal with entries that are
when the corresponding state variable is an angle and 1 other-
wise. Formulas (21) and (24) were used to compute the effects of
this coordinate change and the resulting unnormalized normal-

4An alternative normalization of (32) and (33) dividing by �� � instead of
�� � also yields invariance under linear coordinate change.
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Fig. 1. Two-area, 4-generator system (reactances in pu with 100 MVA base).

TABLE I
EIGENVALUES OF 4-GENERATOR SYSTEM

TABLE II
INTERACTION COEFFICIENTS ��� � � �

TABLE III
INDEX ��

ized interaction coefficients with angles in degrees are shown in
column 5 of Table II. The coordinate change makes a noticeable
change to the interaction coefficients. The normalized interac-
tion coefficients were computed using (32) and are shown in
the last column of Table II. There is a significant difference in
the ranking of the interaction coefficient magnitudes when com-
paring the unnormalized and normalized coefficients.

The index was computed for the same transient and
the same modes and the results are shown in Table III. The
second column of Table III shows the unnormalized index

with angle variables expressed in radian and the third
column of Table III shows the unnormalized index with
angle variables expressed in degrees. The coordinate change
makes a noticeable change to the index, with the largest change
occurring in mode 14, 15 and the largest percentage change
occurring in mode 10, 11. The last column of Table III shows
the normalized index for the same modes. Normalization of

indices for the selected modes significantly changes their
ranking and relative magnitudes.

V. NORMAL FORM ANALYSIS NEAR STRONG RESONANCE

If two eigenvalues of the power system linearization coincide
and the linearization is not diagonalizable, this is called strong
resonance. Dobson et al. [4] explains strong resonance, reviews
the literature, and gives an example of proximity to strong reso-
nance leading to oscillations in a power system example. In the
context of normal form analysis, strong resonance is a first order
resonance occurring within the power system linearization.

Consider the following example:

(34)

All except that . and are small real con-
stants. The eigenvalues of the matrix in (34) are

and their complex conjugates .
The eigenvalues and coincide in a strong resonance at

when . We assume in order to diagonalize
the matrix in (34) and compute

Then (34) in coordinates becomes

(35)

(36)
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Near the strong resonance, scales as . Here, con-
trols the amount of nonlinearity in the original coordinates (

gives no nonlinearity) and controls the proximity to strong
resonance ( gives a strong resonance). No matter how
small is, one can choose a smaller so that the have very
large magnitudes. Indeed tends to infinity as the strong
resonance is approached. Appendix B proves that as tends to
zero, one or more of the interaction coefficients be-
comes arbitrarily large. Indices and become arbitrarily
large in the same way.

That is, no matter how small is the quadratic nonlinearity in
the equations in the original coordinates, one can, by moving
close to the strong resonance, make the coefficients and indices

arbitrarily large. Therefore caution is
needed in interpreting these coefficients and indices near strong
resonance. Large values of these coefficients and indices cor-
rectly reflect the high nonlinearity of the system in the modal

coordinates, but do not necessarily imply that the system has
significant nonlinearity in the original coordinates. The coor-
dinate change to modal coordinates requires increasing dis-
tortion as strong resonance is approached and this distortion can
greatly amplify nonlinearities.

VI. CONCLUSION

We examine how the normal form analysis coefficients
, and vary when the power system dif-

ferential equations are expressed in different coordinates or
different units. Under a general linear coordinate change, these
coefficients are not constants and do not transform as tensors.
Thus the coefficients are not intrinsic to the system. This can be
problematic for quantifying nonlinear interactions with these
coefficients. The behavior of the coefficients under coordinate
change is related to the nonuniqueness of modal coordinates
and the eigenvector scaling induced by the coordinates. The
dependence of the index on the coordinate system can
cause to vary in a nonstandard way. We correct an error
in [5] by showing that the index is invariant to coordinate
changes. (That is, as previously defined [12] is already
normalized.) Numerical results on a 4 bus generator system
show that a coordinate change such as changing the units of
angles from radian to degree can produce a noticeable change
in unnormalized coefficients and indices.

We suggest a normalized interaction coefficient (32) and a
normalized index (33). The effect of the normalization on
ranking and magnitudes of these indices and coefficients can
be significant. The normalized interaction coefficient and nor-
malized index are invariant under coordinate change and in-
trinsic to the system. The normalized interaction coefficient and
normalized index describe aspects of the power system dy-
namics more accurately because they do not depend on an arbi-
trary choice of coordinate system. Therefore, when it is appro-
priate to apply these indices and coefficients, we recommend
that the normalized versions be used.

An example shows that normal form analysis coefficients and
indices can become arbitrarily large near strong resonance de-
spite very small amounts of nonlinearity in the system expressed
in its original coordinates. Near strong resonance, the transfor-

TABLE IV
LINE IMPEDANCE DATA (PU, BASE 100 MVA)

TABLE V
LOAD FLOW BUS DATA (PU, BASE 100 MVA)

TABLE VI
LINE FLOWS (PU, BASE 100 MVA)

mation to modal coordinates introduces a large nonlinearity into
the system and this large nonlinearity is quantified by the coef-
ficients. That is, as well as quantifying second-order nonlinear
modal interactions, normal form analysis coefficients and in-
dices detect strong resonance effects (first order linear modal in-
teractions) that are not necessarily related to significant system
nonlinearity in the original coordinates. Care is warranted in in-
terpreting large values of these coefficients and indices as ev-
idence of system nonlinearity when eigenvalues are close to-
gether.

APPENDIX A
SYSTEM DATA

Each machine has
. Each exciter has

. The machine data are in per unit
(base 900 MVA) except that time constants are in second. The
static var compensator model [3] has .
The line data is shown in Table IV. The base case load flow data
is shown in Table VI. Bus 3 is the slack bus and the loads are
constant power loads. The system frequency is 60 Hz. The line
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and svc data are in per unit (base 100 MVA) except that time
constants are in seconds and angles are in degrees.

APPENDIX B

Assume that and . We show that at least one of
as . Equation (8) can be written as

(37)

Since the minimum singular value of is
and

as . If is bounded as , then the
left hand side of (37) is unbounded as , and therefore at
least one of as . If is unbounded
as , then there is an with as . Since,
according to (36), as
as .

ACKNOWLEDGMENT

The authors thank M. Gibbard and D. Vowles for helpful com-
ments.

REFERENCES

[1] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differen-
tial Equations. New York: Springer-Verlag, 1988.

[2] D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Sys-
tems. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[3] E. Barocio and A. R. Messina, “Analysis of nonlinear modal interac-
tion in stressed power systems with SVCs,” in Proc. IEEE Power Engi-
neering Society Winter Meeting, New York, Jan. 2002.

[4] I. Dobson, J. Zhang, S. Greene, H. Engdahl, and P. W. Sauer, “Is strong
modal resonance a precursor to power system oscillations?,” IEEE
Trans. Circuits Syst. I, pt. 1, vol. 48, pp. 340–349, Mar. 2001.

[5] I. Dobson, “Strong resonance effects in normal form analysis and sub-
synchronous resonance,” in Proc. IREP Conf. Bulk Power System Dy-
namics and Control V, Onimichi, Japan, Aug. 2001.

[6] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields. New York:
Springer-Verlag, 1986.

[7] G. Jang, V. Vittal, and W. Kliemann, “Effect of nonlinear modal interac-
tion on control performance: Use of normal forms technique in control
design, Part I: General theory and procedure, and Part II: Case studies,”
IEEE Trans. Power Syst., vol. 13, pp. 401–413, May 1998.

[8] C.-M. Lin, V. Vittal, W. Kliemann, and A. A. Fouad, “Investigation
of modal interaction and its effects on control performance in stressed
power systems using normal forms of vector fields,” IEEE Trans. Power
Syst., vol. 11, pp. 781–787, May 1996.

[9] Y.-X. Ni, V. Vittal, W. Kliemann, and A. A. Fouad, “Nonlinear modal
interactions in HVDC/AC power systems with DC power modulation,”
IEEE Trans. Power Syst., vol. 11, pp. 2011–2017, Nov. 1996.

[10] G. Rogers, Power System Oscillations. Boston, MA: Kluwer, 2000.
[11] S. K. Starrett and A. A. Fouad, “Nonlinear measures of mode-machine

participation,” IEEE Trans. Power Syst., vol. 13, pp. 389–394, May
1998.

[12] J. Thapar, V. Vittal, W. Kliemann, and A. A. Fouad, “Application of
the normal form of vector fields to predict interarea separation in power
systems,” IEEE Trans. Power Syst., vol. 12, pp. 844–850, May 1997.

[13] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos. New York: Springer-Verlag, 1990.

[14] S. Zhu, V. Vittal, and W. Kliemann, “Analyzing dynamic performance
of power systems over parameter space using normal forms of vector
fields Part I: Identification of vulnerable regions (republished),” IEEE
Trans. Power Syst., vol. 16, pp. 711–718, Nov. 2001.

[15] , “Analyzing dynamic performance of power systems over param-
eter space using normal forms of vector fields Part II: Comparison of
system structure,” IEEE Trans. Power Syst., vol. 16, pp. 451–455, Aug.
2001.

Ian Dobson received the B.A. degree in mathematics
from Cambridge, U.K., in 1978 and the Ph.D. degree
in electrical engineering from Cornell University in
1989.

He worked from 1978 to 1983 as a Systems
Analyst for the British firm EASAMS, Ltd. In 1989,
he joined the University of Wisconsin, Madison,
where he is now Professor in electrical and computer
engineering. His current interests are applications of
complex systems and nonlinear dynamics, cascading
failure and self organized criticality in blackout risk,

electric power system instabilities, and power electronics.

Emilio Barocio received the M.S. degree from the
University of Guadalajara, Mexico, in 1997, and the
Ph.D. degree from the Centre for Research and Ad-
vanced Studies (CINVESTAV) of the National Poly-
technic Institute (IPN) of Mexico in 2003.

From 1997 to 2002, he was a Lecturer in the
Department of Mathematics at the University of
Guadalajara. He was a Visiting Scholar at the
University of Wisconsin,Madison, in the academic
year 2001–2002. Currently he is Associate Professor
in the Postgraduate Mechanical and Electrical

Engineering School of the Autonomous University of Nuevo Léon, Mexico.
Dr. Barocio is a member of the Mexican National Research System.


