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Perturbations of Weakly Resonant Power System
Electromechanical Modes

Ian Dobson, Senior Member

Abstract— It is not uncommon for oscillatory electric power
system modes to move close to a resonance in which eigenvalues
coincide, In a weak resonance the modes are decoupled and the
eigenvalues do not interact, We analyze general perturbations of
a weak resonance and find two distinct behaviors, including inter-
actions near strong resonances in which the eigenvalues quickly
change direction. The possible perturbations are illustrated with
interactions between electromechanical modes in a 4 bus power
system. Some of the interactions are similar to subsynchronous
resonance and can lead to oscillatory instability.

Index Terms— power system dynamic stability, oscillations,
resonance, root loci, eigenvalues and ecigenfunctions, Hopf bi-
furcation, subsynchronous resonance

I. INTRODUCTION

A power system mode is an cigenvalue of the system
linearization and ils associated eigenvector. Since the modes
determine the power syslem stability and small signal tran-
sient performance, understanding the behavior of the modes
is fundamental to avoiding power system oscillations and
ensuring that transients are sufficiently well damped [22], [3],
[7]. Indeed, a better understanding and suppression of low
frequency oscillations could relax some of the constraints on
larger bulk power transfers and increase power system security.

An exact coincidence of eigenvalues in both frequency and
damping is called a resonance. As parameters vary, the power
system modes vary and it is not uncommon for two complex
eigenvalues to pass near resonance. A basic question is; do the
modes interact near resonance? That is, do the eigenvalues
move independently or do they interact in some way? This
question has been investigated for some time, including work
by Van Ness [16], |23] and Kliein and Rogers et al. [11]
in the late 1970s and early 1980s and more recent work by
Kwatny [12], [13], Dobson [4], [5], Jones and Andersson [9]
and Nomikos and Vournas [17]. One practical example is the
interactions between scveral 0.7 Hz modes in the Western Area
of North America [11], [15], [9]. For a detailed review up to
2000, see [4]. Earlier investigators sometimes observed modal
interactions, but the effects seemed anomalous, especially
when considered from the point of view of diagonalizable
linearizations.

There are two types of resonance: strong and weak [19].
Strong resonance has a nondiagonalizable linearization and
eigenvalue interaction. In particular, eigenvalues passing near
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strong resonance sharply change direction. For example, two
eigenvalues approaching each other in frequency can turmn
through a right angle so that they are diverging in damping,
Indeed, one of the cigenvaluecs can become unsizble as a
consequence of passing near the strong resonance [4]. Weak
resonance has a diagonalizable linearization and eigenvalues
passing through weak resonance show no interaction. Al-
though strong resonance is more generic than weak resonance
[4], weak resonance can arise due to special features of the
power system model. For example, if two areas of the power
system are decoupled, then il a local mode in one area is
resonant with a local mode in the other area, this will be a
weak resonance.

In this paper, we analyze eigenvalue movements (root
loci) as a parameter is varied. We first consider eigenvalue
movements that pass exactly through a weak resonance in the
complex plane and then perturb this ideal situation to reveal
and analyze the two generic types of eigenvalue movements
that can ocecur. The eigenvalue movements are illustrated with
near resopant electromechanical modes in a 4 bus power
syslem model, In one of the types of eigenvalue movement
(type B), the eigenvalues interact and change their directions
of movement. This modal interaction can lead to oscillatory
instability and is the same modal interaction that occurs in
subsynchronous resonance.

Nonlinear modal interactions are also of interest in power
systems |14], [20], [21], [6], but should be distinguished from
the linear (first order) modal interactions considered in this
paper. The eigenvalue movemenlts or root loci in this paper
are nonlinear curves, but they arise in the usual way from a
linearized power system model that changes as a parameter is
varied.

We now review some related work in mechanics, Seyranian
[19] has derived formulas for multiparameter perturbations of
cigenvalues from weak and strong resonances and shown the
geometry of single parameter eigenvalue movements through
weak and strong resonances. The eigenvalues do not interact
when passing through a weak resonance and turn through a
right angle when passing through a strong resonance. These
results are illustrated in lincar mechanical vibrational prob-
lems in which the symmetries of the inertia, damping and
restoring force matrices restrict the eigenvalue movements. Of
particular interest is the passage through a weak resonance
between 1wo real eigenvalues perturbing to passage through
two strong resonances that causes a “bubble” of complex
eigenvalues between the two strong resonances [19, figure
9]. This perturbation of weakly resonant real eigenvalues
corresponds to the type B perturbation of weakly resonant
complex eigenvalues considered below. Also interesting is



the passage through a weak resonance between two purely
imaginary eigenvalues perturbing to eigenvalue movements
in which the eigeavalues remain imaginary [19, figure 10].
This perturbation of weakly resonant imaginary eigenvalues
corresponds to the type A perturbation of weakly resonant
complex eigenvalues considered below.

II. PERTURBATICON OF WEAK RESONANCE

This section summarizes mathematical resulis that are more
carefully stated and proved in the appendix. The power system
differential equations are assumed to have real parameters ¢
and e. The parameter ¢ parameterizes the eigenvalue movement
in the complex plane; that is, ¢ is the root locus parameter,
The parameter € controls the perturbation. The two complex
eigenvalues of interest are A, and A; and these vary as
functions A1(t,€) and Ax(t,€) of ¢t and e.

Suppose that when € = 0 and as ¢ is varied the power system
encounters a weak resonance at ¢ = 0 so that A\(0,0) =
A2(0,0). We examine a general perfurbation of this situation
by letting € change from zero.

The eigenvalues do not vary smoothly near weak resonance.
Therefore, to analyze the eigenvalue movement we study the
smooth functions

plt,€) = (Ai(t,€) — Aa(t,€))?/4 (1
/\(t, 6) = (Al(t, E) -|- )\z(t, 6))/2 (2)

A and p determine the eigenvalues to be
/\1=)\+\/ﬁ and /\2=)\’\/‘L_L 3)

A is the average eigenvalue position and g determines the
separation of the eigenvalues in both magnitude and angle.
That is, x determines the relative position of the eigenvalues.
The distance between the eigenvalues is

A1 = Az| = 2+/{l @

In particular, the condition for coincident and rescnant eigen-

values is g = 0. Moreover, the relative direction of the
eigenvalues is )
£(Ap — Ag) = FLH (5)

The main result, obtained in the appendix by a Taylor series
expansion, is that to second order in ¢ and ¢,

wt, €) = At® + 2Hte + Be* (6)

where A, B and H are complex constants. Equation (6)
describes the movement of 4 as ¢t varies as a parabola in the
complex plane. When ¢ = 0, the parabola is degenerate and
lies in a ray from the origin as shown in Fig. 1. When € is
nonzero, the parabola changes as shown in Fig. 1; changing
¢ has only the effect of magnifying or changing the scale of
the parabola. There are two cases: A type A perturbation has
the origin outside the parabola and a type B perturbation has
the origin inside the parabola. Now we continue to make use
of the second order approximation (6) and discuss the effect
of these possibilities on the relative eigenvalue movement.
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Fig. 1. Example locus of p1(t, €) as ¢ varies for ¢ = 0 (degenerate parabola in
the form of a ray through the origin) and two nonzero values of ¢ (parabolas
of increasing scale as € increases.) Type A has origin outside the parabola
and Type B has origin inside the parabola.

1) Weak resonance with € = 0. In this case, (6) becomes
w(t,0) = A% As t varies, p(t,0) moves along a ray
through the origin, first towards the origin, then touching
the origin at t = 0, and then away from the origin. This
implies that the eigenvalues A; and A move together in
the same direction, coincide in the weak resonance when
¢ = 0, and then move apart along the same direction.
For example, if A; is fixed, then Ay moves on a straight
line passing through A;. There is no interaction in this
weak resonance case.

2) Perturbation type A with the origin outside the parabola.
As ¢ varies, p{t, €) moves along a parabola towards the
origin and then away from the origin. u(t, €) is bounded
away from the origin so that the eigenvalues are always
separated by a minimum positive distance. If ¢ is small,
then the parabola lies close to the € = 0 ray in a bounded
region and the eigenvalues move together and separate
approximately in the same direction.

3) Perturbation type B with the origin inside the parabola.
As t varies, p(t,€) moves along a parabola around the
origin. If € is small, then parabola lies close to the e = 0
ray in some bounded region so that initially and finally
the eigenvalues approach each other and separate along
approximately the same direction. Near ¢ = 0, ¢ moves
around the origin. Overall, Zu moves through nearly
360°. According to (5), this implies that the eigenvalue



relative direction Z(A; —A2) moves through nearly 180°.
This further implies that there is a t for which Z(A;—A2)
is at 90° to the original direction of relative motion. Thus
the eigenvalues initially approach each other in a given
direction but must move so that at one point they are at
right angles to this initial direction.

III, RESULTS FOR A 4 GENERATOR POWER SYSTEM
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Fig. 2. 4 generator system.

Fig. 2 shows a 4 generator power system with two areas
based on [11]. Each generator is represented by the same
classical model with H = 6.5 pu and damping D = 1.0
pu. The per unit linc reactances are shown in Fig. 2 and the
line resistances and line chargings are 0.1 and 1.75 times the
line reactances respectively. Generators 1 and 11 each produce
7 pu real power and the slack is equally distributed between
generators 2 and 12, Each of the loads L1 and L2 are 13.7 pu
rcal power and ~2 pu reactive power from capacitors.
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Fig. 3. Figeovalues passing through weak resonance as bus 2 voltage varies.
The X is the fixed Arca 2 eigenvalue and the circles indicate every tenth point.

There is an inter-arca mode with a frequency of about 0.47
Hz and two local modes, one in each area, with a frequency
of about 1.36 Hz, We study the resonant interaction of the two
local modes as their eigenvalues nearly coincide in frequency
and damping. In every case, we vary the voltage on bus 2 from
1.0 to 1.07 in order to pass near the resonance. Thus the bus 2
voltage corresponds to the parameter ¢ considered above.

The weak resonance case is produced by increasing the
impedance of the tic line joining the two areas 1o a very large
value (220 pu) so that the two areas are effectively decoupled.
The area 2 local mode eigenvalue is fixed at the X in the left
half of Fig. 3. The area 1 eigenvalue increases in frequency
as bus 2 voltage is increased and passes through the area 2
eigenvalue in a weak resonance as shown in Fig. 3.

TABLE I
CASES SIMULATED (ALL DATA IN PU)

Figs. LI L2 Changes to base case

EE] 37 137 tic line reactance=220

49 137 137

5,10 9.7 177 Dy, Dy = 0.98; slack bus 12
6 97 17.7 D, Dz = 0.6, slack bus 12

7.11 97 177 Dy, D2 = 0.1; slack bus 12

Restoring the tie line impedance to its base case value
(0.22 pu) couples the two areas and perturbs the eigenvalue
movement 1o the Type A example shown in Fig. 4. The tie line
flow remains zero, Initially, the higher frequency eigenvalue is
approximately fixed and the lower frequency eigenvalue moves
vertically upward towards the higher frequency cigenvalue.
Then the lower frequency eigenvalue becomes approximately
fixed and the higher frequency eigenvalue moves vertically up-
ward. In effect, the moving eigenvalue transfers its movement
to the fixed eigenvalue when they become close,
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Fig. 4. Type A cigenvalues passing near weak resonance

A different perturbation of the weak resonance is the type
B example shown in Fig. 5. This perturbation is obtained by
changing the flows by replacing the distributed slack by a
slack at bus 12 and transferring 4 pu real power from Load 1 to
Load 2. The tie line flow becomes approximately 3.98 pu. The
damping of generators in area 1 is also reduced slightiy to 0.98,
These details are summarized in Tabie L In Fig. 5, the area 1
cigenvalue moves in a closed curve and the area 2 eigenvalue
generally increases in frequency. The two eigenvalues interact
strongly. Their relative direction passes nearly through 180°
and the two sharp changes of direction correspond to ju passing
close to the origin and proximity to two strong resonances,
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Fig. 6. Medium perturbation type B eigenvalues passing near weak resonance.
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Fig. 7. Large perturbation type B eigenvalues passing near weak resonance.
Dy =D;=0.1

The type B interaction in Fig. 5 is small in amplitude
because the perturbation from weak resonance is smail. The
small amplitude interactions in Fig. 5 couid be missed in
sampling the modal behavior and in any case have little effect
on the system performance. A medium size perturbation from
the weak resonance can be obtained by decreasing the damping
of the area 1 generators to 0.6 pu and the resulting eigenvalue
movement is shown in Fig. 6. A larger perturbation from the
weak resonance can be obtained by further decreasing the
damping of the area 1 generators to 0.1 pu and the resulting
eigenvalue movement is shown in Fig. 7. Now the effect of
the interaction is to destabilize one of the electromechanical
modes, leading to unstable oscillations.

We now examine the movement of p for some of the
cases considered. In the weak resonance case of Fig. 3, the
movement of i is confined to the negative real axis; starting
from a negative value, p increases, slows down and touches the
origin and then decreases. In the type A perturbation case of
Fig. 4, the movement of y is similarly confined to the negative
real axis, the only difference is that the locus is shified in a
negative direction so that ¢ never reaches the origin. For both
Fig. 3 and Fig. 4, the movement of 4 is a degenerate parabola
confined to the negative real axis because the corresponding
eigenvalue movement is vertical. In the type B perturbation
case of Fig. 5, the parabolic movement of p is shown in
Fig. 10; note that the vertical scale is one hundred times
smaller than the horizontal scale so that the parabola is very
close 1o the real axis. When the real part of y is negative and
not near zero, its angle is very nearly 180° and the eigenvalues
approach each other vertically. When p is real and positive, its
angle is 0° and the eigenvalues are horizontally separated; that
is, the eigenvalues have the same frequency. When 4 passes
near zero, the angle of p and the direction of movement of
the eigenvalues changes rapidly. ¢ passes very close to zero
twice and each passage near zero is a close proximity to a
strong resonance corresponding o a sharp change in direction
of the eigenvalues of approximately 90°. In the larger type
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B perturbation case of Fig. 7, the movement of g has the
same parabolic form as Fig. 10; the main difference is that
the vertical scale is 10~ instead of 10~ (the parabola is two
orders of magnitude wider).

IV. CONCLUSIONS

We mathematically analyze generic perturbations of two
complex eigenvalues passing through a weak resonance and
show that there are two types. The function u that describes
the relative positions of the eigenvalues traces a parabola or a
ray in the complex plane and the two types are distinguished
by whether the origin is inside or outside the parabola. In
type A, eigenvalues move together and apart approximately
in the same direction. In type B, the eigenvalues interact by
passing near strong resonances and change their directions of
movement. In particular, at one point during the interaction,
the relative position of the eigenvalues is af approximately
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90° to its original direction. These generic analytic results are
illustrated by examining eigenvalue movements near resonance
of two local area electromechanical modes in a 4 generator
power system example, Eigenvalue movement through exact
weak resonance is observed when the two areas are effectively
decoupled and different perturbations yield the type A and
type B eigenvalue movements. Moreover, a larger lype B
perturbation yields an unstable oscillatory mode caused by the
local area mode resonance.

Consider two complex cigenvalues initially approaching
each other in frequency. If the eigenvalues interact as a type B
perturbation of a weak resonance, the interaction can change
their damping, and, if the effect is strong enough, this can lead
to oscillatory instability. The size of the change in damping is
proportional to the size of the perturbation. If the eigenvalues
interact as a type A perturbation of a weak resonance, then the
results of the intcraction are much less dramatic because the



eigenvalues do not change direction much. However, it is still
useful to know that some perturbations of weak resonance
are relatively innocuous and what these perturbations look
like. Also, if a type A modal interaction is observed, then
the possibility that a modest change in parameters could yield
a type B modal interaction should be considered.

The subsynchronous resonance modal interaction in which
series capacitors in transmission lines cause electrical modes
to resonate with and destabilize turbine shaft modes is a
well known effect [2], [18], [1], [8]. It has recently been
observed that subsynchronous resonance is a perturbation
of a weak resonance in which a pair of strong resonances
arises [5]. Moreover, Figs. 5,6,7 have the same forms as [5,
Figs. 9 and 10] which show eigenvalue interactions for the
IEEE first benchmark model for subsynchronous resonance.
Indeed the subsynchronous rescnance eigenvalue interaction
is a type B perturbation of a weak resonance. Viewing both
subsynchronous resonance and some ¢lectromechanical modal
interactions as type B perturbations of a weak resonance helps
to unify the study of power system oscillations and may help
in developing connections to the broader study of oscitlations
in science and engineering.

Previous work [4] suggested thai interarca oscillations could
be caused by two complex power system modes passing
near a sirong resonance and interacting to cause changes
in damping such that one of the modes became oscillatory
unstable. In this paper we suggest another explanation for
unstable oscillations in which the interactions are a type B
perturbation of a weak resonance. The type B perturbation
explanation is consistent with the explanation in [4] because
in each explanation the instability is caused by two modes
passing near a strong resonance, However, the structure of the
type B perturbation is more elaborate because the eigenvalues
pass near a second strong rescnance to restore stability. That
is, a type B perturbation of a weak resonance involves modes
passing near a pair of strong resonances. A further step in
assessing the importance of these mechanisms for oscillatory
instability will require observation of how often they occur
in detailed and realistic power system models. One of the
contributions of the theoreticai analysis in this paper and [4]
is that it shows what to look for. The power system example
of this paper illustrates in a simple model the possibility that
electromechanical modes can become unstable via the type B
perturbation of a weak resonance.
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APPENDIX

Assume that the power system differential equations with
real parameters t and ¢ are smooth. The unperturbed system
has ¢ = 0 and is assumed to have an asymptotically stable
equilibrium at ¢ = 0. Let the Jacobian matrix evaluated at this
stable equilibrium be J{¢,€). Then J is a well defined smooth
function of ¢ and € near (t,¢) == (0,0).

The unperturbed system is assumed to have a weak res-
onance between two complex modes at ¢ = 0. In particu-
lar, exactly iwo complex eigenvalues of J(t,0) coincide at
eigenvalue A in a weak resonance! at £ = 0. It follows
from the smoothness of the total projection in [10] that the
two dimensional complex eigenspace corresponding to both
of these two eigenvalues is a smooth function of ¢ and €
near (t,e) = (0,0). By restricting J(¢,€) to this eigenspace,
we obtain a 2 x 2 complex matrix M (¢, e) which captures
the eigenstructure of the two modes of interest. (That is, if
P(t,e) is the matrix of the total projection onto the two

"Two other complex conjugate eigenvalues of J(t,0) also coincide in a
weak resonance at eigenvalue A* at ¢ :=Q,



dimenstonal complex eigenspace and (¢, €) is the matrix of
the injection of the two dimensional complex eigenspace into
the state space, then M(f,e) — P(t,€)J(t,e)Q(t,€).) The
complex matrix M (t,€) is a smooth function of ¢ and ¢ near
(t,e) = (0,0), We write

a(t,¢) blt,e
M(i’g €) = ( CE'I'-, E) d(ts C% ) "

Write A1(t,€), Ax(f,€) for the cigenvalues of M(t,€). Ay
and A arc continuous functions, but are not generally dif-
ferentiable at resonances [10)]. However, we can work with
functions that determine the eigenvalues that are smooth.
Define

it €) = (Ma(t,€) = dalt,€))?/4 ®)
Alt,e) = (At e) + Aalt,€))/2 9
A and p may be expressed in terms of M (¢, €) by

A(t,€) = Trace{M(t,e)/2}
u(t ) = (Trace{M(t, )/2})* ~ Det{M(t,¢)}

d)? + be

(10)
an

1
= 4(@ (12)
The smoothness of A and g and their independence from
coordinates follows from (10) and (11) and the smoothness
of M.

The condition for coincident and resonant cigenvalues is
p# = 0. Indeed, the condition for strong resonance of M is
g =0 and b and ¢ not both zero and the condition for weak
resonance of M is py=0and b=c=0.

The assumption of weak resonance at (£,¢) — (0,0) implies

that
M(o,u];(ﬁ\(ﬂ_.ﬂ} 0 )

0 A®0,0) a3

It follows from (13) that
£(0,0) =0 (14)

Starting from (12), we compute some derivatives of x4 and
evaluate them at (t,€) = (0,0), The derivative of u with
respect 10 ¢ evaluated at (0,0) is written as p¢/p.

pr = (a—d)(a, —di)/2+ be+ bey
pe = (e —d)(a, —d.)/2+ bee+ be.

flo =0
P’c]ﬂ =0
24 = purlo = [(ae — de)*/2 + 2oece] o

2B = ru'££|0 = [(ae - dr)2!2 + chce] |0
2H = pelo = [(@r — de)(ae — de)/2 + bece + bece] o
Then for small (¢, ¢) we have the Taylor series
1t €) = At? + 2Hte + Be* + h.ot. (15)

Approximalting to second order in € and { by neglecting the
third and higher order terms, we get

ult, €) = At + 2Hte + Be? (16)

All the following results analyze (16) and thus yield results
about (15) and the power system differential equations that are
only accurate to second order in ¢ and ¢.

We make the generic assumption that A # 0, We claim that
the locus of (16) is a parabola in the complex plane C. For
¢ # 0, it is convenient to define scaled variables

;M , ¢ H B

= ==, H==, B == '
=2 t € A A amn
so that .
u' =t L 2H'Y + B (18)
Taking imaginary and real parts of (18) yields
ui = 2H{t' + B! (19)
2
py = 1'°+2H' + B, (20
In the case ] # 0, (19) can be written
' f‘-; - B!
V= "ogr 21

and (20) becomes

1 /
= - L, —
4H? (b

I B +2H{H)) + B, - H' @)
(22) is a parabola with principal axis parallel to the real axis
and maximum curvature 1/(41'[;2). (16) is simply a rescaling
of (22) by |Ale? that is rotated through ZA. Hence (16) is
a parabola with grincipal axis parallel to A and maximum
curvature /(477" A{¢?). The parabola (16) only changes its
scale as € changes; in particular, its scale is proportional to €2.
In the case H] — 0, (19) becomes

w = B; (23)

and (23) and (20) show that (18) is lies in a horizontal line
and is a degencratc parabola. Hence (16) lies in a line in the
direction of 4 and is a degenerate parabola,

For € = 0, a weak resonance is encountered at ¢ = 0 and

u(t,0) = At? (24

which is a ray through the origin in the direction of A and
4 degenerate parabola. Notice that (24) is a smooth curve
everywhere (ifs derivative vanishes at the origin) and is a
smoothly embedded curve cxcepl at the origin, (l6) is a
continuous perturbation of (24) as ¢ varies near zero and,
except at the origin, is a smooth perturbation of (24). Thus,
for sufficiently small ¢, (16) is a parabola close to the ray (24)
and, except near the origin, is C! close to the ray (24).

We can analyze the relative movement between the eigen-
values Ay — Az using (16). Recall that

M= A2 =2VF @5)
For |t| large with respect 1o ¢, u ~ At? and
A=A~ £2VA L (26)

so that the cigenvalues approach each other or separate ap-
proximately along a straight line in the direction v/ A.



The line through the origin parallel to the principal axis of
the parabola is given by

= Ake?, kEcR 27

The intersection between the parabola (16) and the line (27)
satisfies

At? + 2Hte + Be? = Aké® (28)

Dividing (28) by Ae® and taking the imaginary part yields, at
the intersection,

Ble
t= -t (29)
2H]
and
B H.B!
h=—li- 4B (30)

If &£ > O then 0 is cutside the parabola and the perturbaticn
is type A and if k£ < 0 then 0 is inside the parabola and the
perturbation is type B.

The eigenvalue separation at the intersection is, using (25)

and (27),
AL — Ay =22V AVE €

The magnitude of the eigenvalue separation at the intersection
is, proportional to . According to (31} the sign of k also
determines the relative direction of the eigenvalues at the
intersection. In type A, & > 0 and the ecigenvalue relative
direction at the intersection is along the same direction (26)
as the eigenvalues initially approximately approach or finally
leave. In type B, k < 0 and the eigenvalue relative direction
at the intersection is in the direction j\/Z, which is at 90° to
the direction (26) that the eigenvalues initially approximately
approach or finally leave.

In [5] a similar analysis is conducted, but with ¢ considered
to be a complex parameter (the power system differential
equations are assumed analytic in £ so that u(%, ) is analytic
in &). The second order Taylor expansion (16) remains valid
and factors into linear terms:

ult,e) = A1 (At + (H +/H? - AB) e)
(4t + (B - VH? = 4B) <)

Thus, to second order, the complex roots ¢ of u(t,e) = G
lie on two straight lines passing through the origin as € is
varied near zero. This implies that the double root at (£, €) =
(0,0) corresponding to a weak resonance typicaily perturbs
to two strong resonances in the complex plane near zero as
€ changes from zero. When the parameterization is restricted
to real values of £, {5] concludes that, since the two strong
resonances generally lie in the complex plane off the real axis,
the system generally does not encounter either of the strong
resonances as t varies near zero. However, for small ¢, the
proximity of the strong resonances to the origin of the complex
plane implies that the system does pass close to the strong
resonances as ¢ varies near zero. Thus the power system passes
close to two strong resonances at a general, small perturbation
of a weak resonance.
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