
Critical points and transitions in an electric power transmission model
for cascading failure blackouts

B. A. Carreras and V. E. Lynch
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

I. Dobson
ECE Department, University of Wisconsin, Madison, Wisconsin 53706

D. E. Newman
Physics Department, University of Alaska, Fairbanks, Alaska 99775

�Received 1 March 2002; accepted 10 July 2002; published 9 September 2002�

Cascading failures in large-scale electric power transmission systems are an important cause of
blackouts. Analysis of North American blackout data has revealed power law �algebraic� tails in the
blackout size probability distribution which suggests a dynamical origin. With this observation as
motivation, we examine cascading failure in a simplified transmission system model as load power
demand is increased. The model represents generators, loads, the transmission line network, and the
operating limits on these components. Two types of critical points are identified and are
characterized by transmission line flow limits and generator capability limits, respectively. Results
are obtained for tree networks of a regular form and a more realistic 118-node network. It is found
that operation near critical points can produce power law tails in the blackout size probability
distribution similar to those observed. The complex nature of the solution space due to the
interaction of the two critical points is examined. © 2002 American Institute of Physics.
�DOI: 10.1063/1.1505810�

From the analysis of a 15-year time series of North
American electric power transmission system blackouts,
we have found that the frequency distribution of the
blackout sizes does not decrease exponentially with the
size of the blackout, but rather has a power law tail. The
existence of a power tail suggests that the North Ameri-
can power system has been operated near a critical point.
To see if this is possible, here we explore the critical
points of a simple blackout model that incorporates cir-
cuit equations and a process through which outages of
lines may happen. In spite of the simplifications, this is a
complex problem. Understanding the different transition
points and the characteristic properties of the distribu-
tion function of the blackouts near these points offers a
first step in devising a dynamical model for the power
transmission systems.

I. INTRODUCTION

In spite of technological progress and great investments
to ensure a secure supply of electric energy, blackouts of the
U.S. electric transmission grid are not uncommon. In the last
three decades, blackouts have been happening on average of
one every 13 days.1,2 Furthermore, analyses of 15 years of
North American blackout data show a probability distribu-
tion of blackout sizes has a power tail.3–5 The power tails
indicate that large blackouts are much more likely than might
be expected from Gaussian statistics. Understanding and
analyzing these power tails is important because of the enor-
mous cost to society of large blackouts.

Detailed analysis of large blackouts has shown that they

involve cascading events in which a triggering failure pro-
duces a sequence of secondary failures that lead to blackout
of a large area of the grid.6 Cascading events and power tails
in the probability distribution function are suggestive of a
complex system operating close to a critical point. It is there-
fore important to explore this possibility for electric power
systems.

General approaches from the perspective of network
structure have been developed in studying properties of
power system networks.7,8 We have proposed9–11 an electric
power transmission model to study the dynamics of black-
outs. This model �The model of Refs. 9–11 includes slow
dynamics of load increase and network upgrade as well as
fast dynamics of individual cascading blackouts. In this pa-
per, we assume a fixed network and only study the fast dy-
namics of the model of Refs. 9–11� captures features of cas-
cading outages and is consistent with the standard dc power
flow equations12 for a given network structure. In this paper,
we analyze the critical points of this model as a function of
the increasing power demand. Transition points have been
identified for other types of networks, like traffic models,13
computer networks,14 and neural networks.15

In the present calculations, we have considered two
types of networks. One type is the idealized tree network
such as the one shown in Fig. 1. These networks are useful
because their symmetry allows the use of very few free pa-
rameters and the properties of the network can be studied by
increasing its size in a self-similar manner. Although the tree
network is an artificial network with more regularity than a
real power network, the three lines incident on each node is
approximately the average for large power networks. We also
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have considered the IEEE 118-bus network13 shown in Fig. 2
to test whether the main results obtained for the ideal net-
works are relevant for more realistic networks.

The paper is organized as follows. Section II describes
the model for the electric power transmission that we use to
study blackouts. The solutions of this model applied to ideal
tree networks are discussed in Sec. III. As the power demand
increases, several transition points are identified. The struc-
ture of the solutions and transition regions are presented in
Sec. IV. Section V discusses the effect of fluctuations in the
power demand and calculates the probability distribution
function of the blackout size. Application of this model to a
more realistic network is presented in Sec. VI. Finally, the
conclusions are given in Sec. VII.

II. ELECTRIC POWER TRANSMISSION MODEL

We use a simple model to describe the electric power
transmission network as a set of nodes interconnected by
transmission lines. The network nodes represent loads �L�,
generators �G�, or combinations of load and generation. The

network nodes are characterized by the input power, Pi ,
which is positive for generators and negative for loads, and,
in case of generators, the maximum power that a generator
can supply, Pi

max . Each network transmission line connects
two nodes, i and j , and is characterized by the power flow
through the line, Fi j , the maximum power flow that it can
carry, Fi j

max , and the impedance of the line, zi j . This model
allows the consideration of any interconnected network with
NN�NG�NL nodes and N1 lines, where NG is the number
of generators and NL is the number of loads.

The ‘‘dc power flow’’ equations are used to study the
power flow through the network; they give a linear relation-
ship between the power flowing through the lines and the
power input at the nodes. This approach is a standard way of
analyzing a power transmission system12 and it is equivalent
to a linearized version of the more common problem of solv-
ing for the voltages and currents in a circuit. The dc power
flow equations can be written as

F�AP , �1�

where F is a vector whose N1 components are the power
flows through the lines, Fi j , P is a vector whose NN�1
components are the input power of each node, Pi , except the
reference generator, P0 , and A is a constant matrix, whose
elements can be calculated in terms of the impedance of the
lines. More detail on Eq. �1� is given in the Appendix and in
Ref. 12.

For a given load power demand and the grid parameters
defined above, the system of equations �1� does not have a
unique solution. There are many ways of choosing a combi-
nation of generator powers to satisfy a given load demand.
Therefore, to find the solution to this system, we chose an
optimum combination of generator powers. Optimization of
a real power transmission system accounts for many factors,
from safe operation to economic gain. Here we use a stan-
dard optimization approach,16–18 and we solve the power
flow equations, Eq. �1� while minimizing the simple cost
function:

Cost� �
i�G

Pi� t ��W�
j�L

P j� t �. �2�

In this model, we assume that all generators run at the
same cost and all loads have the same priority to be served.
However, we set up a high price for load shed by setting
W�100. The minimization of the cost function is done with
the following constraints.

�1� Limits on the generator power: 0�Pi�Pi
max i�G;

�2� The loads must remain such and cannot generate power:
P j�0 j�L;

�3� Power flow through the lines is limited: �Fi j��Fi j
max;

�4� The total power generated and consumed must balance:
� i�G�LPi�0.

This optimization problem is a standard linear programming
�LP� problem.16,17 It is numerically solved using the simplex
method as implemented in Ref. 19.

It is useful to introduce the quantity

FIG. 1. A 94-node tree network with 12 generators �gray squares� and 82
loads �black squares�.

FIG. 2. Diagram of the IEEE 118 bus network. Generators are gray squares
and loads are the black squares.
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Mi j�
Fi j

Fi j
max . �3�

This quantity is the fraction of overloading of the line con-
necting the nodes i and j . We use the quantities Mi j and the
power produced by each generator to describe the solution of
the optimization problem. A line with Mi j�1 still has mar-
gin to carry more power. We consider that a line is over-
loaded if the power flow through this line is within 1% of
Fi j
max .
The entire process has several sources of nonlinearity.

The constrained optimization used to solve Eq. �1� intro-
duces nonlinearity because the active constraint can change.
Looking at a sequence of solutions as a function of the total
power load, we see that they are piecewise linear. This is the
type of nonlinearity introduced by constraints. The lines that
overload are detected by the threshold condition Mi j�1, and
the line outage is implemented by changing the structure of
equations and constraints; and all of these processes are non-
linear.

A cascading overload may start if one or more lines are
overloaded in the solution of the linear programming prob-
lem. In this situation, we assume that there is a probability,
p1 , that an overloaded line will suffer an outage. When a
solution is found, the overloaded lines of the solution are
tested for possible outages. If there is one or more line out-
ages, we multiply the line impedance by a large number, 	1 ,
and divide its corresponding Fi j

max by another large number,
	2 . In this way, there is practically no power flow through
this line. This method models well the effect of a line outage
and avoids the singularity in the matrix that would result
from removing the outage line. Once the power flow through
the lines is reduced, a new solution is then calculated. This
process can lead to multiple iterations, and the process con-
tinues until a solution is found with no more line outages.
This cascading effect introduces another nonlinearity into the
problem. The overall effect of the process is to generate a
possible cascade of line outages that is consistent with the
network constraints and optimization.

III. SOLUTION OF THE POWER FLOW EQUATIONS
FOR IDEAL NETWORKS

Most of the results presented in this paper are based on
tree networks. Although the tree networks are artificial net-
works with more regularity than a real power network, the
three lines incident on each node is approximately the aver-
age for large power networks. In a real power network, the
generation is dispersed in a variable manner throughout the
network. In order to study a more ordered case, the genera-
tors in the tree networks are placed at nodes in the third
generation level. An example of a tree network with 94
nodes is shown in Fig. 1. For all the tree networks consid-
ered, we keep the generators at the nodes indicated in Fig. 1.
As we increase the size of the network, that is the number of
nodes, we add links to two more loads for all the loads at the
edge of the network. If we call each family of added loads a
generation, the example in Fig. 1 has five generations of
nodes. The number of nodes of a tree network as a function
of the number of generations is NN�3�2n�2. Because of

the network structure and the equal impedance of the lines, it
is logical to have the maximum power flow of a line in
generation k to decrease as 2(3�k). That is, the maximum
power flow of lines in generation k�1 is half of the maxi-
mum power flow of lines in generation k . Note that the gen-
erators are located in the third generation. For the calcula-
tions presented here, we consider tree networks with 46, 94,
190, and 382 nodes.

Because of the symmetry and simplicity of these net-
works, we can work with a single control parameter, the total
load power demand. We generate a sequence of solutions of
the power flow equations for increasing values of the power
demand. To be able to reduce the parameters to a single
parameter, we take the loads to be equal to the averaged total
power demand per load times a random number r , such that
2�
�r�
 , where 0�
�2. This random fluctuation of the
loads allow us to explore different solutions for a given
power demand and carry out statistical analysis of these so-
lutions. First, we look for solution at very low power demand
and without load fluctuations so that 
�1. Here, low power
means low compared with the total generation capacity of
the system, PC�� j�GP j

max , and low enough to avoid any
line overload. Under these conditions the solution is rela-
tively simple. For all lines in the rings outside the ring of
generators, the value of Mi j is the same. This is just a con-
sequence of our choice of values for Fi j

max and the symmetry
of the system. For a particular example with NN�382 and
PD /PC�0.3, the values of Mi j for all lines are plotted in
Fig. 3. The lines outside the generator ring have line numbers
greater than 12 and have Mi j�0.601. The lines in the inner
region of the network have smaller values because of the
redundancy of lines in this region. In spite of the symmetry
of the system, an optimal solution does not have the same
power output for all generators. Figure 4 shows the distribu-
tion of the power output among the generators. We can see
that the power output of generator 12 is practically zero and
that generator 11 has somewhat reduced power; all the other

FIG. 3. Fraction of overload of the lines in the 382 node tree network
operating at PD /PC�0.3, well below any of the limits of the system.
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generators operate at maximum capacity. In this type of so-
lution, some generators are being kept as backup generators.
Therefore, the LP optimization has the effect of operating the
system in an inhomogeneous way, in spite of its symmetry.
Because the power demand for all loads is the same, so is the
power delivered to each load. A list of detailed parameters
used in the calculation for those networks are given in Table
I.

In this low power demand regime, the system is analyti-
cally soluble. For a network with n generations of nodes and
without load power fluctuations, the power demand per load
is PD /(3�2n�14). Therefore, the power flow through the
lines that connect nodes of the generation k–1 to nodes of
the generation k is

Fi j�
2�2n�3�1 �

2k�3�3�2n�14�
PD. �4�

Having the power flows in all lines, the problem is essen-
tially solved.

As the power demand increases, but stays small in the
sense previously described, the solution is qualitatively the
same. In this case, the values of Mi j increase linearly with
the power demand, as can be seen from Eq. �4�.

IV. TRANSITION POINTS FOR AN IDEAL NETWORK

As the power demand continues to increase, the model
has several transition points. These transitions represent a
change in the character of the solutions. These transitions can
be characterized by two complementary measures of the
blackout size. One of these measures is the load shed. In
situations in which the power demand cannot be met by the
generators, either because of insufficient capacity or because
of a transmission line outage, the only way of finding a so-
lution is by shedding load and partially or totally blacking
out some nodes. In this case, the power demand is not met
and the power served is lower than the demand. In what
follows, we use the load shed divided by the power demand,
PS /PD , as a measure of blackout size. The other measure of
blackout size is the number of line outages in the final solu-
tion.

The different transitions are caused by different limits in
the power system. The limits can be grouped in two types:

�1� Limits set by the available power generation. It is clear
that the system cannot supply more power than PC , the
total maximum installed generator capacity.

�2� Limits set by the transmission capacity of the grid. Each
line has a maximum power flow that it can carry, Fi j

max .
This maximum sets the limit for each line and, as a re-
sult, limits the total capacity of the network.

An example with two of these limits is shown in Fig. 5.
For a tree network with 382 nodes �12 generators and 370
loads�, we increase load power demand by increasing all
loads at the same rate. In this example, the load demand
increase is continuous, and we have not included random
fluctuation in the load demands (
�1). As the power de-
mand reaches the total generator capacity, PD /PC�1, and
load shedding begins. As the demand continues to increase,
all power above PC is shed. The nodes in the outermost ring
of the network are progressively blacked out. When
PD /PC�1.45, the power flow in some lines reaches the line
power flow limit, and some line outages are produced. These
line outages disconnect parts of the network from the gen-
erators and more nodes are blacked out. These blackouts
further increase the load power shed.

Why is there a second transition even after the total
power served is kept constant and is therefore independent of
the level of demand? The reason is that the individual loads
increase, and the power shed is not uniform over all loads.
Therefore, even if the total power served is constant, the
power delivered to some of the loads is increased as the total

FIG. 4. Fraction of the power produced by the 12 generators in the 382 node
tree network operating at PD /PC�0.3, well below any of the limits of the
system.

TABLE I. Values of the parameters used for the tree networks. All lines have impedance z�1.

NN PL PG

Fmax

n�0
Fmax

n�1
Fmax

n�2
Fmax

n�3
Fmax

n�4
Fmax

n�5
Fmax

n�6

46.000 �74 2623.9 15620 7748.7 3812.9 1844.9
94.000 �74 2623.9 15620 7748.7 3812.9 1844.9 860.97
190.00 �74 2623.9 15620 7748.7 3812.9 1844.9 860.97 368.99
384.00 �74 2623.9 15620 7748.7 3812.9 1844.9 860.97 368.99 123.00
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demand increases while others are blacked out. That increase
in power demand to those loads leads to overloaded lines
connected to them and possible line outages. The second
transition point occurs at the same value of the power de-
mand. This transition occurs even in the absence of the first
critical point because it depends on the power of individual
loads and the maximum power flow that the lines connecting
them can carry. These results come from studying a sequence
of cases under the same conditions but without random load
fluctuations. The important point is that the first transition
point is a function of the total power demand, while the
second transition point depends on the local value of the
loads near the lines that are closer to overload. Furthermore,
we have chosen the network parameters in such a way that
most lines reach their limit for the same value of the power
demand. In a general, inhomogeneous network, that is not
the case, and the second transition breaks into multiple tran-
sitions.

For the calculation shown in Fig. 5, we have used the
power demand as the control parameter, and we have done a
scan starting with all load nodes having the same power
loads and no fluctuations. We can look in more detail at the
solutions in the region between the two transition thresholds.
In this region, the solutions are well behaved and have a
continuous character as a function of the power demand.
Because there is power shedding, the Mi j of some lines is
now lower than the others because some loads are at nearly
zero power. This example is shown in Fig. 6 for a case with
PD /PC�1.04. Because the system is working at full capac-
ity, all generators deliver their maximum power. As the
power demand continues to increase, the system reaches the
second threshold at PD /PC�1.45. At this value of the power
demand, several lines reach their maximum loading of Mi j

�1, as shown in Fig 7. To identify this transition point, it is
useful to introduce Mmax�max

ij
Mij . Then, the second transi-

tion in Fig. 5 is given by Mmax�1. Above this threshold,
there are multiple outages, the power shed is large, and the
value of Mi j in the few operating lines is low. An example of
this erratic distribution of values of Mi j is shown in Fig. 8
for PD /PC�1.73.

When the second threshold at PD /PC�1.45 is crossed,
the solution does not appear to be continuous in the power
demand. We have done the calculation for p1�1. That is, all
overloaded lines suffer outages. In this case the problem is in
principle deterministic, but the solutions behave erratically
above this threshold. This behavior can be better seen by
plotting Mi j in a two-dimensional plot as a function of power
demand and line number. This plot is shown in Fig. 9 �for the

FIG. 5. Normalized power shed and number of line outages for a tree
network with 382 nodes as a function of power demand.

FIG. 6. Fraction of overload of the lines in the 382 node tree network
operating at PD /PC�1.04, just above the maximum generator power limit
but below the limits of any of the lines.

FIG. 7. Fraction of overload of the lines in the 382 node tree network
operating at PD /PC�1.45, just at the limit of a set of transmission lines.
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same case as Fig. 5�. There is a uniform pattern of solutions
below the second threshold, and a complex pattern of solu-
tions above the second threshold. In the region above the
second threshold the solutions are not really discontinuous
with the power demand. If we look at Fig. 9 with increased
resolution, we see a sequence of bands of solutions. Within
each band the solutions are continuous with the power de-
mand. However, every time that a new line hits its limit, the
solution changes. Small variations in the power demand
cause new lines to reach their limits and that causes the ap-
parent erratic behavior of the solutions.

The symmetry of the network results in a peculiar be-
havior of the thresholds. As the power demand continues to
increase above the values shown in Fig. 5, it reaches a point
at which all the loads on the outermost ring of the system are
blacked out. At this point the system behaves as a tree net-
work with 192 nodes, and an ordered solution is found. Now
all lines have power flow below their maximum possible
value, and the solutions behave like the ones in the region
1�PD /PC�1.45. This situation continues until another set
of lines becomes overloaded and the system transitions to
erratic solutions. In Fig. 10, we show a plot like the one in
Fig. 9, but extending to larger values of power demand. We
can see alternating bands of erratic and organized solutions.
Therefore, there are many possible transition points depend-
ing on the two conditions listed above and the symmetry of
the network.

The properties of the transitions for Mmax�1 depend on
the value of p1 , the probability that an overloaded line will
suffer an outage. If p1�0, there are no line outages, the
Mmax�1 transition point no longer exists, and the load shed
is a continuous function of the power demand. However, for
p1�1, all overloaded lines suffer outages. As we have al-
ready indicated, this is the value of p1 used in the calculation
shown in Fig. 9 and the transition is characterized by a dis-
continuous jump in the load shed. In Fig. 11, we show ex-
amples of transitions for different values of p1 . For values of
p1 in the interval �0, 1�, for instance for p1�0.1, we have an
intermediate situation with the jump in the load shed at the
transition point being smaller than in the case with p1�1.

In these calculations, we have chosen the parameters so
that the power generation limit is reached for lower power
demands than the line limits. The reason for this choice is to
get a clear separation between the different transitions. How-
ever, in general, the transitions are not organized in any par-
ticular way, and the way that they occur depends on a mul-

FIG. 8. Fraction of overload of the lines in the 382 node tree network
operating at PD /PC�1.73, above the limit of the transmission lines.

FIG. 9. Two-dimensional plot of the fraction of overload of the lines in the
382 node tree network as a function of line and power demand.

FIG. 10. The same plot as Fig. 9, but for an extended range of power
demands.
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tiplicity of parameters. The separation between the transition
points may disappear when the load values fluctuate as dis-
cussed in the next section.

There are several possible numerical implementations of
the optimization algorithm to solve the power transmission
model. The solutions in the ordered bands are found to be
independent of the solver used and so are the transition
points. However, the solutions in the erratic bands may de-
pend on the numerical method. This possibility is not surpris-
ing because the solution depends on the order that the con-
straints are applied, and there is irreversibility in the
cascading process.

V. EFFECT OF LOAD FLUCTUATIONS NEAR THE
TRANSITION POINTS

To understand the statistical properties of the solution of
the power transmission problem near the transitions, it is
interesting to introduce fluctuations in the values of the load
around an averaged value given by the power demand per
load. The load fluctuations are controlled by the parameter 

as described in Sec. III. We no longer necessarily apply the
random fluctuations to each node independently of the oth-
ers. We group nodes by regions and vary equally all the
nodes in a given region. The reason for this grouping is to
simulate weather effects that normally are not limited to a
single power distribution center, but rather affect to a whole
region of the country. For a given value of 
, the standard
deviation of the fluctuation induced in the total power de-
mand is ��(
�1)/(2�NF)PD . Here NF is the number of
independent regions in the network. When we operate at a
value of PD /PC close to the generator limit, the load fluc-
tuations may reach the generator limit. Furthermore, if � is
large enough, the fluctuations may hit both the generator
limit and some of the transition points associated with
Mmax�1. In this situation, it is interesting to analyze the
properties of the solutions when PD /PC�1, and we vary the
parameter 
.

We have done a sequence of calculations with 
�1.9
and PD /PC varying between 0.3 and 1.5 for the tree network
with 382 nodes. For each set of parameters, we have consid-
ered 60 000 cases by random variation of the loads. This
number of cases has allowed accumulating enough statistics
to calculate the probability distribution function �PDF� of the
amount of load shed. Load power shed is one measure of
blackout size.

In Fig. 12, we have plotted the PDF of the load power
shed normalized to the power demand for three values of
PD /PC . Well below the critical point, the PDF is peaked at
low values of the power shed and has a tail falling off as the
�2 power of the load shed. This type of PDF is a conse-
quence of the network structure we have considered. It can
be shown analytically that a single line failure leads to a
blackout PDF decaying as P�2. High above the critical
point, it has a highly peaked form with mean value at high
values of the power shed. As the power demand reaches to
the critical point, the PDF develops a power tail with a decay
index close to �1. This is indicative that some of these tran-
sitions have the properties of critical transitions.20,21 For the
parameters used in Fig. 12, the level of fluctuations is high
enough to reach the critical value for a power demand of
30% below the generator limit. We have included a probabil-
ity of a random line failure p0�10�4. Because of the finite
size of the system, there is an exponential cutoff in the PDF.
To positively identify the power tail region, it is important to
consider large networks and do finite size scaling of the re-
sults. In Fig. 13, we compare the PDF close to the critical
point for a 46-node tree network with the 382-node tree net-
work. We can see that the algebraic region of the tail expands
as the network size increases.

Similar behavior has also been observed in a simple ana-
lytic model of cascading failure and in a power transmission
system model that represents cascading failure because of
hidden failures of the protection system.22

FIG. 11. Normalized power shed for a tree network with 382 nodes as a
function of load power demand. Results for three different values of the
probability for overloaded lines to outage are plotted.

FIG. 12. PDF of the normalized load shed for a tree 382-node tree network
for different levels of the power demand.
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VI. ANALYSIS OF A MORE REALISTIC NETWORK

The properties described in the previous sections for the
ideal tree networks also apply to more realistic networks.
However, it is more difficult to make a proper identification
of the transition points in more realistic networks because of
the variations in line limits and line flows. Moreover, for
more realistic networks, the total power demand is no longer
a unique parameter to vary in order to produce the critical
points, and a proper parameter representation requires a mul-
tidimensional space.

We have used one of the standard networks for power
system studies, the IEEE 118 bus network,14 as an example
of a more realistic network. The values of the parameters
used in these calculations are given in Ref. 14. Figure 14

shows a power demand scan for the IEEE 118-bus network
similar to the scan for the ideal network in Fig. 5. In particu-
lar, Fig. 14 shows the load shed and the number of line
outages as a function of the power demand. There is a critical
point caused by the maximum generator power slightly be-
low PD /PC�1.0. However, the Mmax�1 critical points are
spread over a large range of power demand, even below
PD /PC�1.0.

In Fig. 15, we have plotted Mi j in a two-dimensional
plot as a function of power demand and line number. Figure
15 is the analog to Fig. 9, and we can see that Fig. 15 shows
more structure than Fig. 9. That should be expected because
the fraction of overloads for each line have different values,
and they reach the limit for very different levels of power
demand. However, there is a continuous dependence of the
solutions with power demand for PD /PC�1.1, except for a
narrow band with one line outage. When PD /PC�1.1, there
are many transitions associated with Mmax�1. In this region,
the solutions lie in narrow bands that change in an erratic
way because different lines reaching their power flow limits.
Thus, we observe the same qualitative behavior of the solu-
tions as for the ideal networks. However, the limits associ-
ated with the line limits are now spread over a range of
values of the power demand, and the associated jumps in the
loads shed are individually smaller than in Fig. 11, in which
many of these limits happen at the same power demand
level.

When the load scan is done allowing fluctuation of the
loads, we can calculate the probability distribution function
of blackouts for different values of the mean load demand. In
this case, the PDF at low values of the power demand is

FIG. 13. Comparison of the PDFs of the normalized load shed 46-node and
382-node tree networks.

FIG. 14. Normalized power shed and number of outaged lines for the IEEE
118 bus network as a function of power demand.

FIG. 15. Two-dimensional plot of the fraction of overload of the lines in the
IEEE 118 bus network as a function of line and power demand.

992 Chaos, Vol. 12, No. 4, 2002 Carreras et al.

Downloaded 08 Nov 2002 to 128.104.182.203. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



close to a Gaussian function, because a single line failure
does not induce large blackouts. As was the case in the ideal
networks, we observe in Fig. 16 the appearance of a power
tail in the proximity of the critical points. Because the net-
work has only 118 nodes, the decay index is difficult to de-
termine, as we discussed in relation to the comparison shown
in Fig. 13.

VII. CONCLUSIONS

The power transmission model discussed in this paper
has two types of transitions in its cascading failure blackouts
as the load power demand is increased. The first type of
transition is because of the limit on total generator capacity.
The second type of transition is due to the power flow limits
of the network lines. If we characterize the blackouts by the
amount of load power shed, we can see that at the first tran-
sition point the power shed starts increasing with the power
demand. Its value is continuous at this point, but its deriva-
tive is discontinuous. Therefore, it has the characteristic
properties of a second order transition.

The second type of transition is characterized by a sud-
den jump in the power shed. Both the value and the deriva-
tive of the power shed as a function of the power demand are
discontinuous at these transition points. These transitions,
caused by limitations in the transmission lines, are similar to
a first-order transition. They can lead to solutions of the sys-
tem that appear to be erratic as the power demand changes.
There are many narrow bands of solutions and the edge of
each band corresponds to a line limit.

Some of these transition points have the characteristic
properties of a critical transition. That is, when the load
power demand is close to a critical value, the probability

distribution function of the blackout size has an algebraic
tail, and, at the critical loading, the risk for blackouts in-
creases sharply.

The general results found for ideal, homogeneous tree
networks have also been reproduced in the more realistic
inhomogeneous case of the IEEE 118-bus network. These
calculations confirm the robustness of the results.

Analyses of 15 years of North American blackout data
show a probability distribution of blackout size that has a
power tail3,4,23 similar to the power tails found in this paper
near the critical transitions. This analysis suggests that the
North American power system may be operated close to
these critical transitions. Such operation may be the results
of competing forces, such as the secular increase of the
power demand and the upgrading of the power system as a
response to this demand leading to a complex dynamical
behavior. These competing forces may lead to a complex
dynamics evolution of the power system. This possibility is
under investigation.9–11
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APPENDIX: THE dc POWER FLOW MODEL

In the dc power flow model, the bus �node� voltages are
60 Hz phasors specified by complex number magnitude and
phase. Uniform voltage magnitudes normalized to 1 are as-
sumed so that the voltage magnitude is 1 and the voltage
phase is � i , where � i is the voltage angle at bus i . The
reference bus has voltage angle zero. Then an n-dimensional
vector 
 of voltage angles can be defined including the zero
angle of the reference bus.

The transmission lines are characterized by transmission
line susceptance, bi j . Since transmission line resistance is
neglected, bi j�1/zi j where zi j is the line inductance. The
Nl�Nl matrix B is defined by

Bii� �
node j connected to node i

bi j ,

Bi j��bi j .
�A1�

The transmission line susceptance accounts for suscep-
tance of the transmission line as well as the susceptance of
transformers in the line.

FIG. 16. PDF of the normalized load shed for the IEEE 118 bus network for
different levels of power demand.
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From standard ac circuit equations10 and after lineariza-
tion we have the following relation between the power input
at the nodes and the voltage angle

P�B
 . �A2�

Here, P is the vector defined in Sec. II. The matrix B must
be singular (B has rank NN�1) because of the constraint
�k�0

NG Pk�0. Inverting Eq. �A2�, allowing for the constraint
and using the zero angle of the reference bus, we obtain the
voltage phase in terms of the power generator of each node,

�XP .

The flow on the line connecting bus i to bus j is Fi j
�bi j(� i�� j). Therefore, combining all these relation we
obtain Eq. �1�.
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