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Abstract - The periodical repetition of market conditions
over time leads to the repeated playing of similar games (or
supergames) by participants in electricity markets. This rep-
etition of games tempts participants to walk away from the
best-response equilibrium strategies provided by Nash so-
lutions. Although Nash solutions make theoretical sense in
non-repeated games, their applicability in repeated games is
weakened by the fact that these solutions are not, in general,
Pareto optimal. This fact paves the way to more complex
games where participants are driven by profit maximization
in the long run and are, therefore, enticed to explore dif-
ferent solutions in the short term. Knowing that they will
meet in similar games in the near future, makes the players
adopt implicit cooperative behavior. The willingness to work
to a common end may be modeled in automata or agents –
which substitute the players – that incorporate collaborative
profiles in their stochastical responses to the other automata
strategic moves.

Keywords - Electricity markets, supergames, Pareto
optimal, automata

1 INTRODUCTION

THE shift from cost-based to price-based trade solu-
tions in re-regulated electricity markets gave rise to

market gaming by participants seeking profit maximiza-
tion. Strategic solutions, namely strategic equilibria, are
of major interest in helping to understand trading – and
trading outcomes – in the new competitive electricity mar-
kets. Multiple equilibria have been shown to exist in a
Poolco model wherein some particular assumptions are
made [1, 2]. In addition, a method to find these multiple
equilibria under this model has been proposed [3]. The
model we refer to assumes that the participants or players
in the market are rational and attempt to maximize their
individual profits by untruthfully revealing their costs in
their bid curves. What they play is assumed to be char-
acterized as a static, non-cooperative, continuous-kernel
game under complete information, and the solutions pre-
scribed by this game are Nash equilibria [4], either in pure
or in mixed strategies.

When the game is non-repeated, the players are left
with multiple Nash equilibria to choose from. A Nash
equilibrium (or non-cooperative equilibrium) is a solution
that is an indididual’s best response to strategies actually
played by his or her opponents. In other words, it has in-
dividual stability.

However, the market conditions have cycles corre-
sponding to the natural and predictable swings of the load
over daily, monthly, seasonally, and yearly periods. This
makes the players meet again and again under similar
scenarios and, more importantly, makes the players learn
and collect information from these repeated games. Su-
pergame is the term used to describe an infinite sequence
of these ordinary games played repeatedly over time. In
[5], supergame equilibria were characterized for games
wherein a discount factor was applied to the players’ rev-
enues obtained for an infinite time horizon. This discount
factor is what allows players to measure the temptation
of deviating from the equilibrium solution for a particular
stage of the game. If, however, the period of time over
which the game will be repeatedly played is unknown, the
discount factor loses its applicability. In our model we as-
sume there is no such known parameter. Moreover, we
assume that players do not take refuge in an equilibrium
solution to avoid being hurt by other players’ strategies.

In addition, evidence extracted from experimentation
suggests that high revenue solutions can be maintained re-
peatedly when these do not necessarily correspond to near-
equilibrium outcomes [6]. This paradoxical reality under-
lines the idea that the repetition of games combined with
the fact that Nash equilibria are not, in general, Pareto op-
timal, drives the market participants to higher-revenue so-
lutions. A decision vector is Pareto optimal if there does
not exist another decision vector for which some individ-
ual objective function may be improved without deteri-
orating the remaining individual objective functions [7].
In addition to Pareto optimality we can also define weak
Pareto optimality. A decision vector is weakly Pareto op-
timal if there does not exist any other decision vector for
which all the individual objective functions are improved.
The Pareto optimal set is a subset of the weakly Pareto op-
timal set. The following definitions and theorems, which
may be found in [7, 4] along with the respective proofs,
formalize the concepts of Nash equilibrium and Pareto op-
timality.

Definition 1 A decision vectorx∗ ∈ S is called a non-
cooperative equilibrium or Nash equilibrium if
fi(x∗) = sup

xi∈Si
fi(xi,x∗−i) for all i = 1, . . . , k ,

wherefi are the individual utility functions, andx∗−i de-
notesx∗ with xi removed.
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Definition 2 A decision vectorx∗ ∈ S is Pareto optimal
if there does not exist another decision vectorx ∈ S such
that fi(x) ≥ fi(x∗) for all i = 1, . . . , k and fj(x) >
fj(x∗) for at least one indexj.

Definition 3 A decision vectorx∗ ∈ S is weakly Pareto
optimal if there does not exist another decision vector
x ∈ S such thatfi(x) > fi(x∗) for all i = 1, . . . , k.

Theorem 1 The solution of the weighting problem

maximize
k∑
i=1

wi · fi(x)

subject to x ∈ S,
where wi ≥ 0 for all i = 1, . . . , k and∑k

i=1
wi = 1

is weakly Pareto optimal.

Theorem 2 The solution of the weighting problem is
Pareto optimal if the weighting coefficients are positive,
that iswi > 0 for all i = 1, . . . , k.

Because the Pareto optimal solution set and the Nash
equilibria set are distinct, the players are caught between
choosing higher revenue strategies and best-response
strategies. In our point of view, none of them provides
the strategic solutions to the game the players have to face
repeatedly. Instead, they will put in place strategies that
maximize their revenues in the long run, by reacting on
each stage of the game according to the moves or read-
justments of the other players. This approach brings in
notions of “collaborative” and “non-collaborative” that in-
dicate the player’s profile or measure the degree by which
the players feel attracted to contribute to a higher rev-
enue joint solution. This comprises a paradoxical behav-
ior, for it is clear that rationality dictates the choice of
best-response solutions. However, in the long-run these
might lead to lower revenue outcomes for all the players
involved.

In [8], the authors address the problem of distributed
decision-making by distributed agents and characterize
the problem of chosing between attractors and Pareto op-
tima as a question of local versus global optimization.
They propose ways of changing their decision-attractors
both by modifying the way the agents work and by modi-
fying their environment.

As markets become more complex, players’ strategies
are likely to be represented by computer programs or au-
tomata that conduct strategies based on observation of past
moves by its opponents. In [9], the authors explore the ex-
istence of Nash equilibria in repeated games where play-
ers use finite automata to implement their strategies. It is
assumed that the players seek profit maximization while
minimizing implementation costs. In our model we as-
sume no such cost implementation. Instead, we propose a
very simple, finite state machine that is capable of imple-
menting a simple stochastic game.

So, rather than proposing any type of supergame equi-
librium, we find a stochastic approach modeling the play-
ers’ behavior to be more appropriate. Stochastic moves
may be seen as a means to mask strategies and, as a result,
to lead to non-equilibrium solutions. That is, the model we
propose does not provide us with deterministic solutions
for the market outcome. It is a stochastic model that in-
dicates how, based on deterministic information provided
by the Nash equilibria and the Pareto optimal sets, the su-
pergames in electricity markets should be played by au-
tomata when pursuing long term profit maximization.

Furthermore, these automata should not only be able
to implement a specified stochastic profile but also capa-
ble of updating their profiles – due to market changes as
new participants enter – using estimates based on collected
market data. Besides, if a collaborative outcome is the de-
sirable solution, these automata should play clear moves
that are not mistaken by its opponents and, therefore, do
not undermine the market confidence in a collaborative
result – which likely has the consequence of driving the
market to an equilibrium.

The paper has three more sections. In Section 2
we present the readjustment algorithm used in the re-
peated game. In addition, the automata models are also
explained. Our proposals are exemplified in Section 3
through a simple case. In Section 4 we draw some con-
clusions about the work presented in this paper.

2 THE READJUSTMENT STRATEGY

Under the Individual Welfare Maximization (IWM)
algorithm, the players find the non-cooperative equilib-
rium solutions for the non-repeated game by indepen-
dently solving a nested optimization problem for each of
the bidding space regions defined by transmission line
constraints [1, 2, 3]. The problem assumes the form

max
αp

Fp = fp(Pp,Dp,λp) , ∀p ∈ P

s.t.(Pp,Dp,λp) are determined by
max
x,P,D

∑
i∈D

Bi(Di, αD,i)−
∑
i∈G

Ci(Pi, αP,i)

s.t. h(x,P,D) = 0
g(x,P,D) ≤ 0


(1)

wherefp(·) denotes the utility function of playerp in the
set of players,P. Also, fp(·) is defined as the difference
between the sum of benefits minus charges and the sum
of payments minus costs from the set of his or her con-
trolled generators and loads. The vectors of generation
and load controlled by playerp are denoted byPp andDp,
respectively. Each playerp controls a vector of reported
variables that is represented byαp. The nodal prices ap-
plied to the generation and load controlled by playerp are
a byproduct of the OPF and appear asλp. The cost and
benefit functions of each generator and load are denoted



byCi andBi, respectively.G represents the set of genera-
tors andD represents the set of loads. The cost and bene-
fit function are assumed to be well described by quadratic
functions

Ci(Pi) = aP,i.P
2
i + bP,i.Pi + cP,i , i ∈ G (2)

Bi(Di) = aD,i.D
2
i + bD,i.Di + cD,i , i ∈ D (3)

whereαp, the untruthfully reported parameter or parame-
ters, substitutes one or more of the true cost coefficients
in the quadratic function. The equality and inequality
constraints are represented byg(·) andh(·), respectively,
whereP is the vector of all generated power,D is the
vector of all loads, andx represents the vector of state
variables.

A Pareto optimal solution can be found, according to
theorems 1 and 2, by substituting the objective function by
the weighted sum of all individual utility functions.

max
αp

Fp =
∑
q∈P

wp,q · fq(Pq,Dq,λq) , ∀p ∈ P

s.t.(Pq,Dq,λq) are determined by
max
x,P,D

∑
i∈D

Bi(Di, αD,i)−
∑
i∈G

Ci(Pi, αP,i)

s.t. h(x,P,D) = 0
g(x,P,D) ≤ 0


where wp,q ≥ 0, ∀q ∈ P and

∑
q∈P

wp,q = 1.

(4)

This method is called the Weighting Method and the
weightswp,q measure the relative importance that player
p gives to the objective function of playerq. The problem
as given in (1) may be seen as a special case of problem
(4) whenwp,q = 0,∀q ∈ P such thatp 6= q. In a non-
cooperative competitive environment it is, however, dif-
ficult to agree upon the ranking or relative merit among
functions of the multiobjective problem. Two cases ap-
pear, nevertheless, as being particularly relevant: the first,
when the objective functions are all weighted equally, cor-
responding to the equivalent situation where there is a
unique decision maker; the second, when the profits at
the Pareto optimal point are all made equal, which corre-
sponds to a somewhat ‘fair’ outcome. We will discuss later
the consequences of not agreeing upon the same Pareto
optimum.

The automata readjustαp for each stage of the re-
peated game by choosing the objective function to be ei-
ther an equilibrium or a Pareto optimal solution and then,
using a local readjustment technique, move one step in the
desired direction. Newton’s method

α(k+1)
p = α(k)

p −ε · (∇2
αpFp)

−1
∣∣
k
·∇αpFp)

∣∣
k
, ∀p ∈ P

(5)
is a good choice for the readjustment scheme because it is
locally optimal, it is easily implemented by an automaton,

and it is a method less prone to misinterpretation by other
automata. The ability to interpret the moves by the other
automata is of crucial importance since the game model
we propose preserves non-cooperation among players.

Given that the automata should not play using short-
term rationality, they require a representation of the play-
ers’ preferences or profiles. In absence of short-term ratio-
nal – therefore deterministic – choices, the profile repre-
sentation has to be necessarily stochastic. One simple rep-
resentation would be a matrix where a player writes his or
her willingness to collaborate at the next stage of the game
conditioned on his or her perception of the other players’
moves during the previous stage. These could have been
either non-collaborative (NC) or collaborative (C). Such a
table would look like Table 1, wherep1, p2, p3, andp4

represent conditional probabilities.

Other players’
last move

C NC

M
y

la
st

m
ov

e

C p1 p2

N
C p3 p4

Table 1: Players’ profiles

These simple automata that move stochastically in re-
action to their opponents’ moves may be also represented
by finite states machines, as illustrated by Figure 1. In
this case we assume that the players limit their choices
to this particular type of machine with this set of possi-
ble states, which means the players will move either to-
wards the equilibrium solution (to state NC) or towards a
particular Pareto optimum (to state C). Were either of the
players’ strategies more complicated or the set of possible
desirable outcomes augmented – multiple Nash equilibria,
multiple Pareto optima – the machines would necessarily
have to include more finite states.

Figure 1: Automaton as a finite state machine

Any representation of the players’ profiles that relies
on the interpretation of the other players’ reactions be-
comes more and more challenged as the number of play-
ers increases. For an Oligopoly with a reduced number
of players, it is easy to estimate the individual moves for
each stage of the game. Moreover, a good estimate of the
profiles may also be constructed. If the number of players
is high, clear estimates of the individual moves and pro-
files may be difficult to obtain and may require the use of
complicated metrics. When this is the case, an estimate of



the market willingness to pursue collaborative outcomes
may be better obtained by looking at aggregated variables
such as the market-clearing prices and quantities.

3 EXAMPLE

In order to illustrate the merits of our proposals we
ran some experiments on a simple, lossless, unconstrained
system, which includes only two competing generators
and one independent load. The coefficient values for the
linear prices of the generators and value of the load are
given, respectively, in Tables 2 and 3.

aP,i bP,i
Generator (i) ($/MW 2h) ($/MWh)

1 0.01 10.0
2 0.02 10.0

Table 2: Price coefficients

aD,i bD,i
Load (i) ($/MW 2h) ($/MWh)

1 -0.04 30.0
Table 3: Value coefficients

In these experiments we assume that each of the gen-
erators uses an automaton to implement his or her strate-
gies during the supergame that consists of several stages
of a game of similar market conditions defined by the
unchanging load. We represent the players’ profiles by
similar transition tables as Table 1 and we assume, given
the reduced number of players, that the moves by the op-
ponent automaton are always correctly interpreted. So,
once the automata make their moves, they become com-
mon knowledge. In addition, and for a matter of simplic-
ity, the automata use only one parameter (the linear coef-
ficient of their reported price curve) to game the system.
The profiles’ conditional probabilities are uniformly dis-
tributed and the automata readjust their gaming parameter
using Newton’s method (5).

The representative solutions, whose reported parame-
ters are showed on Table 4, for this simple system are: the
Nash equilibrium; the Pareto optimal solution where both
individual profit functions are equally weighted (Pareto 1
or P1); and the Pareto optimal solution where the profits
are made equal for both players (Pareto 2 or P2).

â1 â2 w1 w2

($/MW 2h) ($/MW 2h)

Nash 0.0292 0.0369 – –
P1 0.0700 0.1400 0.5 0.5
P2 0.0988 0.0928 0.4661 0.5339

Table 4: Reported parameters for specific solutions

The profits attained at each of these three solutions are
given in Table 5.

f1 f2 f1 + f2

($/h) ($/h) ($/h)

Nash Eq. 475.6 331.1 806.7
Pareto 1 769.2 384.6 1153.8
Pareto 2 570.4 570.4 1140.8

Table 5: Profits for specific solutions

Figures 2 and 3 depict, respectively, the Pareto optimal
decision vector set and the Pareto optimal profit set when
the weighting factorsw1 = w andw2 = 1−w vary within
the given interval.

Figure 2: Pareto optimal decision vectors

Figure 3: Pareto optimal profits

From the point of view of collaboration among play-
ers, it is desirable to maintain the solutions at every stage
of the game inside a region where the profits for every
player involved in the game are higher than the profits
obtained at the Nash equilibrium. Moreover, if the play-
ers are seeking the maximization of their revenues, they
should never play beyond the curve defined by the Pareto
set, e.g., to the right of the curve in Figure 2. If the
three conditions – for the two players of our example –
are met, the result is the region of mutual benefit as de-
picted in Figure 4. The points defining this area are, be-
sides the Nash equilibrium, the extreme points(â1, â2) =
(0.0653, 0.1648) and(â1, â2) = (0.1226, 0.0820).

Limiting the game to this region brings the game to a



new level of rationality, but does not provide the players
with a deterministic solution. This is so because of the in-
finite number of solutions on the Pareto optimal set. In the
absence of agreements or side payments, the players are
still compelled to keep playing stochastically as a means
to keep them away from the non-cooperative equilibrium.

Figure 4: Mutually beneficial region

However, keeping the moves inside the region of mu-
tual benefit creates its own challenges. Each player con-
trols only its own units and therefore can only move along
specific coordinates. Without any type of coordination, the
players have to divise a strategy if they want to keep the
solutions in a desirable region. The only way to overcome
the lack of coordination is for the players to assume some
principle or non-enforcible rule that dictates the strategy.
One of those rules could be the players self imposing equal
maximum deviation from the current solution in all coor-
dinates. This strategy would translate into quadrangular
gaming areas of variable size for the two-player exam-
ple. It can be seen in Figure 5 that this strategy effectively
keeps the game inside the mutually beneficial region.

Figure 5: Deviation strategies

Without adopting some kind of rule as the one pro-
posed, the best the players can do is to restrict their moves
to the rectangular area enclosing the mutually beneficial
region. In the experiments of this section we assume this
is the case.

All the experiments that follow were run for 50 peri-

ods, each period including 50 stages of the game. At the
beginning of each period, the initial values for the play-
ers’ reported parameters are randomly chosen to lie on
the rectangular region defined by the Nash solution and
the elected Pareto solution – given by proper choice of
weightswp,q in (4) – with a uniform distribution. We
picked ε = 0.1 for the Newton’s method stepsize to
avoid large jumps in the values of the reported parameters
caused by the steepness of the function when these param-
eters have small values. From a theoretical standpoint, the
choice of the stepsize is not important. What matters is
that the players’ moves may be correctly interpreted by
their opponents.

3.1 Collaborative players

In this first experiment we choose two collaborative
players whose profiles are chosen to be the same and equal
to {p1 = 0.9; p2 = 0.5; p3 = 0.7; p4 = 0.5}. We assume
that the players agree on the weakly Pareto optimal solu-
tion to be the Pareto 2. The stochastic solutions obtained
for these profiles are illustrated on Figure 6.

Figure 6: Stochastic solutions for two collaborative players

The straight trajectories that may be observed at the
upper-left and lower-right edges on Figure 6 are the result
of restricting the moves of the automata to the rectangu-
lar area defining the region of mutual benefit. We observe
that the players tend to concentrate their moves close to
the Pareto 2 point, which is the desirable solution for most
of the time. This game grants the players the approximate
average profits as showed on row 1 of Table 6 for any par-
ticular 50-stage period.

f̃1 f̃2
Experiment ($/h) ($/h)

1 578 437
2 586 468
3 492 549

4(a) 496 549
4(b) 570 493
4(c) 498 561
Nash 476 331

Table 6: Average profits

These values are obtained by running several periods



of the game until the average profits converge. The dif-
ference in profits results from the asymmetry of the profit
functions. Anyway, both players achieve an average profit
that is well above the Nash equilibrium profits.

3.2 Non-collaborative players

This experiment is similar to the previous experiment
except for the fact that the players have a non-collaborative
profile described by{p1 = 0.5; p2 = 0.2; p3 = 0.5; p4 =
0.2}. The results of this experiment are illustrated on Fig-
ure 7. The average profits are given on row 2 of Table
6. Surprisingly, this game grants an average profit that
is higher for both players than for the previous game. It
shows that the solutions of the game do not always concide
with what the players antecipate. Instead, the outcomes
are dependent on the particular profit functions. In this
second experiment the stochastic solutions end up concen-
trating in more favorable zones, contrary to what was ex-
pected, due to the particular shape of the profit functions.

Figure 7: Stochastic solutions for two non-collaborative players

3.3 One collaborative player and one non-collaborative
player

In this experiment we are able to evaluate the risk of
engaging in collaborative behavior when the other players
are not willing to do so. We choose player 1 to be collab-
orative and player 2 to be non-collaborative. The profile
tables have the same probabilities as used previously. Fig-
ure 8 shows a period of this stochastic game.

Figure 8: Stochastic solutions for one collaborative player and one non-
collaborative player

In comparison to the previous experiments, player 2
is better off and player 1 is effectively “double-crossed”,
seeing his or her profits coming down (see row 3 of Table
6). However, the average outcome is still advantageous for
both players when compared to the Nash equilibrium.

3.4 Disagreement over the Pareto optimal solution

In this experiment we want to evaluate the impact of
the disagreement on the desirable Pareto optimal solution.
We assume that player 1 chooses the Pareto 1 as his or her
desirable collaborative solution and that player 2 chooses
the Pareto 2 solution instead – reflected in assumed val-
ues ofwp,q in (4). The previous three experiments are run
as before without any further change. We may observe
in Figure 9 a period of the game when both players are
collaborative.

Figure 9: Stochastic solutions for two collaborative players disagreeing
on the Pareto optimal solution

The results on rows 4(a), 4(b), and 4(c) of Table 6
show that, again, contrary to what was expected, player 1’s
profits decrease for experiment 4(a) and 4(b) and increase
for experiment 4(c) when compared to the corresponding
three previous experiences. Player 2’s profits increase in
all three experiments. When comparing the results of ex-
periment 4(b) with those of 4(a) we now conclude that for
the non-collaborative game, only the revenues of player 2
decrease. For experiment 4(c) we obtain similar results as
to those of the first experiment.

3.5 Comments

We adopted this small system in these experiments for
illustrative purposes. The major drawback of using this
small system is the steepness of the profit functions which
lead to some unexpected results. If more players were
used in these experiments, the profit functions would be
better behaved, also allowing the adoption of less conser-
vative stepsizes in Newton’s method.

It becomes clear after these simple experiments that
the revenues obtained by the players depend not only upon
the choice of one’s profile but also upon the opponent’s
choice of profile. In addition, the choice of the desirable



Pareto optimal solution has an impact on everyone’s rev-
enues as well. More importantly, independently of their
choices, the players maintain in all experiments an aver-
age profit that is higher than the equilibrium profit, as may
be observed on Table 6.

4 CONCLUSIONS

The work presented here proposes a stochastic ap-
proach to the problem of finding trading solutions in a
market where trading conditions repeat over time and
where players’ strategies take into account the existence of
both Nash and Pareto optimal solutions. By playing ran-
domly through the use of automata, the players disguise
their individual moves to their opponents, since only the
profile probabilities are predetermined and not the moves
themeselves.

Through the example in this paper we showed that
there exists a region between the Pareto optimal set and
the Nash solution that always grants the players higher
revenues than the Nash solution. If the players restrict
their moves to this mutually beneficial region they are in-
deed increasing their revenues over the game period. One
key idea is that only random moves allow them to reap
those benefits since deterministic choices of best-response
moves drive the players to equilibrium solutions.

The ideas conveyed in the paper may be generalized to
any number of players. The two-player example used in
the paper was adopted for illustrative purposes. For an-
player scenario the Pareto set would ben− 1 dimensional
and the mutually beneficial region would taken dimen-
sions.

One interesting feature of Pareto optimal solutions that
is explored in the paper is that once a system constraint is
hit, while the players game the system, at least one of the
players involved in the game will see his or her gains de-
crease or stay constant. Therefore, the Pareto optimal set
is bounded by constraints. So, although Nash equilibria
may be sustained for different sets of active constraints
[3], only one equilibrium may exist for the set of con-
straints active for the Pareto optimal set. This and other
implications of bringing together the Nash equilibria set
(multiple equilibria) and the Pareto optimal set have to be
addressed in future research.

The paper assumes automata with static profiles. Fu-
ture research should address the possibility of dynamically
changing profiles. Although it is clear that some combi-
nations of profiles lead to better outcomes than other com-
binations, the calculation of the expected profits with re-
spect to the continuously changing profiles is beyond nor-
mal computation power in a reasonable amount of time.
What the automata may do is start with a randomly gener-
ated set of profiles and, as the game evolves through subse-
quent stages, select the ones that lead to a better outcome.
The dynamic update will likely lead players to implicitly
adopt trading solutions that are almost always close to the
Pareto optimal set.
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