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Abstract: During power deregulation, power companies are 
releasing their transmission grids to form ISOs/RTOs while 
maintaining their own state estimators over their own areas. A 
recent trend for these ISOs/RTOs is to further combine and 
enlarge to become a bigger Mega-RTO grid for a better market 
efficiency. The determination of state over the whole system 
becomes challenging due to its size. Instead of a totally new 
estimator over the whole grid, we propose a distributed textured 
algorithm to determine the whole state; in our algorithm, the 
existing state estimators in local companies/ISOs/RTOs are fully 
utilized and the new estimator is no longer required. We need 
only some extra communication for some instrumentation or 
estimated data exchange. In addition, such an algorithm has the 
following advantages: 1) The distributed textured algorithm is 
non-recursive, asynchronous and avoids central controlling node. 
Therefore, it is fast and practical. 2) Based on exchanging data 
with neighboring companies/ISOs/RTOs, textured overlapped 
areas become part of the process. With the developed textured 
decomposition method, bad data detection and identification 
ability is better than existing distributed state estimation 
algorithm, especially when bad data occur around the boundary 
of individual estimators. 3) Discrepancy on the boundary buses 
of different estimators decreases and the result over whole grid 
become more consistent. Moreover, when updating local 
estimation through estimated data exchanges, matrix 
modification techniques that utilize sparse techniques are 
developed to accelerate the computation speed. Detailed 
numerical tests are given to verify the efficiency and validity of 
the new approach. 
 
Key words: Power Market, Concurrent Textured Algorithm, 
Distributed State Estimation, Bad Data Analysis, Sparse Matrix 
Technique. 

I.   INTRODUCTION 
State estimation (SE) is an essential function in energy 

management systems (EMS) for monitoring and control of a 
power system. In a traditional regulated environment, the 
whole power system is owned by a limited number of locally 
monopolistic organizations. These utilities have the 
responsibility and the ownership of the instrumentation in 
their local own region to meet their own needs. There is 
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almost no need to exchange data with other organizations. 
However, during power deregulation, power companies are 

releasing their transmission grids to form ISOs/RTOs [1] 
while still maintaining their own local state estimators. In 
other words, companies run their own SE’s and focus on the 
quality of SE in their own area. Therefore, there are multiple 
state estimators distributed with different owners in one 
ISO/RTO. 

Furthermore, a recent trend for these ISOs/RTOs is to 
further cooperate and to run the power market on even a 
bigger grid as a Mega-RTO for a better market efficiency [2]. 
The grid of an ISO/RTO could be large. The size of Mega-
RTO is even bigger, as concluded recently by Federal Energy 
Regulatory Commission (FREC), that only four Mega-RTOs 
should cover the entire nation [2]. The state estimation over 
the whole grid becomes very challenging just for its size. 

One possible scheme is to implement a totally new 
estimator over the whole grid, and one state estimator (OSE) 
is executed over the whole system. However, OSE approach 
has many disadvantages such as: 

1) The investment on the new estimator could be enormous. 
The maintenance cost over such a huge area is also high. 

2) The size of system is extremely large, which raises the 
scalability issue. The system matrix becomes more ill-
conditioned, and the computation speed and convergence 
performance becomes slower and poor. 

3). The existing local state estimators distributed in 
different entities are wasted.  

Because of the above disadvantages of OSE, a new 
concurrent non-recursive textured algorithm is developed as 
an alternative to determine the state of whole grid, where the 
currently existing state estimators are fully utilized without 
using a new estimator. This textured algorithm is a distributed 
state estimation (DSE) algorithm, which overcomes the 
disadvantages of OSE. 

Concurrent textured algorithm has been well developed to 
deal with the optimization problem of power systems by our 
team led by Dr. Huang [3,4,5]. The basic idea of a textured 
algorithm is as follows [3]. First, the problem on a large 
system is decomposed into several smaller and more tractable 
sub-problems for concurrent computation by fixing some 
boundary variables. Then by rotating the fixed variables, a 
recursive sequence of concurrent sub-problems are solved and 
the original high dimensional problem is solved by divide-
and- conquer. The origin of term ‘texture’ is because there are 
overlapping areas between the neighboring sub-systems, 
which are just like texture. And the boundary variables are 
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located on these overlapping areas. 
The introduction of such a concurrent textured algorithm in 

state estimation problem avoids the disadvantages of OSE. 
Furthermore, compared with existing DSE algorithm [6,7,8], 
the performance of new algorithm improves greatly in respect 
of bad data detection and identification ability and avoiding 
discrepancy on boundary buses. 

This paper is organized as the following: the main 
flowchart and advantages of the new algorithm are discussed 
in Section II. The selection of data exchange scheme, as the 
center issue of textured decomposition method, is described in 
Section III. Furthermore, in Section IV the sparse matrix 
technique and its application are discussed. The determination 
of the state over the whole system are given in Section V. 
Numerical tests are studied in Section VI. In the last section, a 
conclusion is drawn.  

II.  CONCURRENT TEXTURED DSE ALGORITHM 

A.  Existing DSE Algorithms And Their Drawback 

Assume multiple entities such as companies, ISOs and 
RTOs connected physically and cooperate to run the whole 
system as Fig.1. Accordingly, there are multiple existing 
estimators distributed in the subsystems like Company A, 
Company B, ISO A, RTO A and RTO B. And every entity 
will maintain and execute their local state estimation on their 
own areas. These entities are connected through tie lines near 
the boundary buses. 

With the development of Information Technology (IT), 
DSE algorithms, especially those without central controlling 
node [6,7], become more and more applicable.  

The main drawback of the existing DSE algorithms [6,7,8] 
is that bad data detection and identification ability decreases 
greatly compared to OSE who is over the whole system, 
especially when bad data is close to the boundary of 
individual estimators. Moreover, the estimation accuracy on 
boundary buses are much lower than OSE, which decrease the 
accuracy in determination of global reference bus and make 
the whole result inconsistent. 

B.  Introduction of a New Algorithm 

The objective of our new algorithm is to remove the 
drawback of existing DSE algorithm while preserve the 
beneficial characteristics. 

In the new algorithm, there are some overlapping areas in 
the neighboring estimators as shown in Fig.2, where some 
information are shared. 

Furthermore, the point here is to extend the sharing 
information: not only the boundary buses are shared formally 
in the estimation sub-problems as in [6], but also 
instrumentation data (real time measurement information 
before execution of local estimator) and estimated data 
(estimation results after execution of local estimator) are 
exchanged among neighboring entities. Such a data exchange 
are introduced simultaneously between multiple entities, such 
as Company A and Company B, ISO A and Company B, 

Company B and ROT B, and so on. Accordingly, textured 
network is formed. 

C.  Main Algorithm 

The new algorithm is described as follows: 
Step1. Select a set of real time instrumentation data to be 

exchanged between neighboring entities. 
Step2. Select a set of estimated data to be exchanged 

between neighboring entities. 
Step3. Taking the exchanged instrumentation data into 

account, the multiple local estimators distributed in 
different entities are executed simultaneously and 
asynchronously until they converge individually to 
the desired tolerance. 

Step4. In view of the exchanged estimated data, modify the 
estimation result of local estimators accordingly and 
re-run bad data analysis. 

Step5. Based on the modified results of local estimators, 
finally determine the state of whole system according 
to the different accuracy and reliability of estimators. 

D.  Advantages of the new algorithm 

Advantage 1: Bad data detection and identification ability 
in the new algorithm is higher than existing DSE algorithm, 
especially when bad data appear close to the boundary of 
individual estimators. Such an improvement is because of the 
cooperation between estimated data exchange scheme and 
textured network formed by instrumentation data exchange. 

For example, in existing DSE algorithm, if bad data appears 
in the boundary of one local estimator A, then it is hard to be 
detected in A.  However, in a textured decomposition 
environment, the boundary buses in A are internal buses of 
another estimator (for example B) at the same time, where the 
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bad data can be detected. And the corrected information on 
these buses will be exchanged from B to A via estimated data 
exchange, which will finally make A also capable to detect the 
bad data. This capability suits well for an industrial 
environment, in which it is better to obtain SE results with 
good enough accuracy without bad data than the results with 
higher accuracy but with possible undetected bad data.  

Advantage 2: The estimation accuracy on boundary buses 
is much higher than existing DSE and is comparable to OSE.  
Our approach decreases the discrepancy on the boundary 
buses and makes the whole result more consistent. 

Advantage 3: Many earlier methods of DSE assume a star-
like function network [8], where the communications between 
the multiple remote processors and the central computer are 
critical during iteration processes. Such a hierarchical 
approach suffers from the bottleneck and reliability issues 
because of the central controlling node. 

On the contrary, our concurrent textured algorithm is 
asynchronous without a central controlling node. As a 
consequence, the new algorithm becomes very fast and 
practical. 

Advantage 4: Utilizing the instrumentation decoupling 
nature in SE, we removed the recursion process in our original 
optimization. At the same time, the performance of estimation 
is still satisfied, which is verified in our numerical tests. 

As a consequence, the speed of our new algorithm gets 
even faster. This further advances our original textured 
algorithm. 

Advantage 5: The multiple local estimators can use 
different SE algorithms. Furthermore, the convergence 
tolerance can be different based on different quality of local 
measurement system.  

Accordingly, our new algorithm becomes very flexible in 
which current existing estimators can be included easily. 

Advantage 6: The performance of bad data detection and 
estimation accuracy in individual existing estimators improves 
as well, which benefits individual companies/ISOs/RTOs. 
Accordingly, they are more willing to share the information 
for their own benefits. 

III.  DSE  TEXTURED DECOMPOSITION METHOD  

A.  Introduction 

As discussed, we need to determine an instrumentation data 
and estimated data exchange scheme to be used in Step 1 and 
Step 2. As special cases, if all the information is exchanged 
and shared, the estimation becomes one estimator over the 
whole system, an OSE but not a DSE. On the other hand, if no 
measurement is exchanged, it becomes the existing DSE 
algorithm, which has the drawbacks described before. 
Therefore, a trade off in the selection of data exchange is 
necessary to make the overlapping areas moderate, not too 
large nor too small. Then an appropriate texture can be formed, 
which is a critical precondition for our new algorithm. 

In addition, in the original textured decomposition method 
[3-5], the decomposition is based on the requirement of 

algorithm. However, in DSE problem here, the range of 
individual estimators has been determined in advance from the 
actual industry ownership.  And the hardware/software cost 
on data exchange implement should be minimized, which 
implies schemes with smaller overlapping areas are preferred 
if all the other performance remains the same. 

Note that not all the data exchange is beneficial. In fact, 
some data exchange may harm the local estimators and thus 
the exchange has to be carefully designed. Experience alone 
cannot resolve the design issues. In particular, for big mega-
RTOs, no one has any experience. 

Therefore, it is critical to develop a systematic approach to 
search for appropriate data exchange schemes, which can also 
help the design automation process.  

B.  A Systematic Textured Decomposition Method 

Effective data exchange scheme design method and the 
corresponding software have been proposed to determine the 
textured decomposition by us in [9]. A simple description is 
attached as the follows: 

The strength of bus b in estimator A is defined as the bad 
data detection and identification ability and estimation 
accuracy on bus b in this particular estimator A. A newly 
developed concept of Bus Redundancy Descriptor (BRD) is 
used to numerically evaluate the strength of every bus in 
different estimators. Details of the definition of BRD and 
determination of strength are given in [9]. 

Accordingly, two main principles are proposed by us [9] to 
search for the estimated data/instrumentation exchange, which 
is a critical part of textured decomposition.  

After data exchange, the strength of buses improves greatly. 
And the ultimate objective is that the strength of every bus in 
the local estimators is almost as high as that in OSE. As for 
the buses in the overlapping areas of different local estimators, 
the objective is to ensure that the strength of these buses is 
high enough in at least one local estimator. The 
accomplishment of such an objective is critical to guarantee 
the advantage 1 and 2 of the new algorithm. 

In addition, artificial intelligence (AI) is widely used to deal 
with problems described with uncertain terms like ‘almost’. 
Therefore, the application of AI in textured decomposition 
problem is quite natural. Further studies to combine AI with 
the textured decomposition method are still under way. 

C.  Numerical Examples 

Different distribution of local estimators will leads to 
different textured decomposition schemes. 

For example, in an IEEE-14 Bus system as shown in Fig.3, 
RTO-A and RTO-B will merge into one Mega-RTO. And 
there are already two local estimators A and B, distributed in 
RTO A and RTO B, with neither overlapping areas nor data 
exchange. In other words, no texture exists in local estimators. 

A suggested textured decomposition as shown in Fig. 4 is:  
Instrumentation Data Exchange:  
Estimator A expands to include bus 9. Furthermore, the 

instrumentation data on these buses, such as 9-10 (power flow 
measurements from Bus9 to Bus10), 9-14 and 9 (power 
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injection measurement on Bus9), are also exchanged from B 
to A in a real time manner. And estimator A is executed in 
such an expanded sub-system. 

Similarly, estimator B expands to include bus1 and bus 5. 
Instrumentation data, such as 1-5 and 1-5, are also exchanged 
from A to B.  

Therefore, the textured estimator consists of two 
independent estimators A and B with the overlapping areas 
including bus 1, 2, and 9. However, estimated data exchange 
needs extra updating as described below. 

Estimated Data Exchange:  
After local estimator A and B have been executed 

simultaneously and asynchronously, selected estimation result 
in A, such as 9-14, 9-14 and 9, are exchanged from A to B. 
And in view of these estimated data, B modifies its own 
estimation result accordingly and re-run bad data analysis.  

Similarly, selected estimation result in B, such as 1-5, 5-1 
and 1, are exchanged from B to A. And taking these estimated 
data into account, A also modifies its own estimation result 
accordingly and re-run bad data analysis. 

IV.  ESTIMATED DATA EXCHANGE  

A.  Sparse Technique for Matrix Modification 

Sparse technique for matrix modification is widely used in 
power system computation, and the main idea is as follows: 
instead of re-computing a new sparse matrix, a modification 
on the old one is processed to reduce its computation 
complexity. 

One major technique about the inverse matrix of sparse 

matrix (A+MaNT) is well known as: 
11)( −− =+ AMaNA T 11111 )( −−−−− +− ANMANaMA TT (1) 

where A is a nn ×  high-dimension sparse square matrix 
whose inverse matrix 1−A  is already computed in advance, 

a is a mm ×  square matrix and m is much less than n. 
And the computation complexity of re-computing 

1)( −+ TMaNA  is much higher than that of right side of (1). 

B.  Application of Sparse Technique  

In Step 4 of the flowchart, after the estimated data exchange, 
the succeeding modification on the estimation result of local 
estimators can be time-consuming if local estimation is 
executed again from the very beginning.  

When a sequential SE algorithm, such as orthogonal 
method based on row-wise Givens rotations [10], is used in 
local estimator, the speed of such a modification process is 
fast even without other special techniques because of the 
nature of the sequential SE algorithm itself. 

However, if the conventional Gauss Newton method is 
utilized in local estimator, it is time-consuming to execute SE 
again. Therefore, a sparse matrix modification technique is 
developed to modify the estimation result of local estimators 
and to avoid re-computing from the very beginning when 
some estimated data are newly added from other neighboring 
estimators. Such a technique can significantly accelerate the 
process in Step 4. Details are discussed as follows: 

SE problem is based on the model [11]: 
exhz += )(                 (2) 

Where 
z  represents measurements,  
e  is the measurement noise vector, 
x  is the state vector composed of the phase angles and the 

magnitudes of the voltages on network buses, 
)(•h  stands for the nonlinear measurement functions.  

Traditionally a nonlinear iterative algorithm is widely used 
to solve the SE problem. At each iteration i , the following 
equations is solved: 

i
T

i
TT

i zRHGzRHHRHx ∆=∆=∆ −−−−− 11111 )(   (3) 
Where 

R  is the measurement covariance matrix 
H  is the Jacobian matrix xh ∂∂ , 

iii xxx −=∆ +1 , 
)( ii xhzz −=∆ , 

HRHG T 1−= is the gain matrix. 
The most time-consuming computation in solving (3) is the 

determination of G and 1−G . 
Suppose SE result based on current measurements is 

already obtained, and then some new data are introduced 
while the observable island maintains same, that is, the 
dimension of state variables is fixed. 

Then the following equations hold: 
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where the subscript ‘new’ stands for the newly introduced 
exchanged estimated data, whose dimension is very low. 

Since the new measurements in Step 4 are estimated data 
with high accuracy, it is reasonable to fix H as a constant 
during modification process. Therefore, )( 1 zRH T ∆−  and 

1−G  in (4) are the same as those in the old SE result (3), and 
they are known before modification process. 

Accordingly, considering the dimension of Rnew is much 
lower than that of G, sparse matrix technique described in (1) 

can be utilized here to determine ( ) 11 −−+ newnew
T
new HRHG in (4). 

Consequently, the modification is no longer time-consuming. 

V.  DETERMINATION OF STATE OVER WHOLE GRID 
After the first four steps of the flowchart have been 

executed, the state over whole grid is determined as follows: 
Step 5.1: Determine the angle difference of reference buses 

between any two local estimators. A reasonable scheme is 
based on the estimation accuracy of different local estimators, 
and the scheme is formulated as: 

)())(( 1
,

1
,

1
,

1
,,, ∑∑

∈

−−−−

∈
++−=∆

Ii
BiAiBiAiBi

Ii
AiAB ccccθθθ   (5) 

where ABθ∆ is the angle difference of reference buses 
between local estimator A and B, 

I is the set of all the overlapping buses of estimator A and B, 
Ai,θ  is the estimated angle on bus i in estimator A, 

Aic ,  is the i-th diagonal element of covariance 

matrix 1−= GC .  
Matrix C stands for the variances of estimation errors on 

bus i in estimator A. Therefore, the magnitude of Aic ,  is 
proportional to the estimation error on bus i in estimator A. 

Step 5.2: Select a reference bus of one estimator (e.g. A) as 
the global reference bus for the whole grid. 

Step 5.3: Determine the angle difference between this 
global reference bus and reference bus in every local estimator. 
For local estimators (e.g. B) who connect directly with A, (5) 
can give the angle difference directly. However, for local 
estimators (e.g. C) who only connects the neighboring 
estimators of A (e.g. B) while estimator C itself does not 
connects A directly, then the following equation is utilized: 

BCABAC θθθ ∆+∆=∆ . 
Step 5.4: The estimated angle of each local estimator will 

be subtracted with the angle difference between the global 
reference bus and the local difference bus.  

 Step 5.5: For non-overlapping buses, the state variables 
are finally determined by now, which is just the current 

estimation result in local estimators. 
Step 5.6: For overlapping bus i belonging to multiple local 

estimators mjK j ,...,2,1, = , the state variables ix are finally 

determined as: 

∑∑
=

−

=

−=
m

i
Ki

m

j
KiKii jjj

ccxx
1

1
,

1

1
,, )(  

where 
jKix ,  is the state variable of bus i in estimator jK . 

VI.  NUMERICAL RESULTS 
IEEE 14-bus system mentioned before is used here as an 

explanatory example to verify that: 
1.The accuracy and discrepancy performance is satisfied 

compared to OSE, and higher than existing DSE algorithm. 
2.The bad data detection ability improves greatly than 

existing DSE algorithm where bad data analysis is executed 
only in individual local estimators. 

Algorithm speed will be testified in a larger practical 
system, which will be reported in following papers soon. 

Case1: Accuracy and Discrepancy 

 Suppose there is a derivation 0.01 p.u. on power flow 
measurement 5-2, which is still in the range of tolerance, and 
no bad data is detected. Table 1 shows concurrent textured 
DSE algorithm is more accurate than existing DSE algorithm. 
 Accordingly, the discrepancy decreases from 0.004 in 
existing DSE to 0.002 in textured DSE. 

TABLE 1. ESTIMATION RESULT DERIVATION  
Algorithm OSE Existing DSE Textured DSE 
Deviation on 2θ  0.003 0.007 0.004 

Case2: Effect of textured instrumentation data exchange (1) 

Bad Data In RTO A: Suppose that 11-10 is bad 
instrumentation data (sign is reversed). Note that 
measurements with largest normalized residues will be 
selected as bad data according to WLS algorithm for SE. 

Without Instrumentation Data Exchange (Non-Textured):  
For estimator A in Fig.3, 11-10 can only be detected as bad 

data but can not be identified based on Table 2.  
With Instrumentation Data Exchange (Textured):  
For estimator A in Fig.4, 11-10 is identified successfully 

according to Table 2. 
 

TABLE 2. NORMALIZED RESIDUES FOR LOCAL ESTIMATOR A 
Estimator A in Fig.3 Estimator A in Fig.4 Order 
Meas. Max.Residue Meas. Residue 
10 53.38660 11-10 52.40 

1 11-10 53.38660 10 46.42 

Case3: Effect of textured instrumentation data exchange (2)  

Bad Data in RTO B: Suppose that both 2-3 and 2-4 are 
bad data (all increase by 0.1 p.u.).  

Without Instrumentation Data Exchange (Non-Textured):  
For estimator B in Fig.3, 2 and 4 are selected incorrectly as 

bad data based on Table 3.  
With Instrumentation Data Exchange (Textured):  
For estimator B in Fig.4, 2-4 and 2-3 are identified 

successfully one by one based on Table 3. 
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TABLE 3. NORMALIZED RESIDUES FOR LOCAL ESTIMATOR B 
Estimator B in Fig.3 Estimator B in Fig.4 Order 

Meas. Max. Residue Meas. Max. Residue 
1 2 106.8 2-4 94.9 
2 4 44.8 2-3 83.4 

Case4: Effect of estimated data exchange 

Bad Data In RTO A: Suppose that both 1-5 and 5-1 are 
bad data (all increased by 0.1 p.u.).  

Without Estimated Data Exchange:  
Even for estimator A with instrumentation data exchange as 

shown in Fig.4, 1 and 5 are still selected incorrectly as bad 
data according to Table 4. 

 

TABLE 4. NORMALIZED RESIDUES FOR LOCAL ESTIMATOR A AND B 
Estimator A in Fig.4 Estimator B in 

Fig.4 
Estimator A in Fig. 4 with 
estimated data exchange 

O 
R 
D 
E 
R 

Meas. Max. 
Residue 

Meas Max. 
Residue 

Meas. Max. Residue 

1 1 68.95 5-1 87 5-1 84 
2 5 59.4 1-5 84 1-5 94 

 

With Estimated Data Exchange: 
Step 1) Estimator A in Fig. 4 with instrumentation data 

exchange is executed. By now 1 and 5 is still identified 
incorrectly as bad data by A according to Table 4.  

Step 2) Simultaneously, estimator B is executed with 
instrumentation data exchange as shown in Fig.4. Then 1-5 
and 5-1 are both identified as bad data successfully one by one 
based on table 4. Therefore, estimation results on 1-5 and 5-1 
are corrected in estimator B. 

Step 3) These corrected values on 1-5 and 5-1 are 
exchanged from B to A, which follows the estimated data 
exchange scheme mentioned before. And these values are 
treated in estimator A as pseudo measurements with particular 
high accuracy and reliability. 

Step 4) Taking the new pseudo measurements into account, 
estimator A modifies its own estimation result and re-run bad 
data analysis. This time 1-5 and 5-1 are both identified 
successfully as bad data in estimator A based on Table 4. 

VII.  CONCLUSIONS 
A recent trend for ISOs/RTOs is to further combine and 

enlarge to become a bigger Mega-RTO grid. Certainly, the 
determination of state over the whole system becomes very 
challenging due to its size. Instead of starting a totally new 
estimator over the whole grid, a distributed concurrent 
textured algorithm is proposed to determine the state of whole 
grid, where the currently existing state estimators distributed 
in different companies/ISOs/RTOs are fully utilized. The new 
algorithm is based on some extra communication for some 
instrumentation or estimated data exchange. In addition, such 
an algorithm is non-recursive, asynchronous and avoids 
central controlling node. Sparse matrix techniques are also 
utilized when updating local estimation through estimated 
data exchanges. Therefore, the new algorithm is fast and 
practical. Furthermore, based on the developed textured 
decomposition method, numerical tests verify that the 
performance of the new textured DSE algorithm improves 

greatly compared with existing DSE algorithms, in respect of 
bad data analysis, estimation accuracy and elimination of 
discrepancy on boundary buses.  
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