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Abstract � Congestion has widespread impacts on the 

availability and utilization of the existing transmission 
systems and consequently on the operation of competitive 
markets in electricity. The distribution factors play a key 
role in the modeling of congestion in various market appli-
cations. These factors are linear approximations of sensi-
tivities of variables with respect to various inputs and are 
computed for a specified network topology and parameter 
values. In practice, the factors are used over a wide range 
of system conditions. This paper investigates the analytical 
characteristics, the robustness and the quality of the ap-
proximations provided by key distribution factors such as 
injection shift factors (ISFs) and power transfer distribu-
tion factors (PTDFs). We examine the range of conditions 
over which these factors can provide a reliable approxima-
tion for large power system networks. The numerical simu-
lation results indicate that the errors of the approximations 
stay in an acceptable range under a broad spectrum of 
conditions including contingencies used to establish n-1 
security.  

Keywords: Distribution Factors, Injection Shift 
Factor (ISF), Power Transfer Distribution Factor 
(PTDF), Available Transfer Capability (ATC), Trans-
mission Loading Relief (TLR), Congestion Modeling 

1 INTRODUCTION 
Open access of the transmission network has posed 

serious problems in the management of the transmission 
system. The congestion on the network becomes the 
main obstacle that, in great extend, impacts the opera-
tion and management of the power system. Critical in-
formation such as available transfer capability (ATC) 
[1], congestion relief schemes such as the transmission 
loading relief (TLR) procedure [2] and congestion man-
agement approaches such as incremental/decremental 
auctions and financial transmission rights (FTR/FGR) 
[3,4] are all impacted by the congestion situations on the 
grid. Solution of these problems requires explicit model-
ing of congestion.  

Distribution factors play an essential role in conges-
tion modeling. These distribution factors, including the 
injection shift factors (ISFs) and the power transfer 
distribution factors (PTDFs) have been widely used in 
the congestion modeling in many electricity market 
applications by providing fast approximations of the 
active power flow changes due to various system opera-
tions. These factors are basically linear approximations 
of the first order sensitivities of certain relationships in 

power systems computed for a specified network topol-
ogy and parameter values. However, in many applica-
tions such as ATC evaluations and NERC�s TLR proce-
dures, distribution factors are considered to be constant 
in each time period even when the network parameters 
and topology are slightly different from those for which 
the distribution factors are computed [1,2]. This usage 
imposes questions on the robustness of the distribution 
factor applications. In fact, systematic studies of the 
behaviors of these distribution factors and the effective-
ness of their applications in the congestion modeling 
have received scant attention so far. 

This paper investigates the analytical characteristics, 
the effectiveness and robustness of approximations 
provided by key distribution factors such as ISFs and 
PTDFs. Starting with the actual derivation of these fac-
tors, we analyze their characteristics and examine the 
range of conditions over which these factors can provide 
a reliable approximation for large power system net-
works. In particular, we examine the effect of contin-
gencies represented by changes in the network parame-
ters and topology and investigate the robustness of the 
PTDF and ISF applications in congestion modeling. 
Numerical studies on various systems are provided to 
examine the robustness of the ISF and PTDF approxi-
mations for ATC information and TLR curtailments 
under a variety of loadings, system conditions and pa-
rameter values.  

This paper consists of four additional sections. Sec-
tion 2 reviews the definition and characteristics of the 
basic distribution factors. In section 3, the role of the 
distribution factors in the congestion modeling is illus-
trated by focusing on the evaluation of ATC and the 
deployment of NERC�s TLR procedure. We devote 
section 4 to analyze the effects of the changes in the 
network parameters and topology and their impacts on 
the quality of distribution factor approximations. We 
summarize representative numerical results in section 4 
to illustrate the robustness of the ISF and PTDF ap-
proximations in ATC evaluation and TLR curtailments 
determination.  

2 BASIC DISTRIBUTION FACTORS 
We consider a system with N+1 buses and L lines. 

We denote by { , , , , }0 1 2 N! "N  the set of buses, with 
the slack bus at bus 0, and by 1 2{ , , , }L! # # " #L  the set 
of transmission lines and transformers that connect the 

Dennis Ray
Text Box
Proceedings of the 14th Power Systems Computation Conference. Sevilla, Spain. June 24-29, 2002.



 

 

buses in the set N . We denote each element ∈# L  by 
the ordered pair ( , )i j=#  with the convention that the 
direction of the flow on line #  is from node i to node j. 
The serial admittance of line #  is g jb−# # , the active 
power flow is f#  and 1 2[ , , , ]T

Lf f f! "f . The net 

active power injection at node n ∈ N  is denoted by np  
and we define 1 2[ , , , ]N Tp p p! "p . Transactions are 
represented by the set of power injection-withdrawal (I-
W) node pairs, 1 2{ , , , }Ww w w! "W , with each element 
in this set denoted by the ordered triplet { }, ,w m n t=  
representing an I-W node pair with from node m, to node 
n, in the amount t. 

We study the response of the active line flow to 
changes in nodal injections. Consider the nodal injection 
vector p  and the corresponding active line flow vector 

f . Denote the system state by 
TTΤ  !s Vθ , θ , θ , θ , , where 

1 2[ , , , ]N Tθ θ θ! "θθθθ ( 1 2[ , , , ]N TV V V! "V ) is the volt-
age phase angle (magnitude) vector. Denote the refer-
ence conditions by ( )0p , ( )0s  and ( )0f  that satisfy: 

( ) ( )

( ) ( )

( )                                             (1)

( )                                             (2)

0 0

0 0

 − =


− =

g s p 0

h s f 0
 

where (1) represents a statement of the active power 
flow equations and the component #  of ( )ih ,  

2( ) cos( ) sin( )i i j i j i j i jh g V V V b V Vθ θ θ θ = − − + − # # #s (3) 

is the expression for the active flow on line 
( , ),i j= ∈# # L . For a small change ∆p  that changes the 

value from ( )0p  to ( )0 + ∆p p , we denote by ∆s  ( ∆ f ) 
the corresponding change in the state s  (active line 
flows f ). We assume the system stays in balance for 

the change ∆p  and neglect the changes in losses so that, 
for every MW increase in the injection at node ≠n 0 , 
there is a corresponding MW increase in the withdrawal 
at the slack node 0. In other words, 0 n

n
p p

∈ ≠
∆ = − ∆∑

N, n 0
. 

We apply the first order Taylor�s series expansion near 
the reference point ( )0s : 

( )

( )

( ) ( )

( ) ( )

( ) ( ) . . .         (4)

( ) ( ) . . .          (5)

0

0

0 0

0 0

h o t

h o t

 ∂
+ ∆ = + ∆ +

∂


∂ + ∆ = + ∆ + ∂

s

s

g
g s s g s s

s

hh s s h s s
s

  

For �small� ∆p , ∆s  is �small� and so we neglect the 
higher order terms (h.o.t.). We furthermore assume 

( )0∂ ∂
s

g s  to be nonsingular and henceforth drop the 

bar in the notation so that: 
1−

 ∆ ≈ ∂ ∂ ∆ s g s p                    (6) 

1−∂ ∂ ∂∆ ≈ ∆ = ∆ ∂ ∂ ∂ 

gh hf s p
s s s

                  (7) 

The sensitivity matrix in (7) depends on ( )0s  and this 
dependence on the system operating point makes it less 
than practical for power system applications.  

To simplify the computation of the sensitivity matrix, 
we next introduce the assumptions used in the derivation 
of DC power flow models and make use of the reduced 
nodal susceptance matrix [5], T ′% %!B A B A , where 

[ ]1 2, , , Ldiag b b b′ ! "B  is the diagonal branch suscep-

tance matrix and [ ]1 2, , , T
L

% % % %! "A a a a  is the branch-to-
node incidence matrix with the row #  of the matrix: 

[0 0 1 0 0 -1 0 0]
ji

Ta#% ! " " " . We assume B  to be non-
singular. Under these assumptions, s  reduces to θθθθ  and 
the expressions for the partial derivatives become 
∂ ∂ ≈g Bθθθθ , h b∂ ∂ ≈# # #% aθθθθ . We furthermore define 

′ %!A B A  to be the �admittance weighted� branch-node 
incidence matrix, then 

1−∆ ≈ ∆ ∆!f AB p pΨΨΨΨ                       (8) 
We henceforth replace the approximation by the equal-
ity: 

∆ = ∆f pΨΨΨΨ .                     (9) 

The L N×  matrix -1! ABΨΨΨΨ  is an approximation of the 
sensitivity matrix and is called the injection shift factor 
(ISF) matrix. Since A  and B  are solely determined by 
the network topology and the line parameters, ΨΨΨΨ  is 
independent of ( )0s . The ISF of a line ∈# L  with re-
spect to a change in injection at node 0n n∈ ≠N,  is the 
element nψ #  in row # , column n of ΨΨΨΨ . Note that nψ #  is 
defined implicitly under the assumption that there is a 
corresponding change 0p∆  in the injection at the slack 
node 0 with 0 np p∆ = −∆ . Therefore, the ISF is depend-
ent on the slack bus. As the location of the slack bus 
changes, the values of the ISFs may change. The notion 
of the ISF may be extended to include the slack bus 0. 
Since the injection and withdrawal buses are identical in 
this case, 0 0ψ ≡#  for any ∈# L . 

In many applications, the impacts of changes in the 
quantity of an I-W node pair on the active line flows are 
of interest. We may evaluate the change in the active 
flow on a line #  due to a change t∆  in the transfer 
quantity of an I-W node pair { }, ,m n t= ∈w W  with ISFs. 

This change is represented by setting m np t p∆ =∆ =−∆ . 
The corresponding active flow change on line #  is 

     ( )m m n n m nf p p tψ ψ ψ ψ∆ = ∆ + ∆ = − ∆# # # # # .         (10) 
The ISF difference term is called the power transfer 
distribution factor (PTDF) of line #  with respect to the 
I-W node pair w ∈ W  [1] and is defined by  

 ( )w m nf tϕ ψ ψ∆ ∆ = −# # # #! .                    (11) 



 

 

In this case, the compensation at the slack bus cancels 
out since ( ) ( )m n m 0 n 0p p p p p p∆ −∆ = ∆ −∆ − ∆ −∆ . As 
such, the PTDF is independent of the slack bus.  

A line ( , )i j=#  is radial if either { }i = #H  or 
{ }j = #H , where iH ( jH ) is the set of lines that con-

nect to node i (j). For the radial line #  with { }i = #H , 
i ≠ 0 , 

{ 1    
0  

n if n i
otherwiseψ ==#                                 (12) 

since the only impact on line #  comes from the injec-
tion at node i. For any other line ′ ≠# # , the injection 
change at the terminal nodes i and j has the same impact, 
            i jψ ψ′ ′ ′= ∀ ≠# # # # .                                (13)          

3 APPLICATIONS TO CONGESTION MODELING 
Congestion has widespread impacts on the availabil-

ity and utilization of the existing transmission systems. 
Key problems in the electricity market including the 
determination of available transfer capability (ATC) [1], 
the implementation of the congestion management ap-
proaches and the definition of transmission rights [3,4], 
are all impacted by the congestion situations on the grid. 
The solution of these problems requires explicit model-
ing of congestion. The models used have in common the 
application of distribution factors. In this section, we 
discuss the role of the distribution factors in congestion 
modeling by focusing on two important areas: the 
evaluation of ATC and the deployment of NERC�s TLR 
procedure. 

The available transfer capability (ATC) provides a 
measure of the transfer capability remaining in the 
physical transmission network for further commercial 
activity over and above already committed uses [1]. 
ATC represents the maximum additional MW that can be 
transferred between two specific areas while meeting all 
the defined pre- and post-contingency system condi-
tions. A key component for the evaluation of ATC is the 
so-called uncommitted transfer capability (UTC) which 
is the total transfer capability (TTC) minus the existing 
transmission commitments. The computation of the ATC 
from UTC is straightforward since  

ATC = UTC � CBM � TRM                             (14) 
where CBM is the capacity benefit margin and TRM is 
the transmission reliability margin [1]. All the transfer 
capability quantities are defined with respect to a send-
ing node/area and a receiving node/area. 

The modeling of congestion is a key issue in the de-
termination of UTC. We denote by maxf  the maximum 

active line flow limits and by ( )0f  the active line flow 
corresponding to the existing transmission commitments 
constituting the reference case. Without loss of general-
ity, we assume that the UTC quantities are determined 
by the dominant flows [6].  We consider ,m nUTC , where 
m is the from node and n is the to node. We introduce an 
additional I-W node pair, { , , }w m n t∆==== , to the system 
and evaluate the change f∆ #  in the active power flow 

on each line ∈# L  due to w . We wish to determine the 
maximum amount t∆  that can be transferred without 
causing any congestion. This problem is formulated as: 

( ) ( ). . w max 0

max t
s t f t f fϕ

∆
∆ = ∆ ≤ − ∀ ∈# # # # # L

    

where we explicitly use the PTDF representation of the 
active line flow change. The optimal value of t∆  is then 
the UTC quantity from node m to node n and  

        
( )

( )( )
,

( ) ( ), 0
min

w

max 0max 0
m n

w w

f ff fUTC
ϕ ϕ ϕ∈ >

− −=  
 #

# # # #

# # #

!
LLLL

  (15) 

where #  is a line whose active flow limit determines 
,m nUTC  and is referred to as a binding constraint line. 

Clearly, the PTDFs play a key role in the determina-
tion of UTC. In fact, the PTDF representation results in 
the straightforward computation of UTC since only one 
traversal of all the lines is required to compute ,m nUTC  
for each pair of nodes m and n. 

We next discuss the role of the PTDFs in the trans-
mission loading relief (TLR) procedure. TLR is the pro-
tocol used by NERC to prevent insecure operation of the 
interconnected grid in the Eastern Interconnection. The 
TLR procedure is invoked whenever some present or 
future insecure situations are identified, such as those 
arising when some proposed future transaction(s) load 
the network beyond specified operating security limits. 
Of the five different levels associated with TLR, three 
involve the rearrangement of the transactions and two 
require the curtailment, in part or whole, of the transac-
tions. Our focus is on the levels 3 or 5 that involve 
transaction curtailments [2].  

We represent the limit violation by the active over-
load on a line #  denoted by 

 maxf f fδ = −# # # .                                (16) 
We partition the I-W node pairs into two groups: 

{ }( ): 0ww ϕ+ ∈ >#!W W and { }( ): 0 ww ϕ− ∈ ≤#!W W .  

Without loss of generality, we assume the set −W  does 
not impact the overflow and the overflow fδ #  may be 
allocated to each w +∈ W  so that 

&
( )

( )

( )

w
w

w

w

tf f
t

ϕδ δ
ϕ

+

′

′∈

=
′∑

#
##

#
W

                                (17) 

is considered to be the portion of overflow attributable 
to w +∈ W [6]. The corresponding transfer amount is: 

' & ( )
( )

( ) ( )

w
w

w w

w

f tt f
t

δδ δ
ϕ ϕ

+

′

′∈

= =
′∑

#
#

# #
W

                (18) 

To relieve the congestion, we may curtail each I-W node 

according to '
( )w

tδ . Since ( )wϕ #  are very small for many 
w +∈ W , their contributions to the congestion relief, 
' ( )( ) ww tϕ δ# , is small. Consequently, NERC defined the set 

{ }( )� : 0.05ww ϕ+∈ ≥#W = W  which excludes the I-W 
node pairs with PTDF less than 0.05. NERC used the 
allocation rule given by: 



 

 

( )
( )

2( )
( )

2( )

�

w
w

w

w

t
f f

t

ϕ
δ δ

ϕ
′∈

=
′∑

#
# #

#
W

                               (19) 

to determine the overflow attributed to �w ∈ W . Then 
the curtailment associated with each �w ∈ W  is: 

( )
( ) ( )

( )
( ) 2( )

�

w w
w

w w

w

f tt f
t

δ ϕδ δ
ϕ ϕ ′

′∈

= =
′∑

# #
#

# #
W

.                (20) 

4 IMPACT OF CHANGES IN NETWORK 
TOPOLOGY AND PARAMETER VALUES 

The ISFs and PTDFs play a key role in congestion 
modeling used in the new competitive environment. 
Clearly, these factors are evaluated for a given topology 
and parameter values and an operating point that satis-
fies, to a greater or lesser extent, the assumptions cited 
in the previous section. However, in many cases of in-
terest, there are changes in the network topology, 
parameter values and the operating point, while the ISFs 
and PTDFs are held constant in the applications in 
which they are used. Such usage, in effect, neglects the 
impacts of these changes. In this section, we evaluate the 
effect of these changes and their impacts on the quality 
of distribution factor approximations. 

We first consider the impacts of changes in network 
parameters. Let us denote by { }�1 2

� � �� , , , L ⊆! # # " #L L  the 

subset of lines whose parameters are changed. For each 
line � �∈# L , its line susceptance is changed from �b #  to 

� �b b+ ∆# # . Denote the analogues of the matrices 

′B ( L L× ), %A  and ΨΨΨΨ  ( L N× ) corresponding to the 
lines in �L  by 

�1 2
� � � �[ , , , ]

L
diag b b b′

# # #! "BL ( � �L L× ), 

�1 2
� � � �[ , , , ]

L

T
# # #

% % % %! "A a a aL  and 
�1 2

� � � �[ , , , ]
L

T
# # #! "Ψ ψ ψ ψΨ ψ ψ ψΨ ψ ψ ψΨ ψ ψ ψL  

( �L N× ) where �
T
#ψψψψ  is row �#  of ΨΨΨΨ , the ISF matrix. Let 

�1 2
� � � �[ , , , ]

L
diag b b b′∆ ∆ ∆ ∆# # #! "B L , �

� �0,b∆ ≠ ∀ ∈# # L . The 

changes in �L  result in changing the B  matrix into 

�� �
T ′+ ∆% %B A B ALL L . This, in turn, changes each row of the 

ISF matrix by: 
1 1

�� � � � �

1 1
�� � � � �

�( )   

�( )                             

T T

T T

b b b L
b b

L

Τ Τ
Τ

Τ

− −

− −

∆ +∆ ′ ′− ∆ + ∈∆ =
 ′ ′− ∆ + ∉

# # #
# #

# #
#

#

% % #

% % #

A B B A

A B B A

ψ ψ Ψ Ψψ ψ Ψ Ψψ ψ Ψ Ψψ ψ Ψ Ψ
ψψψψ

ψ Ψ Ψψ Ψ Ψψ Ψ Ψψ Ψ Ψ

LL L L L L

LL L L L L

(21) 

The derivation of (21) is straightforward using the 
Sherman-Morrison-Woodbury formula [8].  

For �∉# L , the �L -dimensional row vector 
1 1

�� � � � �, ( )T T TΤ − −′ ′− ∆ +##
% %! A B B Aφ ψ Ψφ ψ Ψφ ψ Ψφ ψ ΨLL L L L L establishes the rela-

tionship between the pre-change active flows 

�1 2
� � � �[ , , , ]

L

Tf f f# # #! "fL and the change f∆ #  in the active 

flows on line �∉# L  due to the parameter changes with 

� �,
Tf∆ =# # fφφφφ L L . Particularly, if � � �� { ( , )}i j=#L = , then 

� �

� � �,
� � � �( )

i j

i jb b
ψ ψ

ψ ψ
−=−

∆ + −
# #

# #
# # # #

φφφφ  is proportional to the quantity 

� �i jψ ψ−# # . Note that if both B  and �� �
T ′+ ∆% %B A B ALL L  are 

nonsingular, 1
�� � �

T−′ ′∆ + %B B AΨΨΨΨLL L L  is invertible [8].  
Network topology changes such as line outages and 

line additions may be considered as special cases of 
parameter changes. For example, for the outage of a line 
� � �( , )i j=# , �� { }= #L , � �

Ta= #
% %AL  and � �b b∆ = −# #

, so that: 

�

� �

�� �
� �

�                      

      
1 ( )

i j

i j

if

otherwise

Τ

Τ
Τψ ψ

ψ ψ

− =
∆ = −


− −

#

# # #
#

# #

# #ψψψψ
ψψψψ

ψψψψ

              

(22) 

where the factor 
� �

� � �,
� �1 ( )

i j

i j

ψ ψφ
ψ ψ

−=
− −

# #
# #

# #

 is called line outage 

distribution factor [1] which establishes the relationship 
between the pre-outage active flow �f #  on line �#  and 

the change f∆ #  on the active flows on line �≠# #  due to 

the outage of line �#  with � �,f fφ∆ =# # #L . Note that 
� �
� � 1i jψ ψ− =# #  only when { }#  is a cutset of the network 

[7]. In that case, the outage of line #  breaks the system 
into two separate subnetworks and the ISFs needs to be 
redefined for each subnetwork. 

Another example is the addition of a line � � �( , )i j=# . 
Two possible situations of interest are: 

(i) �#  is a radial line with �i ∉ N whose addition re-
sults in �∪% #L = L  and �i∪%N = N . We may apply 
(12), (13) to construct the augmented ISF matrix 

 
�i

T 1

 
=  
  

%
0

Ψ ψΨ ψΨ ψΨ ψ
ΨΨΨΨ  

                            

(23) 

 where � �i j=ψ ψψ ψψ ψψ ψ , the column �j  of ΨΨΨΨ ;  

(ii) �#  is a new line with � �,i j ∈ N  whose addition re-

sults in �∪% #L = L . We define a new ISF row vec-
tor � � � �

T TbΤ
# # # #
% %! a B = a Bψψψψ  and construct the aug-

mented ( 1)L N+ ×  ISF matrix 

     
� �

TΤ

+∆ 
=  +∆ # #

%
%
Ψ ΨΨ ΨΨ ΨΨ Ψ

ΨΨΨΨ ψ ψψ ψψ ψψ ψ

                       

(24) 

where �
T∆ #ψψψψ  and each row of ∆ΨΨΨΨ  is determined 

by 
� �

�� �
� �1 ( )

i j

i j
Τ Τψ ψ

ψ ψ
−∆ = −

+ −
# #

##
# #

%
% %

ψ ψψ ψψ ψψ ψ . 

A change in the network topology or parameter values 
will change the PTDF values from those in the base 
case. However, industry practice typically does not 
update the values; instead, the base case values are kept. 
This practice, in turn, impacts the quality of the PTDF 
applications in congestion modeling. We investigate 
these impacts by evaluating the relative errors in the 



 

 

calculation of ATC and TLR actions due to the neglect of 
the PTDF changes. 

We first consider the ATC application. Denote by ΨΨΨΨ  
and ( )wϕ#  the ISF matrix and the PTDF value of each 
line ∈# L  with respect to each I-W node pair w ∈ W  
for the modified (reference) network, respectively, and 
by + ∆Ψ ΨΨ ΨΨ ΨΨ Ψ  and ( ) ( )w wϕ ϕ+ ∆# #  those that are used to 
evaluate ,m nUTC . From (15) 

( )
( )

( )( )
,

( ) ( )0
min

w

max 0max 0
m n

w w

f ff fUTC
ϕ ϕ ϕ>

− −=  
 #

# # # #

# #

!ΨΨΨΨ  

( )
( ) ( )

( )( )
,

( ) ( ) ( ) ( )0
min

w w

max 0max 0
m n

w w w w

f ff fUTC
ϕ ϕ ϕ ϕ ϕ ϕ+∆ >

− −+∆ =  + ∆ + ∆ # #

# # # #

# # # #

!Ψ ΨΨ ΨΨ ΨΨ Ψ

 It follows that 
( ) ( )

( ) ( ) ( ) ( )

max 0 max 0

w w w w

f f f f
ϕ ϕ ϕ ϕ

− −
≤

+ ∆ + ∆
# # # #

# ## #

 and  

( ) ( )
( )

, , ( ) ( )

, ( ) ( ) ( )1
m n m n w w

m n w w w

UTC UTC
UTC

ϕ ϕ
ϕ ϕ ϕ

+∆ − −∆
≤ − ≈

+ ∆
# #

# # #

Ψ Ψ ΨΨ Ψ ΨΨ Ψ ΨΨ Ψ Ψ
ΨΨΨΨ

The relative errors in the UTC are bounded by the rela-
tive errors in the PTDF of the binding constraint lines.  

Next we investigate the impact of the errors in ΨΨΨΨ  on 
the curtailment quantity computation in the TLR proce-
dure. We adopt the same notation and assume line #  is 
congested with the active overflow fδ # . The curtail-

ment quantities associated with each �w ∈ W  in the two 
cases are determined by:  

( )
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Without loss of generality, we assume ( ) 0wϕ∆ >#  and 
consider two situations of interest: 
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Therefore, the impact of the errors in the PTDFs on the 
TLR curtailment quantity is bounded by a small quantity. 
Notice that the 0.05 threshold helps reduce the impact of 
the errors in PTDFs by excluding I-W node pairs with 
small-valued PTDFs which are typically associated with 
more pronounced relative errors.  

In this section, we analytically determined the bounds 
on the relative errors in the evaluation of UTC and TLR 

activities. The error bounds indicate that these impacts 
are minor. 

5 SIMULATION RESULTS 
To investigate the quality and robustness of the dis-

tribution factor approximations for congestion model-
ing, we have simulated various cases on a number of test 
systems including the IEEE 118-bus system and portions 
of the Eastern Interconnection of the United States. Our 
simulations indicate that the errors of the approxima-
tions stay in an acceptable range under a broad spectrum 
of conditions. In this section, we summarize representa-
tive results of our studies.  

We focus our discussion on three sets of representa-
tive network conditions: (a) the base case condition; (b) 
the 50% reactance cases where, for a set of specified 
lines, we decrease by 50% the reactance of each line 
individually; and (c) the line outage cases where each 
line in the same set is outaged individually.  

We use the AC power flow results for benchmark 
purposes and use the absolute value of the relative error 
as the metric in our assessment. Let truey  be the quantity 
computed using the AC power flow and y  be the result 
obtained using the distribution factors, then the absolute 
value of the relative error,  

( )y true truey y yε −!                  (25) 

is a unit free quantity. We henceforth refer to yε  as 
simply the relative error. The relative errors of interest 
are those associated with the active line flows to evalu-
ate the overall quality of the distribution factor ap-
proximations. In addition, we evaluate the relative errors 
in the UTC quantities and the TLR curtailments in the 
ATC and TLR studies, respectively. 

We discuss first the quality of the ISF approximations 
in evaluating the active line flow changes due to changes 
in nodal injections under various conditions. We use the 
ISF values of the base case for all the cases studied. For 
the base case condition (a), we study the approximation 
with different values of injections at a set of specified 
buses. We vary the injection in step of 10% from 0 to 
200% of the base case value for each bus in the set and 
evaluate the active power flow changes on all the lines 
using the ISF expression. This sensitivity study is re-
peated for every bus in the set. We collect the relative 
errors in these results and evaluate their density distribu-
tion. The resulting plot is shown in Figure 1(a). We 
perform the same study for every case in the set for (b) 
and (c). We collect the relative errors of all the cases for 
the respective set and plot their distribution density in 
Figure 1(b) and (c), respectively. We also display in 
Figure 2 the cumulative distributions of the relative 
errors for these cases.  

Each of the density plots shows that the frequency for 
the relative errors is high for small values and very low 
for large values in each of the cases studied. The cumu-
lative plot makes clear that the base case ISF values 
hold over a wide range of conditions including contin-
gencies. In fact, the scatter plot in Figure 3, showing the 



 

 

size of relative error as a function of the magnitude of 
the corresponding ISF, further enforces the notion that 
large errors in ISF approximations are associated pri-
marily with the small magnitude ISFs. The plots in Fig-
ure 1-3 are representative of the results we obtained with 
the different systems studied. 
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Figure 1:  Error distribution of ISF line flow approximations. 
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Figure 2:  Cumulative distribution of the relative errors. 

We next assess the errors in the UTC calculations. A 
similar study is performed in computing the UTC values 

determined using the base case PTDFs with respect to 
those using the AC power flow for the cases (a), (b) and 
(c). We collect the errors for each of these cases and 
compute the distribution density of these errors. Figure 4 
shows the cumulative distribution of the relative errors 
for these three cases. The plots indicate that, ignoring 
the impacts of the changes in the network parameters 
and topology on the PTDFs results in the errors of the 
UTC values that stay in an acceptable range over a wide 
spectrum of conditions. 
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Figure 3:  Relationship of relative errors and ISFs 
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Figure 4:  Cumulative error distribution of UTC approximation 
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Figure 5:  Distribution of PTDFs of binding constraint lines 

We display in Figure 5 the distribution density of the 
PTDF values of the binding constraint lines in the UTC 
calculations. The plot indicates that the binding con-
straint lines that determine the UTC quantities are typi-
cally associated with large-valued PTDFs. This result is 
particularly important considering the analytical bounds 
derived in section 4. The analytical bounds derived for 
the UTC evaluations depend on the relative errors in the 
PTDFs associated with the binding constraint lines and 



 

 

the relative errors associated with large-valued PTDFs 
are typically small. Consequently, the analytical bounds 
determined in section 4 are small. 

We also study the impacts of the PTDF errors on the 
TLR curtailment quantities. We consider a set of conges-
tions for each case in (b) and (c). We compute the TLR 
curtailment quantities using the base case PTDFs and 
compare them with the corresponding curtailment quan-
tities computed using the PTDFs associated with the 
modified network. We collect the errors and plot the 
distribution density of the absolute errors for the cases 
in (b) and (c) in Figure 6. 
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Figure 6:  Error distribution of TLR curtailment 

Figure 6 indicates that the errors in the PTDFs have 
very limited impact on the TLR curtailment quantities in 
both cases. 

6 CONCLUSION 
We reported on our investigation in the robustness 

and quality of approximations provided by key distribu-
tion factors such as ISF and PTDF. We examined the 
range of conditions over which these factors can provide 
a reliable approximation for large power system net-
works. This constitutes the first effort to systematically 
assess the impacts of errors in the distribution factors in 
the area of congestion modeling. Numerical results 

indicate that the errors of the approximations stay in an 
acceptable range under a broad spectrum of conditions 
including contingencies used to establish n-1 security. 
An attractive characteristic is that larger errors are typi-
cally associated with the small-valued PTDFs and these 
errors fail to affect the overall results in either ATC or 
TLR calculations. We will report the role of these factors 
in the definition and implementation of the financial 
transmission rights (FTRs) and flowgate rights (FGRs) 
in a future paper. 

ACKNOWLEDGMENT 
The research reported here was performed under the 

sponsorship of PSERC, CERTS and NSF. 

REFERENCES 

[1] Transmission Transfer Capability Task Force, 
�Available Transfer Capability Definitions and De-
termination�, North American Electric Reliability 
Council, Princeton, New Jersey, June 1996 

[2] North American Electric Reliability Council, �Ap-
pendix 9C � Transmission Loading Relief Proce-
dure�, www.nerc.com 

[3] W. Hogan, �Contract Networks for Electric Power 
Transmission�, Journal of Regulatory Economics, 
Vol. 4, 1992, pp. 211-242 

[4] H. Chao and S. Peck, �A Market Mechanism for 
Electric Power Transmission�, Journal of Regulatory 
Economics, Vol. 10, 1996, pp. 25-59 

[5] A. Wood and B. Wollenberg, �Power Generation 
Operation and Control�, New York, John Wiley & 
Sons, ISBN 0-471-58699-4, pp. 105-108 

[6] G. Gross and S. Tao, �A physical-flow-based ap-
proach to allocating transmission losses in a transac-
tion framework�, IEEE Transactions on Power Sys-
tems. Vol. 15 n. 2 May 2000, pp. 631-637   

[7] L. Chua and P. Lin, �Computer-Aided Analysis of 
Electronic Circuits: Algorithms & Computational 
Techniques�, Englewood Cliffs, Prentice-Hall, ISBN 
0-13-165415-2, pp.134-140 

[8] G. Golub and C. Loan, �Matrix Computations�, 
Baltimore, The John Hopkins University Press, 
ISBN 0-8018-3772-3, pp. 49-53 

[9] Transmission Transfer Capability Task Force, 
�Transmission Transfer Capability�, North American 
Electric Reliability Council, Princeton, New Jersey, 
May 1995 

 
 


	INTRODUCTION
	BASIC DISTRIBUTION FACTORS
	APPLICATIONS TO CONGESTION MODELING
	IMPACT OF CHANGES IN NETWORK TOPOLOGY AND PARAMETER VALUES
	SIMULATION RESULTS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES



