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1. INTRODUCTION 
 
Market power and allegations of market power abuse are perhaps the most contentious 
contemporary issues concerning electricity markets.  A number of industry observers and 
participants have made allegations regarding the abuse of market power.  While some of these 
allegations may be well-founded, many others may be nothing more than an attempt by some to 
retroactively correct for their own bad business decisions.  Some commentators appear willing to 
believe that market power exists and is exercised without substantiation. 
 
For example, New York Times columnist Paul Krugman asserts that it is natural for generators to 
exercise market power by withholding output to drive the price of electricity higher.  

 
The generators didn’t have to conspire: the logic of the situation made it easy, 
almost irresistible, for each individual company to manipulate the market. In fact, 
to believe that the generators didn’t engage in market manipulation, you have to 
believe that they are either saints or very bad businessmen, because they would 
have been passing up an obvious opportunity to increase their profits.  
 
Imagine the situation: it’s a hot summer, and the California electricity market is 
very tight. You are one of only a handful of major players selling wholesale 
electricity. Surely the thought has to occur to you: what would happen to prices if 
one of my plants just happened to go off line? And when companies act on that 
thought . . . well, you get the picture. 5 

 

                                                 
1 Rajesh Rajaraman is with Laurits R. Christensen Associates, Inc. (www.LRCA.com), an economics and 
engineering consulting firm.  Comments about this article can be sent to rrajaraman@LRCA.com.     
2 Fernando L. Alvarado is with Laurits R. Christensen Associates (www.LRCA.com).  He is also a Professor of 
Electrical and Computer Engineering at The University of Wisconsin-Madison and is affiliated with PSerc (Power 
Systems Engineering Research Center www.pserc.wisc.edu). 
3  The paper has benefited from discussions with Dr. Douglas Caves, Dr. Laurence D. Kirsch, Dr. Kelly Eakin, Ms. 
Margaret Schuster at Christensen Associates and with Professor William W. Hogan at Harvard University and Dr. 
Scott M. Harvey at LECG.  We thank these reviewers for their comments and corrections; the authors remain solely 
responsible for all remaining errors in this paper. 
4 This paper differs from the original version dated January 24, 2002 in the following ways.   We have modified text 
in several places to make the exposition clearer.   For example, we have significantly modified Example 3 and have 
added Appendix B as a companion to this example.  We have also added a new example (Example 4), and have re-
numbered the original Examples 4, 5 to Examples 5, 6.  We have also removed a couple of errors and typos. 
5 P. Krugman, New York Times op-ed article, March 24, 2001.  Krugman’s statement was made in reference to the 
California market and was a commentary on the California crisis of 2000-2001. 
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It is a generally accepted economic principle that the potential to exercise market power exists 
when the supply of a product is limited/scarce and the demand is inelastic.  However, one 
interpretation of Krugman’s statement is that market power in electricity markets is always going 
to be exercised during the hours when supply is “very tight.”  This is not necessarily true.  
Typically, firms hedge some output in the forward (and other derivative) markets; firms can also 
speculate by taking positions in the forward markets. A firm’s incentive to withhold output, 
therefore, depends on its financial positions in addition to its physical assets.  Moreover, there 
may be particular market rules (e.g., the imposition of punitive or regulatory penalties) that may 
affect a firm’s incentives to exercise market power. Therefore, even for the relatively simple case 
involving periods of tight supply, it is important to fully investigate before drawing any 
conclusion about whether market power has been abused.  
 
The purpose of this paper is to establish an accurate, systematic and rigorous methodology and 
framework for proving or disproving the exercise of market power in the electricity markets 
under specific circumstances, and to do so taking full consideration of all of the realities of 
power markets. 
 
The debate on market power has been influenced by a slew of recent articles6 that claim to show 
that generating firms have exercised market power in deregulated markets (especially in 
California in 2000-2001).  However, empirical studies that purport to show market power abuses 
suffer from some significant shortcomings.  Scott Harvey and William Hogan have described 
these shortcomings in great detail in their recent publications.7  The empirical studies that 
analyze market power typically use hourly simulation models to estimate competitive prices.  
These prices are then compared with actual historical prices.  Market power abuse is suspected 
when the simulated prices are substantially below the observed market clearing prices, and the 
discrepancies between the two cannot be easily explained.  However, there are assumptions and 
approximations implicit in the simulation studies, such as ignoring inter-temporal constraints, 
which have the potential to significantly affect the simulated prices. Harvey and Hogan 

                                                 
6 A partial list includes S. Borenstein, J. Bushnell. and F. Wolak, “Diagnosing Market Power in California’s 
Restructured Wholesale Electricity Market,” Working Paper PWP-064, University of California Energy Institute, 
August 2000, http://www.ucei.berkeley.edu/ucei/PDF/pwp064.pdf; E. Hildebrandt, “Further Analyses of the 
Exercise and Cost Impacts of Market Power in California’s Wholesale Energy Market,” California Independent 
System Operator, March 2001, http://www1.caiso.com/docs/2001/04/13/200104131157168307.pdf; Attachment A 
in FERC Docket Nos. EL00-95-017; A. Sheffrin, “Empirical Evidence of Strategic Bidding in California ISO Real 
Time Market,” California Independent System Operator, March 21, 2001, 
http://www1.caiso.com/docs/2001/04/13/200104131158188342.pdf; Attachment B in FERC Docket Nos. EL00-95-
017). See also P. L. Joskow, “California’s Electricity Crisis,” MIT Working Paper, (forthcoming Oxford Review of 
Economic Policy), November 2001; P. L. Joskow and E. Kahn, “A Quantitative Analysis of Pricing Behavior in 
California’s Electricity Market During Summer 2000,” January 2001; “Identifying the Exercise of Market Power: 
Refining the Estimates,” July 2001.  Papers by Joskow can be found on the website: http://econ-
www.mit.edu/faculty/pjoskow/papers.htm. 
7 See S. M. Harvey and W. W. Hogan, “Issues in the Analysis of Market Power in California,” October 27, 2000; 
“On the Exercise of Market Power Through Strategic Withholding in California,” April 2001;  “Further Analysis of 
the Exercise of Market Power in the California Electricity Market,” November 2001; “Market Power and 
Withholding,” December 2001; and  “Identifying the Exercise of Market Power in California,” December 2001.  For 
simplicity, these publications will be collectively referred to as Harvey and Hogan (2000, 2001).  These papers can 
be found on the website: http://ksghome.harvard.edu/~.whogan.cbg.Ksg/.   
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persuasively argue that quantifying market power by such simulation studies is a difficult 
problem.    
 
An alternative to simulation as a means to understand market power is the use of experiments 
and experimental economics techniques.  Such work was pioneered by V. Smith8 and has been 
elaborated upon further by Mount, Thomas and their colleagues at Cornell9.  Experimental 
economic analysis has brought about a much better understanding of the fundamentals for the 
influence of behavior in the face of complex decisions on the ability to exercise market power.  
However, such techniques lack generality, as each experiment is constructed to test a specific set 
of rules in a specific environment and not to come up with a general procedure for the 
assessment of markets in which complex inter-temporal constraints and other such factors pay a 
major role. 
 
Given these shortcomings of the typical simulation approach and of the limited scope of the 
applicability of the experimental approach, there ought to be a higher and more readily 
applicable standard of proof for demonstrating that market power has been exercised.  Taking 
price as a given exogenous input is an accepted method to examine optimal generator behavior in 
market power analysis.  For example, Joskow and Kahn (2001) perform a simple version of such 
an analysis for very high priced hours.  In this paper, we significantly extend this methodology 
by fully accounting for forecast uncertainty (e.g., due to market design), inter-temporal 
constraints, non-convex costs, and multiple markets. We estimate whether each generator10 in a 
market participant’s portfolio behaves as one would expect if the generator were a price taker, 
given the market design rules, multiple markets, non-convex operational constraints, and non-
convex cost structure, in the presence of forecast uncertainty. This approach not only has the 
advantage of being much more practical and manageable than simulation studies, but also deals 
with each generator in the market participant’s portfolio individually.  
 
The test that we propose for the detection of market power by a market participant has two main 
parts:  

•  a quantitative model-based market test that can be used in most cases to help determine 
whether or not the market participant has exercised market power  

•  a qualitative analysis part (for those cases that cannot be resolved by the model-based 
test) that examines the incentives (or perceived incentives) of the market participant to 
exercise market power.   

 
                                                 
8 V. Smith and S. Rassenti, “Deregulating Electric Power: Market Design Issues and Experiments,”, in “Designing 
Competitive Electricity Markets,” edited by Hung-po Chao and Hillard G. Huntington., Boston, MA: Kluwer 
Academic Publishers, 1998 
9 See, for example, R. D. Zimmerman, J. Bernard, R. J. Thomas and W. Schulte “Energy Auctions and Market 
Power: An Experimental Examination,” Proceedings of the 32nd Hawaii International Conference on Systems 
Science, Maui, Hawaii, January 1999, or B. C. Lesieutre and R. J. Thomas and T. D. Mount, "Identification of Load 
Pockets and Market Power in Electric Power Systems," Submitted to Elsevier Journal on Decision Support Systems 
Special Issue on Competitive Electriciy Markets, January 2003. 
10 In this paper, a single generator is one that does not directly constrain the output of other generators.  For 
example, a hydroelectric system with three hydro units cascaded in series would be considered a single generator.   
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The model-based market power test solves an optimization problem that fully incorporates inter-
temporal constraints, generator cost information, and forecast uncertainty for a single generator’s 
profit-maximizing commitment and dispatch policy given uncertain exogenous locational prices.  
This optimal generation dispatch and commitment policy can be used to formulate the optimal 
generator bidding strategy, and to understand generator behavior. This approach has the 
advantage of requiring minimal data —  in particular, only data related to the generator(s) 
suspected of having exercised market power are needed.  Based on this optimization, we provide 
a test that can be used to show that a market participant is “not guilty” of exercising market 
power.   A more stringent test must be met to show that market power was exercised.  These tests 
avoid one of the main shortcomings of the simulation approach concerning inter-temporal 
effects, non-convex costs and constraints, market design, and the effect of forecast uncertainty.   
 
There are certain market participant behaviors that are beyond the scope of the model.  These 
behaviors include the withholding of output by derating the capacity of a generator, either by 
falsely reporting an operational problem or by exaggerating the severity of an operational 
problem.  To identify such behaviors, we examine the market participant’s incentives to exercise 
market power.  For example, if the market participant’s profits are partially decoupled from spot 
market prices, then there is less of an incentive for the market participant to manipulate spot 
prices.  Furthermore, if there are multiple ways to exercise market power, a rational generating 
firm may choose the least costly method of doing so.  Our method can be applied, for example, 
to the California market to assist in resolving controversial questions about whether—and 
which—market participants exercised market power in 2000-2001. 
 
This paper is organized as follows.  We first define market power.  Next we discuss the 
theoretical shortcomings of the empirical studies that use hourly price-prediction models to test 
for market power.  We then propose a two-step approach that can help determine whether a 
market participant has exercised market power.  We use a number of examples to illustrate the 
basic concepts behind our approach. 
 

2. MARKET POWER 
 
Market power “signifies the degree of control that a single firm or a small number of firms has 
over the price and production decisions in an industry.” 11  An example of the exercise of market 
power is when a market participant profitably withholds output to raise prices above competitive 
levels.  Harvey and Hogan give the following definition of market power to account for 
transmission constraints: “ … to reduce profits from production on some units in order to change 
market prices and profit more from production on other units.” 12  Because a market participant 
may have other financial positions with payouts13 tied to spot prices, we use the following 
definition. 

                                                 
11 P. A. Samuelson and W. D. Nordhaus, Economics, McGraw Hill, 13th edition, 1998 (Chapter 24). 
12 S. M. Harvey and W. W. Hogan, “Market Power and Withholding,” December 2001. 
13 For example, if a market participant has a net “long” (combined financial and physical) position in the spot 
markets, there may be an incentive to raise prices by withholding output.  A market participant may also exercise 
market power by lowering prices through overproduction, though this has not been the main focus of market power 
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DEFINITION:  A profit-maximizing market participant exercises market power if, for any 
generator in the market participant’s portfolio, its output is shown to be significantly different 
from that of a profit-maximizing price-taking hypothetical generator with identical cost and 
operating characteristics at the same location. 
  
As discussed below, a direct application of this definition as a test of market power is 
complicated by a number of factors, including price uncertainty, multiple markets, and market 
design rules14. 
 

3. SHORTCOMINGS OF EXISTING METHODOLOGIES 
 
A number of commentators (see footnote 6) have used hourly simulation models to empirically 
test for market power.  Empirical studies that have analyzed market power typically use hourly 
simulation models to estimate competitive prices.  In these studies, each generator is implicitly 
assumed to be “bidding” its incremental costs; using these incremental costs, a market supply 
curve is constructed.  The intersection of the supply curve and demand curve sets the competitive 
market-clearing price which is then compared with actual, historical price.  If there are 
substantial discrepancies between the two that cannot be easily justified, then there is a strong 
presumption of the exercise of market power.15 
 
As elaborated in considerable detail in Harvey and Hogan (2000, 2001), these simulation studies 
generally make critical approximations that can significantly affect their conclusions.  In 
particular, these studies tend to ignore: 
 

1. Inter-temporal constraints such as ramp rate constraints 
2. Interplay between the energy and reserves markets 
3. The non-convex cost structure that results from startup and shutdown costs, “valve 

points,” and other features of actual generators 
4. The complexity of hydroelectric dispatch  
5. Demand and price forecast uncertainty 
6. Transmission constraints. 

 
                                                                                                                                                             
analysis in the electric power industry.  For example, if a market participant has a net “short” financial position in 
the spot markets that more than offsets the “long” physical positions, there may be an incentive to lower prices by 
overproducing.  Moreover, a market participant may keep prices lower than competitive levels to deter entry by 
other players into the market in order to profit from the reduced competition in future periods. 
14 Several reviewers have commented that this definition of market power must be used with care. For example, 
Scott M. Harvey cautions that under this definition, bidding mistakes could be categorized as market power.  He 
gives the following example: a net buyer that was excessively cautious in bidding its unit into the market may be in 
danger of being characterized as having exercised market power rather than simply being dumb.  We discuss this in 
more detail at the end of Section 4.1. 
 
15 Simulation studies typically check for evidence of the exercise of market power but do not identify the market 
participants who exercised market power (or how they exercised it).  
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We discuss each of these problems in turn below. 
 

1. Ignoring inter-temporal and ramp rate constraints.  Hourly simulation models typically 
tend to be non-chronological, i.e., each hour is considered independently of the other 
hours.  However, this can lead to incorrect dispatch of generators.  For example, consider 
a generator having a minimum capacity of 0 MW, a maximum of 100 MW, and whose 
incremental costs are as shown in Figure 1.  Suppose that ramp rate for the generator is 
30 MW/hr.  Assume that for hour 1 the simulated market-clearing price for energy is 
MCP1 = $35/MWh, for hour 2 it is MCP2 = $70/MWh, and that the simulation is non-
chronological.  If ramp rates are ignored in the hourly simulation model, the generator 
will produce 50 MW in hour 1 and 100 MW in hour 2.  However, this violates the ramp 
rate constraint that the generator output cannot change by more than 30 MW between the 
2 hours.   

 
2. Ignoring interplay between energy and reserve markets.  When markets for reserves exist, 

the interaction between energy and reserve markets tends to be complex.  Prices in one 
market tend to affect prices in the other market because of ramping constraints, startup 
times, etc.  Hourly simulation models do not capture such interactions.   
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FIGURE 1: INCREMENTAL COSTS OF A GENERATOR AND MARKET 

CLEARING PRICES FOR EACH OF TWO PERIODS 
 
 

3. Ignoring non-convex cost structure.  Typically, non-convex costs (such as commitment 
costs, increased generator efficiencies at higher loading levels, “valve point” effects and 
other such effects) are ignored in hourly simulation models.  Commitment costs and 
minimum load costs are assumed to be “sunk” costs in the hourly simulation models, 
which only include generator incremental costs.  However, at the time of commitment, 
these costs are “variable” costs—the generators will not commit the resources if the total 
expected revenues over the commitment cycle are lower than the total commitment and 
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dispatch costs.  Commitment costs could affect the commitment of generators near the 
margin; if so, generators may have to adjust their incremental costs upward to account for 
these commitment costs.  Moreover, this adjustment may vary over time; on days when 
commitment costs are non-binding, incremental costs need not be adjusted at all; on days 
when commitment costs are binding, incremental costs need to be adjusted by an amount 
(based on expected prices) that ensures cost recovery.   

 
4. Complexity of energy-limited generator dispatch rules: Hourly simulation models 

typically assume that energy-limited generators such as hydroelectric generators are 
infra-marginal.  This is not always true.  For hydroelectric generators that have storage 
capacity, the optimal dispatch of energy tends to be a complicated function of many 
parameters, including (uncertain) forecasts of energy and reserve prices in the future, 
expectation of reservoir inflows, and other operational constraints such as environmental 
limits, reservoir limits, etc.  Other energy-limited generators can have their dispatch 
constrained by environmental operating conditions, total emissions limits within a period, 
etc.  Appendix A discusses the challenges of modeling energy-limited generator behavior 
and shows that optimal dispatch rules are complex. Energy-limited generators can also be 
marginal generators in some periods.  Hourly simulation models tend to ignore these 
complications.  

 
5. Forecast uncertainty:   A profit-maximizing generator will optimize its commitment and 

dispatch decisions based on its expectation of future spot energy and reserve prices.  In 
markets where the optimal commitment, dispatch, and cost-recovery are guaranteed by 
the ISO, a generator will simply bid its costs and let the ISO do the optimization.  
However, as Harvey and Hogan (2000, 2001) point out, in markets that do not have this 
feature, and where generators have to estimate the future spot market-clearing prices in 
order to optimize on dispatch and commitment decisions, forecast uncertainty affects 
bidding decisions in a complicated manner.  Hourly simulation models tend to ignore 
these complications. 

 
6. Transmission constraints.  Transmission constraints are an important consideration in 

electricity markets.  Hourly simulation models tend to ignore these constraints, thereby 
affecting simulated clearing prices.  For example, consider a market with 2 nodes: East 
and West, with a link connecting them.  If there is congestion from West to East, then 
East prices will be higher than West prices, and a load-weighted average of West and 
East prices would tend to be higher than the prices implied by an unconstrained dispatch.  
When hourly models do consider the transmission constraints, a simple radial model is 
assumed.  Such an assumption could be misleading in typical power systems; indeed, 
even in California, which models its system as being radial, there are loop flow 
considerations.  The best way to analyze transmission constraints is to use Optimal Power 
Flow software with detailed representation of the transmission system; however, in such 
a case, data requirements become stringent.  For example, one would need load data by 
bus, information of transmission line outages, etc.  

 
In summary, simulation models tend to ignore some very important factors when estimating 
market-clearing prices.  Importantly, these factors tend to be the ones that could most influence 
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the commitment and dispatch decisions of the marginal generator(s) setting market-clearing 
prices.  These factors also have a significant effect on the simulated prices that are used by 
traditional market power analysis techniques.  According to Harvey and Hogan (2000, 2001), the 
approximations made in the hourly simulation models tend to have a downward bias on the 
estimated market clearing prices and hence overstate market power.   
 
Simulation studies also have a more pressing problem: data needs are stringent.  To run such a 
model, one would need operational information from all generation plants, including costs, 
energy and reserve capabilities, load information, etc.  Some of this information is easy to obtain; 
for example, system load information is generally available in the public domain. However, 
getting all of the right data and getting a model to use these data correctly would require 
herculean efforts; there exists no model today that can currently run a full unit-commitment, with 
an optimal load flow plus generators’ behavioral uncertainty factored in.  Therefore, even ISOs 
that have the data on all resources would have a hard time using the data to run such simulations.   
 
Hourly simulation models have their uses.  For example, they can be used to get “ballpark” 
estimates of market-clearing prices.  Such estimates often provide qualitative insight into 
behavior of market prices under various conditions and scenarios.  However, hourly simulation 
models are too blunt of a tool to be used for market power analysis.   It would be hard to make 
the case that the results from such a simulation study provide the proverbial “smoking gun.”  The 
standards of proof ought to be much higher.  The next sections propose a better approach.   
 

4. MARKET POWER TEST, PART ONE: MODEL-BASED  
 
We have discussed the practical difficulty of using a model that could simulate not just 
competitive market prices given a large volume of generator and load data, but also simulate 
market participants’ behavior in response to uncertain forecasts.  In this section, we discuss 
another approach that is much more robust and practical.  We turn the problem on its head: 
instead of using information about all generators and loads to simulate competitive prices, we 
propose to use historical prices as a given exogenous input and simulate a generator’s profit-
maximizing (competitive) dispatch policy.  This dispatch policy can then be compared with the 
generator’s actual dispatch to see if there are significant discrepancies between the two.   
 
To the extent that a generator was in a position to make a reasonable estimate of future prices at 
any given time, the generator would have been expected to engage in behavior that is consistent 
with its forecast prices and its desire to optimize profits.   We propose using actual location-
based historical prices (including an uncertainty component to account for the fact that these 
prices may not have been perfectly predictable ex-ante) to find the profit-maximizing dispatch of 
each generator available to operate in the market participant’s portfolio of generators.  In 
particular, we can state Problem P below for a price taking and profit-maximizing generator: 
 
PROBLEM P:  For each generator, solve for the expected16 profit-maximizing commitment and 
dispatch policy (or equivalently the optimal bidding policy) given the following exogenous 
                                                 
16 The expected value formulation could allow for risk aversion by including a variance of the uncertainty term.  
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parameters: 
 
•  operating horizon17 over which the optimization will happen, including  initial and ending 

boundary conditions (if any) 
•  inter-temporal constraints (startup/shutdown times, ramp rates, aggregate limits on fuel, 

water, etc.), 
•  cost parameters (startup/shutdown costs, no-load costs, ramping costs, incremental costs, 

etc.) 
•  exogenous, uncertain,18 location-based price forecasts of energy and ancillary services 

(perfect foresight of prices is not required). 
 
The output of Problem P is an optimal commitment and dispatch policy and not just an expected 
value estimate of the dispatch.  That is, the output of the optimization is not just a single number 
or set of numbers, but rather a function, which depends on the generator’s state (such as status) 
and exogenous parameters (such as prices); this function guides the generator’s dispatch and 
commitment decisions and its optimal bidding policies. The difference between the actual 
dispatch (e.g., in MW) and the dispatch policy (a function) is as follows.  The actual dispatched 
MW and generator commitments over time are a result of following the optimal commitment and 
dispatch policy in response to one particular (actual) realization of prices. In other words, for a 
generator following the optimal policy, its observed dispatch and commitment would be 
“contained in” or “in the range of” the optimal commitment and dispatch policy.  We will 
illustrate the concepts underlying the solution of Problem P using examples in Section 4.2.   
 
Problem P is, in effect, the “self-commitment” problem that must be solved by every self-
scheduling generator in the system.  The mathematics of finding the optimal bidding policy 
over multiple periods for energy and ancillary services is described in Rajaraman and Alvarado 

                                                 
17 Some hydroelectric generators may operate on a very long-term cycle, say a yearly cycle.  Forecasting hourly 
prices over a year or longer becomes a challenge.  Even if a price forecast is available over a long-term horizon, the 
optimization to allocate water on an hourly schedule may become numerically intractable.  To get around this 
problem, a nested optimization approach may be used.  First the long term horizon is broken down into smaller sub-
intervals, and water is optimally allocated into these sub-intervals; then the first sub-interval is broken down into 
still smaller sub-intervals, and the water allocated over the first sub-interval is further optimally sub-divided, and so 
on. 
18 Two points must be noted.  One, the uncertain price forecasts of energy and ancillary services would be based on 
actual market-clearing prices, with the uncertainty component included to account for the fact that the market 
participant may not have had perfect foresight of the future spot prices at the time of commitment and/or dispatch.  
The uncertainty component would depend on market design; in markets such as NY and PJM, where the ISO does a 
joint optimization of energy and reserve markets, the uncertainty component would be applicable only to energy-
limited generators (such as hydroelectric generators).  The second point is that markets for reserves do not exist 
everywhere, and even where they do, there are differences in the ways that reserves are priced.  Reserve incremental 
costs typically have two components: availability and usage.  A generator offering reserves incurs a reserve 
availability cost (influenced mostly by opportunity costs in the energy markets), and, if the reserves are actually 
called, incurs an additional usage cost (covering mostly an energy component, but could also include heat rate 
degradation and wear-and-tear costs).  [The original version of the paper stated that in markets such as NY and PJM, 
the uncertainty component also “enters via the option to sell in different markets … and their market rules”. 
However, Scott M. Harvey has correctly pointed out (email correspondence to the authors, May 4, 2002) that the 
decision to export power to a neighboring market is irrelevant to the generator’s bidding problem.  This is because, 
in NY and PJM, the export decision is independent of the generator bidding decision for a price-taker.] 
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(2003).19  Related references are Rajaraman and Alvarado (2002) and Rajaraman et al. (2001). 20   
The optimization involves backward Dynamic Programming techniques and the use of tree-like 
structures to capture price uncertainty (i.e., lack of perfect foresight).  The optimization commits 
a generator only if the expected profits from optimally operating the generator over its 
commitment cycle are non-negative.   In the optimization, the model considers all opportunity 
costs for the generator to sell part of its output to other markets.  For example, these opportunity 
costs include the anticipated prices of energy and reserves in other periods and total energy 
restrictions that the generator may face (a particularly important consideration for hydro and 
pumped hydro generators.)  The model also accounts for uncertainty using an option-like 
valuation methodology, rather than “averaging” methods (including Monte-Carlo methods based 
on averaging.)  By permitting the use of locational prices rather than a single system price, the 
model also accounts for the effects of transmission constraints.  Theoretically, this is the optimal 
way to dispatch and commit any generator operating in any market.  Our contention is that such a 
method should reasonably mimic the actions of a profit-maximizing, price-taking generator.21 
 

4.1 “GUILTY” OR “NOT GUILTY” TESTS FOR EXERCISE OF MARKET POWER  
A market participant can exercise market power even when a generator in the market 
participant’s portfolio is producing more than its theoretically optimal dispatch, not just when it 
is producing less than its theoretically optimal dispatch.  The latter can happen when a generator 
in the market participant’s portfolio is deliberately withholding output to drive up prices.  The 
former can happen when a market participant produces output upstream, even if the market price 
there is below the incremental costs of production, in order to cause transmission congestion and 
profit from it; the congestion can also exacerbate market power in the downstream market.22  It is 
important to devise a test that accounts for both kinds of behavior. 
 
We first give a sufficient condition for testing for market power.   
 
Proposition 1 [Not Guilty]:  Suppose that there exists a “credible” price forecast such that the 
market participant’s simulated optimal commitment and dispatch policy of energy and ancillary 
                                                 
19 R. Rajaraman and F. L. Alvarado, "Optimal Bidding Strategies in Electricity Markets Under Uncertain Energy 
and Reserve Prices", PSERC Report 03-05, April 2003 
(http://www.pserc.wisc.edu/ecow/get/publicatio/reports/2003report/alvarado_bidding_report_0411.pdf) (henceforth 
Rajaraman and Alvarado (2003)).   
20 R. Rajaraman and F. L. Alvarado, “Testing for Market Power in Hydro-Dominant Regions”, in Proceedings of 
VIII SEPOPE, Paper SP-2002, 2002; R. Rajaraman, L. D. Kirsch, F. L. Alvarado, and C. Clark, “Optimal Self-
Commitment Under Uncertain Energy and Reserve Prices,” Next Generation of Electric Power Unit Commitment 
Models (eds. B. F. Hobbs et al.), International Series in Operations Research and Management Science, vol. 36, 
Kluwer Academic Publishers, Boston, April 2001 (henceforth Rajaraman et al. 2001).  
21 The optimization problem is tricky when the output of one unit within a generator influences the output of other 
units within the generator; e.g., in the case of hydroelectric systems where such units are connected in “series.”  The 
problem is further complicated if water transit times must be considered.  While a full discussion of this problem is 
beyond the scope of this paper, one can use “relaxation” techniques to perform the optimization.  See, for example, 
D. P. Bertsekas et al. “Optimal Short-Term Scheduling of Large-Scale Power Systems,” IEEE Transactions on 
Automatic Control, AC-28(1): 1983. 
22 See P. L. Joskow and J. Tirole, “Transmission Rights and Market Power in Electric Power Networks,” RAND 
Journal of Economics, vol. 31, no. 3, Autumn 2000, pp. 450–487. 
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services found by solving Problem P (see Rajaraman and Alvarado 2003) is consistent with 
(“contains”) the actual historical dispatch (or bids) for each generator in the market 
participant’s portfolio.  Then the market participant is not guilty of the exercise of market power.  
 
Thus to absolve itself of market manipulation charges, each generator in the market participant’s 
portfolio must show that its historical dispatch is consistent with a profit-maximizing 
commitment and dispatch policy (and hence bidding policy) after accounting for inter-temporal 
constraints and “credible” price forecasts.  The price forecast has to be credible in the sense that 
it has to be acceptable to auditors investigating the generator’s behavior, and must be consistent 
with historical behavior, market data, and market design rules.  To be sure, there may be cases 
when what may seem to be credible to one party may not seem credible to a different party.  For 
example, a regulator may suspect that a market participant is using a “randomized” withholding 
strategy and may not believe the market participant’s price forecast that satisfies Proposition 1 is 
a “credible” forecast.  While such cases may not be easy to resolve, solving Problem P will yield 
important clues about a generator’s behavior in response to prices; these insights could be used 
to design appropriate market power mitigation rules for the generator.  
 
The test described in Proposition 1 could also be extended to include planned maintenance 
outages.  The model would merely be used over a longer time horizon (say a year), with the 
smallest period within the horizon itself being on the order of one or more weeks.23  In such a 
case, the market participant has to show that one credible price forecast exists where the 
simulated optimal maintenance outage scheduling policy is consistent with the actual schedule 
(given constraints on scheduling the maintenance) to prove that the market participant is not 
guilty.   
 
We give a stricter test to show that market power has been exercised: 
 
Proposition 2 [Guilty of market manipulation?]:  Suppose that no “credible” price forecast 
from the market participant’s simulated optimal commitment and dispatch policy of energy and 
ancillary services found by solving Problem P (see Rajaraman and Alvarado 2003) is consistent 
with (“contains”) the actual historical dispatch24 (or bids) for at least one generator in the 
market participant’s portfolio.  Then the market participant is either guilty of the exercise of 
market power or the market participant is not a profit-maximizer.  
 
If the test in Proposition 2 is satisfied, it does not necessarily mean that the market participant 
has exercised market power; an alternative possibility is that the market participant is not a 

                                                 
23 See also footnote 17. 
24 Scott M. Harvey adds the following caveats (email correspondence received by the authors, May 4, 2002).   "…. 
in every market relying on telephone based dispatch, some economic generation goes unused, despite low bids and a 
willingness to run, because the ISO simply did not have time to make lots of phone calls.  This is an infrastructure 
problem, not a market power problem. …. There are a variety of other situations involving ISO communications, 
system operator judgment, and operating conditions that may result in economic generation remaining undispatched 
while higher cost generation is instructed to meet load.  This is also not market power.  The system operators 
dispatch process will hopefully reveal why a unit was not dispatched during high priced intervals…."  Thus we must 
account for the ISO dispatch instructions in applying the tests in both Propositions 1 and 2. 
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profit-maximizer.  It is therefore important to rule out this alternative possibility by examining 
the market participant's incentives.  For example, a net buyer that withholds output due to a sub-
optimal bidding strategy and raises prices is automatically penalized by his actions; therefore 
when the net buyer raises prices due to bidding mistakes, it is clear that he is not exercising 
market power.  On the other hand, if a net buyer succeeds in lowering prices by, for example, 
producing from one generator at a loss but still profiting on his overall portfolio, then market 
manipulation by the net buyer cannot be ruled out.  As another example, if a market participant 
with a net long position in the market withholds output, and if this behavior meets the test of 
Proposition 2, then the market participant's claims of "dumb" bidding mistakes will not be 
credible. 
 
We examine the issue of market participant's incentives in more detail in Section 5.      
 

4.2 MODEL EXAMPLES 
We illustrate the concepts underlying Problem P and its solution using six examples.  In the first 
example, we show the effects of inter-temporal constraints on profit-maximizing dispatch.  The 
second example illustrates how to properly account for the effect of uncertainty on profit-
maximizing commitment.  The third, fourth, and fifth examples illustrate the effect of market 
design on bidding strategy, and how this effect is captured in Problem P.  The examples also 
show that the output of Problem P is a functional policy, rather than simply an expected value 
estimate of commitment and dispatch.  Finally, these examples show that it is possible for a 
generator to have an ex-post sub-optimal dispatch, even if such a dispatch is optimal ex-ante 
given the market design rules and forecast uncertainty. 
 
Example 1:  (A multi-period problem).  Assume a single market for energy (no reserve markets), 
and assume that the analysis is confined to 2 periods with no price uncertainty.  Consider the 
(price-taking) generator whose incremental cost characteristics are as described in Figure 1, with 
marginal costs of $20/MWh and $45/MWh depending on the level of output.  Further assume 
that the generator predicts (with perfect foresight) market clearing prices for each period i = 1,2.  
In this example, MCP1 = $35/MWh, and MCP2 = $70/MWh, as indicated in Figure 1.  Assume 
that, initially (during period 0), the generator is operating at 45 MW.  The generator has an inter-
temporal (ramping) constraint such that it cannot change its output by more than 30 MW 
between any two periods (between period 0 and period 1 and between period 1 and period 2).  
Assuming that there are no other costs or constraints and the objective of the generator is to 
optimize its profit over the 2 periods, we can find the profit-maximizing dispatch.  The generator 
will produce at least 50 MW in both periods because its incremental costs over that range are 
lower than market-clearing prices in both periods.  However, the generator could produce more 
than 50 MW in hour 1 (but no more than 75 MW because of ramping constraints), and incur a 
loss in hour 1 if that loss is more than compensated for from additional profits in hour 2.  More 
precisely, given the ramp rate considerations and taking into account the 100 MW maximum 
limit, the total profits from generating at X MW (X > 50) in hour 1, and min(X + 30, 100) in 
hour 2 are:25 

                                                 
25  Within each square bracket, the first term refers to the profits of the block whose incremental costs are $20/MWh, 
and the second one refers to the profits of the block whose incremental costs are $45/MWh. 
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Period 2 profitsPeriod 1 Profits

Total Profits =  [50*15-(X-50)*10] [50*50 +min[X+30-50, 100-50]*25]+
��������������������������

 

 
These profits are maximized when X = 70 MW.  That is, the generator will produce 70 MW in 
period 1 (incurring an apparent reduction of profits during this period) and 100 MW in period 2.  
This result is in contrast with the result that would be produced by a typical hourly simulation 
model (see previous section), where, ignoring ramp rates, the generator will produce 50 MW in 
period 1 and 100 MW in period 2.   
 
The objectives of the following illustrative examples are to show: 
 

•  how “typical” Monte Carlo methods do not capture the effects of uncertainty (or lack of 
perfect foresight in forecasts) 

•  how to correctly account for uncertainty 
•  how inter-temporal constraints in combination with non-convex costs and uncertainty of 

future prices affect the commitment decisions of generators 
•  that the output of Problem P is a functional policy, rather than simply an expected value 

estimate (e.g., of dispatch MW). 
 
Example 2:26 (The effect of price uncertainty and inter-temporal constraints on generator 
commitment.)  Assume a 2-period case.  Consider a price-taking generator that has a capacity of 
100 MW, a minimum generation constraint of 90 MW, a constant incremental cost of $30/MWh 
over this range, and an additional inter-temporal constraint that, once online, the generator has to 
stay online for two consecutive periods.  The boundary conditions are that the generator is offline 
initially, and must be offline at the end of the two periods.  There are no other constraints or 
costs.  Assume that the generator forecasts that market clearing prices are such that each period 
has a 50% chance of HIGH price ($35/MWh) and a 50% chance of LOW price ($10/MWh), 
regardless of the previous period price.  We give two solutions to the problem, one a wrong 
answer and the other a right answer. 
 
Solution #1 (wrong answer):  One plausible way of finding the expected generator dispatch is to 
generate a large number of random price scenarios for the time interval by Monte Carlo methods, 
then use a deterministic self-commitment model to find the profit-maximizing dispatch 
corresponding to each ensemble of price scenarios and then average the dispatch over the Monte 
Carlo runs.  Thus, in the present example, we could first generate all the price scenarios, and then 
run a deterministic optimal unit commitment on each possible price sequence.  The four equally 
likely price sequences for the two periods are {HIGH, HIGH}, {HIGH, LOW}, {LOW, LOW}, 
and {LOW, HIGH}.  If we make four deterministic unit commitment runs on these four price 
sequences, the deterministic unit commitment will only run the generator at maximum output 
(100 MW) for both periods when the price sequence is {HIGH, HIGH}.  The profit for this price 
sequence is $1000, and the dispatch will be 100 MW in both periods.  For all other price 
sequences, the generator will not run, and the profit will be zero.  Hence expected profits using 
this method will be 0.25*1000 + 0.75*0 = $250, and the expected dispatch over the four 
                                                 
26 This example was originally presented in Rajaraman et al. (2001). 
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scenarios is similarly 25 MW in both periods.  This answer is wrong.  As we shall see below, the 
expected profits that result from committing the unit during period 1 are not $250, but are 
actually negative. 
 
Solution #2 (right answer):  The optimal policy (of maximizing expected generator profits) is 
not to commit the generator regardless of what the period 1 price is.  The reasoning is as 
follows.  If period 1 price is HIGH, and the generator commits, the generator would produce 100 
MW in period 1 to make a profit of $500.  However, there is a 50/50 chance that the period 2 
price is HIGH or LOW.  If the period 2 price is HIGH, the generator’s two-period profit will be 
$1000.  If period 2 had a LOW price, the generator would produce the minimum 90 MW and 
lose 90*20 = $1800 in period 2 for a net two-period loss of $1300.  Therefore, if the generator 
commits to be online when the period 1 price is HIGH, the expected two-period payoff is 
1000*0.5 − $1300*0.5 = ($150), for an expected loss of $150.  Therefore a profit-maximizing 
generator will not commit to be online even when the period 1 price is HIGH.  Obviously, it 
would want even less to be online when the period 1 price is LOW.  Therefore the expected 
dispatch (and profit) under an optimal self-commitment policy27 under uncertainty is zero.   
 
Example 2 shows that a generator that would have found it profitable to commit itself with 
perfect foresight of future prices (assuming that it was {HIGH, HIGH}) would find it to be a 
losing proposition (from an expected value viewpoint) with sufficiently imperfect foresight and 
would not commit itself. 
 
A more formal and numerically much more efficient way to solve such kinds of multi-period 
problems is to recognize that this problem is akin to a complex option valuation problem and to 
use tree-like methods, starting from the terminal time-period (backward dynamic programming). 
Rajaraman and Alvarado (2003) illustrate how one can use such methods; we also illustrate the 
backward DP method in detail in Example 3.   

 
Example 3:  (The effect of price uncertainty and inter-temporal constraints on bidding 
behavior.)  Assume a 2-period case.  Most assumptions are as in the previous example.  That is, 
consider a price-taking generator that has a capacity of 100 MW, a minimum generation 
constraint of 90 MW, a constant incremental cost of $30/MWh over this range, and an additional 
inter-temporal constraint that, once online, the generator has to stay online for two consecutive 
periods.  The boundary conditions are that the generator is offline initially, and must be offline at 
the end of the two periods.  There are no other constraints or costs. As before, assume that that 
the generator forecasts that market clearing prices are such that each period has a 50% chance of 
HIGH price and a 50% chance of LOW price, regardless of the previous period prices.  
However, assume this time around that the HIGH price period 1 is $45/MWh, and the HIGH 
price in period 2 is $65/MWh while the LOW price in period 1 is $33/MWh, and in period 2 is 

                                                 
27 The reason for the wrong answer when using this particular Monte Carlo method is that in each Monte Carlo run, 
the generator “peeped ahead” and “knew” the future prices and therefore chose the profit-maximizing commitment 
accordingly.  Typical Monte Carlo methods are very efficient when one needs to simulate a large number of 
different random outcomes and find the expected value (or some other statistic) of some function based on these 
random outcomes.  They are much more complicated to implement, and prohibitively expensive, when the value of 
a function at any given time t itself depends on what may happen in the future, as in optimal self-commitment policy 
problems that have inter-temporal constraints. 
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$5/MWh.  What is the generator bidding policy, assuming a uniform clearing price auction 
structure (and no other payments), if the objective is to maximize expected profits? 
 
Solution:  We go through the exercise of solving Problem P to find the optimal commitment and 
dispatch strategy to illustrate the method.  We use a tree to find the optimal policy as a decision 
rule that commits and dispatches the generator for the next period, as a function of price level 
and generator state at the beginning of the period.   
 
Because of the requirement that the generator has to stay online for at least two periods, we 
define two generator online states, UP1 and UP2, and one generator offline state DOWN.  The 
generator will be in state UP2 if it has stayed online for at least one period, and will be in state 
UP1 if it has come online from an offline state.  It is not permissible for the generator to 
transition to the off-line state from the UP1 state.  The permissible generator state transitions are 
shown in Figure 2a.   
 
The price levels can be either HIGH or LOW in either period. Moreover, the price in period 2 is 
independent of period 1.  Figure 2b shows the price state transition possibilities.   
 
The price states are exogenous (cannot be controlled) while the generator states are controlled by 
the optimal policy.   
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a. Generator State Transition Possibilities  
There are two UP states (to model the minimum UP time of 2 hours) and one DOWN 
state.  When the generator is in state UP1 at time t+1, it means that the generator was 

DOWN at time t.  When the generator is in state UP2 at time t+1, it means that at 
time t, the generator was either in state UP1 (it has been online for one hour) or in 

state UP2 (it has been online for more than one hour).  When the generator is in state 
DOWN at time t+1, it means that at time t, the generator was either in state UP2 (it 

had been online for more than one hour) or in state DOWN (it was offline the 
previous hour). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b. Price Transition Probabilities 

If the price is LOW in period 1, then there is probability of 0.1 of price being HIGH in period 2 
and a probability of 0.9 of price being LOW in period 2.  Similarly, if the price is HIGH in 

period 1, then there is probability of 0.5 of price being HIGH in period 2 and a probability of 0.5 
of price being LOW in period 2.    The HIGH and LOW prices themselves vary by time. 

 
FIGURE 2: TRANSITION DIAGRAMS 
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In order to solve the problem, we introduce Value as a function of generator state, price state, and 
period t; Value is defined as the expected cumulative profits from period t to the terminal period, 
provided the optimal commitment and dispatch policy is followed during this interval.  During 
period 1, the Value function gives us the optimal expected cumulative profits from t=1 to the 
terminal period.  We find the optimal commitment policy by maximizing Value.  
 
We first fix the boundary conditions for Value.  The requirement of the problem is that after 2 
periods, the generator has to be DOWN.  That is, the generator has to be DOWN at during period 
3.  The generator is forbidden to be in either the UP1 or UP2 states during period 3.  We therefore 
assign a prohibitively low Value for these states for t=3; Value is (arbitrarily) set equal to 
negative infinity for the forbidden states.  For the allowed DOWN state during period 3, we set 
Value=0, since there is no market for this period (we have assumed a 2-period market) and 
therefore profits will be 0 in this period.   
 
We use the following recursive formula to compute Valuet at time t: 

Valuet(statet, pricet) = profitst(statet,pricet) + Max [E(Valuet+1(statet+1, pricet+1)| pricet)]   (1) 
where E is the expected value operator and the Max refers to the maximum over all possible state 
transitions.   
 
Tables 1(a)-(b) give the solution to the optimal dispatch policy problem.   Table 1(a) shows the 
optimal dispatch for each (price level, generator state) pair.   Table 1(b) shows the optimal profits 
made at time t corresponding to the optimal dispatch.    
 
Table 2 gives the entries of Value as a function of generator state, price level, and time.  Based 
on this table, we can derive the optimal commitment decision made at the end of each period; 
this is shown in Figure 3.  Appendix B shows in much greater detail how Tables 1(a)-(b) and 2 
and Figure 3 are constructed.   
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Table 1a.  Optimal Dispatch Policies d* (in MW) 

(State, Price level) Period 1 Period 2 

UP2, HIGH 100 100 

UP2, LOW 100 90 

UP1, HIGH 100 100 

UP1, LOW 100 90 

DOWN, HIGH 0 0 

DOWN, LOW 0 0 

 

 

Table 1b.  Profits Made in Time t (in $) 

(State, Price level) Period 1 Period 2 

UP2, HIGH 1500 3500 

UP2, LOW 300 (2250) 

UP1, HIGH 1500 3500 

UP1, LOW 300 (2250) 

DOWN, HIGH 0 0 

DOWN, LOW 0 0 

 
 
 

Table 2: Value (in $) as a function of generator state, price state and period t is the expected 
cumulative profits from period t to the terminal period corresponding to the optimal commitment 

and dispatch policy 
 

(Generator State, 
Price Level) 

Period 1 Period 2 

UP2, HIGH 2125 3500 
UP2, LOW 300 (2250) 
UP1, HIGH 2125 −∞ 
UP1, LOW (1375) −∞ 

DOWN, HIGH 0 0 
DOWN, LOW 0 0 
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FIGURE 3. OPTIMAL STATE TRANSITIONS OR COMMITMENT POLICY. 
The optimal commitment policy at any time t depends on both generator state and price level. 

For example, in period t=1, if the generator is UP2 and if the price p1 is HIGH, then it is optimal 
for the generator to stay UP2 in period t=2. On the other hand, in period t=1, if the generator is 
UP2 and if the price p1 is LOW, then it is optimal for the generator to go DOWN in period t=2.  

The boldfaced arrows show all possible optimal state transitions starting from the initial DOWN 
state in period t=0.   

 
Given the results in Tables 1(a)-(b), 2, and Figure 3, the bidding strategy can be deduced as 
follows.  The generator is initially DOWN, and the state that it can occupy in period 1 is either 
UP1 or DOWN. The generator will find it preferable to be DOWN if the price is LOW in period 
1 because the (UP1, LOW) entry of ($1375) in column 1 (and row 4) of Table 2 is lower than the 
(DOWN, LOW) entry of $0 in the same column (and row 6). However, the (UP1, HIGH) entry of 
$2125 in column 1 (and row 3) of Table 2 is higher than the (DOWN, HIGH) entry of $0 in the 
same column (and row 5).   Therefore the optimal transition from the current period t=0 can be 
stated as a function of price in period 1; if price is HIGH in period 1, then it is optimal to go to 
the UP1 state in period 1; if price is LOW in period 1, then it is optimal to stay in the DOWN 
state in period 1.  This is shown in Figure 3 (state transitions for period t=0 from the DOWN 
state). 
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Therefore it will reap expected profits of $2125 by being online if the price is HIGH in period 1.  
If the generator is selected in period 1, the generator will find itself in the UP2 state in period 2 
(from Figure 3).  Its minimum dispatch in the UP2 state from column 2 of Table 1(a) is 90 MW.  
This leads us to the following optimal bidding strategy: 
 
•  in period 1: bid 100 MW at any value between $33.01/MWh to $44.99/MWh 
•  in period 2: (only) if selected in period 1, bid 90 MW at a low enough price (less than or 

equal to $4.99/MWh) to guarantee selection, and bid the remaining 10 MW at its incremental 
cost of $30/MWh. If not selected in period 1, the generator will not make any bid in period 2. 

 
Since the chances of being selected in period 1 are 50%, expected profits from this strategy are 
0.5*0 + 0.5*2125 = $1062.50.  However, even with an optimal bidding strategy, the generator 
will lose $750 (= 1500 - 2250) if the prices are HIGH ($45/MWh) in period 1 and LOW 
($5/MWh) in period 2. 
 
The moral of this example is that the optimal strategy for the generator is to bid above cost in the 
first period (and below cost in the second period), and that such behavior has nothing to do with 
market power.  It is the rational expected behavior of a profit-maximizing, price-taking 
generator. 
 
Example 4:  (The effect of market design and combined energy and reserve markets; necessity of 
varying bids by time.)  Assume two markets, one for energy and one for reserves.  Suppose that a 
price-taking generator has a capacity of 100 MW, constant incremental costs of $30/MWh (and 
no other costs), and a reserve capability of 40 MW; suppose that there are no direct costs for 
offering reserves.  Suppose that the market design is such that the energy market clears first.28  
Then reserve bids are accepted and the reserve market clears. Both markets have uniform 
clearing prices.  Suppose that the generator has perfect foresight of reserve availability price.29  
It forecasts accurately that, for an on-peak period, the reserve availability price is $20/MW/h; 
for an off-peak period, reserve availability price is forecast to be $2/MWh.    What are the 
generator’s optimal bids in the energy market for both the off-peak and on-peak periods if the 
objective is to maximize expected profits? 
 
Solution:  The generator bids two stairs in the energy market, as shown in Figure 4.  In stair one, 
the generator bids its incremental costs for the capacity (60 MW) that cannot be sold into the 
reserve market.   In stair two, the generator bids incremental costs plus foregone profits in the 
reserve availability market for the capacity (40 MW) that can be made available in the reserve 
markets. In the on-peak period, the foregone profits are $20/MW/h; in the off-peak period, the 
foregone profits are $2/MW/h.  The optimal bidding strategy for the price-taking generator is to 
vary its bids by period; it has a steeper sloped bid curve for the on-peak period.  A cursory glance 
at the bid curves may invite suspicions that the generator is withholding capacity in the on-peak 
period; however, they are a perfectly legitimate strategy in this example.   
  

                                                 
28 This design is similar to the method by which the California ISO clears its markets today (September 2003).  
29 We also make the simplifying assumption here that the reserves are not called; hence the generator only gets the 
reserve availability price.  
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a. OPTIMAL ON-PEAK BIDS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. OPTIMAL OFF-PEAK BIDS. 
 
  

FIGURE 4. OPTIMAL BIDS FOR THE GENERATOR IN EXAMPLE 6. 
The generator bids vary with time because the opportunity costs of the generator in the reserve 

markets vary with time.   
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Example 5:  (The effect of market design, forecast uncertainty, and combined energy and reserve 
markets on bidding behavior.)  Assume a single-period case and two markets, one for energy and 
one for reserves.  Suppose that a price-taking generator has a capacity of 100 MW, constant 
incremental costs of $30/MWh (and no other costs), and a reserve capability of 40 MW; suppose 
that there are no direct costs for offering reserves.  Suppose that the market design is such that 
the energy market clears first.  Then reserve bids are accepted and the reserve market clears. 
Both markets have uniform clearing prices.  Suppose that the generator forecasts that energy 
price would be either $35/MWh or $40/MWh (with equal probability) and, independent of 
energy prices, the reserve availability prices would be either $4/MW/h or $12/MW/h (with equal 
probability).  What is the generator’s optimal bidding strategy if the objective is to maximize 
expected profits? 
 
Solution:  Since the energy market clears first and only the energy price is observable after this 
market clearing, the model described in this paper would solve such problems by finding the 
optimal dispatch policy as a function g(PE) of energy price (PE) only; the effect of the reserve 
price would be “internalized” in the function g(PE).  We find the optimal function g(PE) as 
follows. If the energy price is $35/MWh, it is optimal to produce 60 MW of energy and offer 40 
MW of reserves. This is because (a) the expected profit margin on reserves is $8/MW/h 
(= 0.5*4 + 0.5*12), while the profit margin from energy sale is only $5/MWh (= 35 - 30); (b) at 
most 40 MW of reserves can be offered; and (c) energy sales are profitable 
($35/MWh > $30/MWh).  If the energy price is $40/MWh, it is optimal to produce 100 MW of 
energy.  This is because the expected profit margin on reserves is $8/MW/h (= 0.5*4 + 0.5*12), 
which is lower than the profit margin of $10/MWh (= 40 - 30) from energy sale.  Therefore the 
optimal bidding strategy is to offer the first 60 MW at $30/MWh and to offer the remaining 40 
MW at any bid between $35.01/MWh and $39.99/MWh; any unaccepted capacity30 in the energy 
market is then offered into the reserve markets.  Expected profits from this strategy would be31 
0.25*100*10 + 0.25*100*10 + [0.25*(60*5 + 40*4)] + [0.25*(60*5 + 40*12)] = $810.  With this 
bidding strategy, when the market prices for energy and reserve availability are $35/MWh and 
$4/MW/h respectively, the generator will (sub-optimally) produce 60 MW of energy and offer 40 
MW of reserves; with perfect hindsight, it would have been optimal to produce 100 MW of 
energy.  Similarly, when the market prices for energy and reserve availability are $40/MWh and 
$12/MW/h respectively, the generator will (sub-optimally) produce 100 MW of energy and 0 
MW of reserves; with perfect hindsight, it would have been optimal to produce 60 MW of 
energy and offer 40 MW of reserves.  
 
Example 6:  (The effect of market design, forecast uncertainty, combined energy and reserve 
markets, with correlation between energy and reserve price forecasts.)  Consider the same 

                                                 
30 Because of the nature of the sequential market clearing, the bidding strategy for offering reserves is as follows.  
Generators near or at the margin in the reserve market should generally offer their reserve output at their expectation 
of the market clearing prices (which should closely approximate their forgone opportunity costs in the energy 
market); infra-marginal generators can offer their output at a lower bid to guarantee selection. 
31 The explanation is as follows. There are four equally possible events: energy price = $40/MWh, reserve price is 
$4/MWh; energy price = $40/MWh, reserve price is $12/MWh; energy price = $35/MWh, reserve price is $4/MWh; 
energy price = $35/MWh, reserve price is $12/MWh.  In the first two events, the generator’s bids will be accepted in 
the energy markets, and the generator will produce 100 MW of energy; in the latter two, the generator will dispatch 
60 MW in the energy market and 40 MW in the reserve market. 
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problem as in Example 4, but with a different price forecast.  Suppose that the generator 
forecasts that energy price would be either $35/MWh or $40/MWh (with equal probability).  
However, the reserve availability prices are dependent on energy prices as follows.  If the energy 
price is $35/MWh, reserve availability price is $4/MW/h.  If the energy price is $40/MWh, 
reserve availability price is $12/MW/h.  What is the generator’s optimal bidding strategy if the 
objective is to maximize expected profits? 
 
Solution:  We again find the optimal dispatch g(PE) as follows. If the energy price is $35/MWh, 
it is optimal to produce 100 MW of energy. This is because the expected profit margin on 
reserves is $4/MW/h, while the profit margin from energy sale is $5/MWh (= 35 - 30).  If the 
energy price is $40/MWh, it is optimal to produce 60 MW of energy and 40 MW of reserves. 
This is because (a) the expected profit margin on reserves is $12/MW/h, which is higher than the 
profit margin of $10/MWh (= 40 - 30) from energy sale, and (b) at most 40 MW of reserves can 
be offered.  Therefore when the energy price is high, it is optimal to offer less in the energy 
market and vice-versa.  This implies that the optimal strategy is to bid discretionary MW (up to 
40 MW) in the energy market only if it less profitable to take part in the reserve market.  The 
expected profit margin in the reserve market is $8/MW/h (= 0.5*4 + 0.5*12), which is more than 
the expected profit margin of $7.5/MWh (= 0.5*(35 - 30) + 0.5*(40 - 30)) in the energy market.  
Therefore, the optimal bidding strategy is to bid 60 MW of energy at $30/MWh and to withhold 
the remaining 40 MW from the energy market (e.g., by bidding them above $40/MWh).  The 
remaining 40 MW is offered in the reserve market at $3.99/MW/h or lower.  With this bidding 
strategy, when the market prices for energy and reserve availability are $35/MWh and $4/MW/h 
respectively, the generator will (sub-optimally) produce 60 MW of energy and offer 40 MW of 
reserves; with perfect hindsight, it would have been optimal to produce 100 MW of energy.   
 
The implication of the last four examples for market power analysis is that the use of simplistic 
methods can lead to the conclusion that a generator was manipulating markets by bidding above 
incremental costs for at least part of its output (and thus practicing “economic withholding”), 
whereas the generator was actually acting like a price taker and correctly maximizing profits 
based on market design and price uncertainty.  Thus, in these examples, the generator is not 
guilty of market manipulation concerns. 
 

4.3 DATA REQUIREMENTS 
One of the main advantages of our approach is that the data requirements for running such a 
model are modest.  However, two caveats are in order.  First, all data may not be available in the 
public domain.32  Second, we assume here that data on generator cost and operating 
characteristics can be independently verified, though this may not always be the case; it is 
therefore conceivable that a generator could manipulate market prices by manipulating these 
data.  

                                                 
32 In particular, according to W. W. Hogan (email correspondence to authors, Feb. 4, 2002), “... there are data about 
ancillary services requirements, instructions to individual generators, and environmental limitations such as the "Delta" 
dispatch, and so on, which involve detailed communication between the system operator and the generators and result 
in significant effects on the level of energy and ancillary service output.  However, with the exception of the actual 
energy output that we can measure, we do not know how much these other decisions were relevant, without getting the 
information from the system operator.…”  See also Harvey and Hogan (2000, 2001) for a detailed elaboration.  
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We discuss the data needs below. 
 
1. The relevant data on individual generator(s) suspected of exercising market power are 

generator costs (startup and shutdown costs, ramping costs, no-load costs, incremental costs, 
emission costs), operational limits33 (minimum and maximum generation, reserve capability 
by type of reserve, startup and shutdown times, ramp rates, or other constraints).   
 

2. Historical location-based data on market prices for energy and (where applicable) reserve 
prices are also needed. 
 

3. We need an uncertainty component that quantifies the lack of perfect foresight to forecast 
prices and the necessity to forecast these prices.  In other words, we cannot simply assume 
that because certain prices did develop, the generator, operating without the benefit of 
hindsight, should have been able to predict them exactly as they occurred.  Moreover, as 
previously mentioned, in markets with pricing rules such as NY and PJM, uncertainty would 
matter less than in other markets for thermal generators because non-negative profits are 
guaranteed for every generator. In Rajaraman and Alvarado (2003), price uncertainty is 
represented as a Markov chain; for numerical calculations, one can discretize price states at 
some time t and have a transition probability between price states at time t and time t + 1. 
 

4. Importantly, the observed prices may need to be adjusted by any changes that the generator’s 
bid may have had on the price itself.  In other words, if there was a $200/MWh price spike in 
the market at a given hour, it is possible that if the generator had been in service the spike 
would have been only $80/MWh.  Thus, it would be disingenuous, if the generator was out of 
service, to argue that the generator, if it had decided to operate, would have ever actually 
seen and been paid the historical observed price.  Thus the input price “forecast” of the 
model must appropriately account for this “feedback effect.” 

  
In summary, the market power test presented in this section incorporates the effect of inter-
temporal constraints, uncertainty, and the effect of transmission constraints on the optimal 
commitment and dispatch; moreover, one can measure its sensitivity to various parameters of 
interest.  Therefore the test is a robust way of checking for market power.  Such a market power 
test also addresses the major concerns in the use of simulation models as discussed in Harvey 
and Hogan (2000, 2001).  

                                                 
33 For hydroelectric generators, one needs information on reservoir inflow forecasts, storage capacity, environmental 
restrictions, pumping efficiency (if applicable), etc. 
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The "guilty/not guilty" tests in Propositions 1 and 2 in Section 4.1 are direct tests in the sense 
that these tests can be applied to particular generators to rule out (or prove) that they exercised 
market power.  Given the public outcry over market power in the California crisis of 2000-2001, 
and talks about large refunds34 for exercising market power, we suggest that such tests could be 
used to check whether and how some generators35 exercised market power.  These tests are more 
focused and effective than the present more nebulous simulation-based approach of “retroactive 
price forecasting” in present use. 
 
While the model-based test outlined described in this section can be helpful in resolving 
questions about market power, there are some questions that it cannot answer.  For example, if a 
generator claims to be on forced full or partial outage, and claims that the discrepancy between 
simulated and observed behavior can be attributed to the outage, the validity of the claim could 
be difficult to verify.  We deal with this situation next. 

5. MARKET POWER TEST, PART TWO:  CHECKING FOR INCENTIVES 
 
In this section, we attempt to answer those questions that are unanswered by the model-based 
test—for example, is a generator’s forced (full or partial) outage an artificial one and an attempt 
to exercise market power?  Devising a simple test to check market participants’ incentives to 
withhold output is difficult because forced outages could have a genuine cause.  The discussion 
below gives conditions under which we can rule on the possibility that market power was 
exercised by keeping generation partially or fully off-line due to alleged operational problems.   
 
In this section, we will mainly concentrate on the incentive to withhold by derating either 
partially or fully the capacity of the generator by falsely reporting an operational problem or by 
exaggerating the severity of an operational problem.  (Our discussion on incentives can also be 
used to analyze other market participant claims of deviating from the profit-maximizing output; 
for example, due to claimed poor bidding decisions.) Exercising market power by overproducing 
                                                 
34 While our tests prove or disprove the exercise of market power, we do not directly measure the welfare losses or 
indices such as Lerner Index associated with the market power.  In our opinion, obtaining exact estimates of these 
quantities would be a very difficult data intensive task requiring highly sophisticated optimization analysis.   Instead 
we suggest the following simpler “first-order” approximation.  Suppose that it can be shown via Propositions 1 and 
2 that market power was exercised by a handful of generators.  Then one can solve Problem P for these generators 
(assuming a “credible” price forecast) to estimate their “ideal competitive” dispatch.  The difference in output 
between the actual dispatch and “ideal competitive” dispatch could be used in conjunction with estimates of supply 
elasticity for energy and reserve markets (from the historical bids), to estimate competitive market prices.  This 
would yield approximate estimates of the competitive prices for the historical periods, from which welfare losses, 
Lerner Index, etc. can be estimated.  (This is only an approximate approach, and ignores, among other factors, the 
potential feedback effect of at least some generators — e.g., energy limited generators — changing their behavior in 
response to the new competitive prices.)  
35 Marketers who deal in pure financial transactions without any physical control of any assets in the spot markets 
generally lack the ability to exercise market power in the spot markets; therefore there is no need to develop tests for 
such entities.  Even PJM, an otherwise sensible organization, has gotten tripped up over this point.  PJM has 
developed measures (including a system of financial penalties) that purport to mitigate market power in the 
Financial Transmission Rights (FTR) markets, without any regard to whether an FTR holder has control of physical 
assets in the spot market (PJM Open Access Tariff, Section 5.2.1(b)-(c)).  At best these flawed measures are 
developed without thinking the matter through; at worst, the financial penalties represent a confiscation of property 
rights. 
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or by withholding output without claiming operational problems or poor bidding decisions can 
be resolved by the market power tests in Propositions 1 and 2. 
 
Genuine operational problems are random events with low probabilities, though the probability 
of generator outages could increase significantly under certain conditions, e.g., in weather storms 
such as tornadoes.  Given the random nature of these problems, it may be difficult to consistently 
(falsely) claim operational problems to withhold capacity without getting “caught.”  For 
example, it will be easy to spot those generators that seem to develop operational problems with 
clockwork regularity under certain conditions (e.g., when loads are high).  Statistical tests such 
as hypothesis testing can also be used to detect more complicated cases of withholding output 
due to falsely claimed operational problems.  Therefore market participants who behave in such 
“easy to detect” manner can be identified and could be subject to appropriate mitigation 
measures.  If the mitigation measures are punitive and/or significantly constrain the market 
participants’ behavior, they will likely be undesirable and the market participants will therefore 
have some incentive not to behave in an “easy to detect” manner.  
 
However, there could be other more subtle cases of claimed operational problems that are more 
difficult to resolve by statistical or other tests.  We will analyze such cases by: 
 
•  taking account of the market participant’s financial positions 
•  examining whether the market participant is withholding output in the least-costly way. 
 

5.1 FINANCIAL POSITIONS 
As we noted in footnote 13 and in our opening remarks, the firm’s incentives to exercise market 
power also depend on its financial positions36 in addition to its physical assets.  Typically, firms 
tend to hedge at least some output in the forward (and other derivative) markets; firms could also 
take speculative positions in forward markets.  
 
We informally discuss the increasingly complex incentives faced by the market participant.  
These examples refer to Figure 5 showing a market participant’s incremental costs of generation 
and its profits as a function of the market participant’s withholding. 

                                                 
36 Having the obligation to serve a fixed load is similar in principle to entering into a forward contract. 



Rajaraman and Alvarado, “(Dis)Proving Market Power,” January 2002 (revised September 2003) 

 
Laurits R. Christensen Associates, Inc. 27  

 

MW

Infra-marginal sale X MW
Withheld 
W MW

Competitive Price (P)

Price due to withholding (P*)

B

D
C

Lost profits

Increased profits on infra-marginal sale

In
cr

em
en

ta
l C

os
ts

 ($
/M

W
)

A

Residual demand curve

MW

Infra-marginal sale X MW
Withheld 
W MW

Competitive Price (P)

Price due to withholding (P*)

B

D
C

Lost profits

Increased profits on infra-marginal sale

In
cr

em
en

ta
l C

os
ts

 ($
/M

W
)

A

Residual demand curve

 
FIGURE 5: PROFITS FROM WITHHOLDING.   

If the shaded area B is less than the shaded area D, it is profitable to withhold. 
 
 
1. No forward market sales; objective is to maximize current period profits only:  This situation 

is illustrated in Figure 5.  Assuming that the optimization is over the current spot market 
only, the market participant who owns generation with incremental costs shown in Figure 5 
is withholding some amount W MW that raises the market-clearing price from P to P* (as 
given by the residual demand curve facing the market participant).  The shaded region B 
shows the market participant’s lost profits on the withheld amount W MW.  On the other 
hand, the shaded region D shows that the market participant has increased profits on infra-
marginal sales (X MW).  If D > B, it is profitable to withhold.  The market participant would 
produce37 X MW, and total profits from the strategy would be the area represented by A + D. 

 
2. Some output had been sold in the forward market; objective is to maximize current period 

profits only:  Assume that the market participant had already locked in X MW in forward 
market sales.  Since the market participant maximizes profits for the current spot market 
only, it can be seen that it is not optimal to withhold W MW from the spot markets because 

                                                 
37 The optimal level X to produce (or W to withhold) would be obtained by optimizing profits given the residual 
demand curve facing the market participant.   
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area B is sacrificed without any offsetting compensation from infra-marginal sales.  This is 
because profits from infra-marginal sales are already locked in, regardless of spot market 
prices.  Therefore, the market participant will attempt to capture an additional profit equal to 
at least area B; this means that the amount withheld will be less than W MW. 

 
3. All output had already been sold on the forward markets; objective is to maximize current 

period profits only:  In this case, the profit-maximizing outcome is to produce X + W MW.  
The market participant withholds no amount of output; otherwise lost profits have no 
offsetting compensation.   

 
4. Objective is to maximize current period and future period profits:  This is a much more 

complicated optimization38 but the only relevant one for the market participant.  It depends 
on a number of factors: the time horizon of the optimization; the market participant’s ability 
to raise forward prices by manipulating the spot markets today and hence the market’s 
expectations of future spot prices; the market participant’s forecast of future spot prices, as a 
function of the market participant’s withholding in those periods; and the market 
participant’s risk preferences.  Moreover, it must be kept in mind that the claimed operational 
problems could bind the market participant into withholding output over a number of 
periods.39  Given the complicated game-theoretic aspects of the problem, the generator may 
develop over time some rules of thumb to withhold an amount in the current period spot 
market in conjunction with plans to take positions in forward markets40 as part of an attempt 
to maximize multi-period profits.   

 
The above cases demonstrate that a market participant’s incentive to withhold output by derating 
the capacity of a generator (either by falsely reporting an operational problem or by exaggerating 
the severity of an operational problem) tends to lessen: 
 
1. When the net amount of output hedged in the forward markets is higher (or equivalently, 

when the market participant has load obligations) and over a longer time horizon. 
 

2. When the market participant is unable to manipulate the forward markets to his/her 
advantage. 
 

                                                 
38 See, for example, B. L. Allaz and J. Vila, “Cournot Competition, Forward Markets and Efficiency,” Journal  of 
Economic Theory, vol. 59, 1993, pp. 1-16.  See also S. M. Harvey and W. W. Hogan, “California Market Prices and 
Forward Market Hedging,” October 2000 for a discussion on this topic. 
39 For example, if, during one period, a generator’s capacity is derated by 20% because of a falsely claimed boiler 
leak, then this 20% derate will continue to apply to other periods until the “boiler problem” is “fixed.” 
40 For example, a market participant may take a long position in the forward markets (for delivery at a future time T) 
with the intention of manipulating the spot prices at time T.  Alternatively, the market participant may unwind the 
forward position prior to time T, if, by manipulating the spot markets at times prior to T, the market’s expectation of 
forward prices at time T are also affected.  These examples show that market participants could have incentives to 
exercise market power even if they hedge by selling output forward because they can take additional positions in the 
forward markets and therefore change their objective function for profit-maximization.  Conversely, a market 
participant who, by manipulating prices in the spot market is able to manipulate forward prices, may decide to lock-
in profits by selling generation in the forward markets; in this case, the market participant will have less incentive to 
withhold output in future periods. 
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3. When, in order to profitably exercise market power in some periods by withholding 
generation due to falsely claimed operational problems, the market participant is also 
committed (to maintain the “credibility” of the falsely claimed operational problem) to 
withhold that generation over longer periods. 

 

5.2 WITHHOLDING OUTPUT IN A LEAST COST WAY 
All other things being equal, a market participant would recognize  that withholding Y MW from 
slightly “in-the-money” generators whose incremental costs are nearest to the market price is less 
expensive (in exercising market power) than withholding the same Y MW from generators with 
cheaper incremental costs.41  
 
However, at least theoretically, such a strategy may not always be followed.  It is conceivable 
that a market participant may deliberately withhold output in a sub-optimal fashion (withholding 
from an intermediate or baseload plant rather than a peaking plant) to avoid detection.  Such a 
strategy may be successful in increasing the profits of the market participant above the 
corresponding competitive case, but the profits would be lower than that from the theoretically 
optimal withholding strategy.  
 
In spite of this theoretical possibility, we are skeptical that a market participant will consistently 
leave money on the table by behaving in sub-optimal ways.  Therefore, if a market participant is 
withholding output from a generator that has very inexpensive incremental costs (e.g., by 
shutting it down because of a claimed operational problem), but is running a more expensive 
generator instead, chances are that the outage is legitimate after all. As another example, one 
would not find it more profitable to withhold from a reservoir with lower opportunity costs and 
produce output from one with higher opportunity costs. 

6. CONCLUSIONS  
This paper has presented a practical and accurate method to test for the exercise of market power 
in the electricity market. The common practice for showing that market power has been 
exercised is to use hourly simulation models to simulate competitive market prices given a large 
volume of generator and load data.  This paper has elaborated upon the many shortcomings that 
affect the simulated market clearing prices model for market power analysis. 
 
The paper has also described the issue of data requirements and limitations for market power 
analysis using price simulation models.  Even with more sophisticated and comprehensive 
simulation models, that one cannot hope to have much better estimates of competitive prices.   
 
As an alternative, this paper has described a more robust and practical approach that is based on 
an accepted method for market power analysis, which is to examine optimal generator behavior 
by taking price as a given exogenous input.  This paper has substantially extended this method 
by taking full account of forecast uncertainty, market design, inter-temporal constraints, non-

                                                 
41 It is possible that the generator that is slightly “in-the-money” during some hours could be relatively deep “in-the-
money” during other hours.  If this generator derates capacity (by falsely reporting operational problems) during a 
multi-hour period, offsetting profits must compensate for lost profits over this time interval.   
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convex costs, multiple markets, multiple periods, etc.  That is, instead of simulating competitive 
market prices and asking what the price should have been under competitive conditions, this 
paper takes historical location-based prices (adjusted for imperfect foresight and other factors) as 
given exogenous input along with generator operational parameter characteristics, and proceeds 
to simulate a generator’s profit-maximizing (competitive) commitment and dispatch policy. This 
optimal generation dispatch and commitment policy can be used to formulate the optimal 
generator bidding strategy and to understand generator behavior.  Based on the optimization, the 
paper has given a test that can be used to show that a market participant is “not guilty” of 
exercising market power.  That is, if certain conditions are met, a market participant can 
exonerate himself or herself from any accusations of market power abuse.  A stricter “guilty” test 
must be met to show that market power has been exercised. 
 
In certain cases, however, these tests may be inconclusive.  To resolve such questions, and for a 
more complete test, this paper has also discussed the market participant’s incentives to exercise 
market power. The method in the paper can be applied, for example, to the controversies that 
have arisen in the California market to assist in resolving questions about whether―and 
which―generators exercised market power during the crisis of 2000-2001.   
 
To summarize, the important features of the proposed approach are that: 
 

•  it fully incorporates locational effects as well as individualized characteristics of specific 
generators to help provide a “guilty” or “not guilty” answer to the market power question, 

•  it also gives us the optimal commitment and dispatch policy for the generator from which 
an optimal bidding strategy can be formulated, and the generator’s behavior can therefore 
be better understood, and, 

•  it can also give guidance on how to design appropriate market mitigation rules for a given 
generator if the exercise of market power is indeed detected under some conditions. 

 

7. APPENDIX A: ENERGY LIMITED GENERATORS 
In this appendix, we deal with the problem of optimally allocating the output of energy-limited 
generators.  As an illustrative example, we analyze the allocation of hydroelectric output; 
however, the principles in this appendix are general and can be used for the analysis of any 
energy-limited generator.42 Examples of energy-limited generators include thermal generators 
constrained by emissions limits on total output over a period of time, environmental restrictions, 
etc.     
 
Imagine a hydroelectric reservoir with an initial amount of water storage.  For simplicity, assume 
that no more water will ever be added to this reservoir, assume that there is a limit to how much 
water we can spend in any single period, and that the direct production costs of producing 
electricity is zero.  Finally, assume that we are given a perfect forecast of energy prices (assume 
perfect foresight) for as far away into the future as the eye can see. 43  Given these conditions, 

                                                 
42 The problem stated in this Appendix can be formally solved by solving Problem P.   
43 To make meaningful comparisons assume that all forward prices are expressed in terms of prices today. 
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finding a profit-maximizing dispatch is easy: we would plan to dispatch first in the highest priced 
hour up to our allowed hourly limit, then in the next highest priced hour, and so on, until all the 
water in the reservoir is exhausted.  Therefore there may be many hours for which we would not 
be producing any electricity.  In particular, it is possible that we may not have allocated any 
water for today, because the future prices looked much more attractive compared to today’s 
prices, given the water storage level today; therefore electricity will be withheld from the spot 
market.44  This is not an exercise of market power, but a legitimate allocation of water to the 
highest valued periods.   
 
Now suppose that we have to deal with the fact that there may be rain in some future periods to 
fill up the reservoir.  In such a case, we would still do a similar exercise, excepting that we would 
include an additional inter-temporal variable that keeps track of the water level of the reservoir at 
any given time to account for water inflows and outflows.45 
 
In general, exactly how much water one would allocate among the different periods of the year 
would depend mainly on two factors (besides the operational constraints): the forecast of the 
future electricity prices and ancillary services prices and the forecast of future rain (or water 
inflow into the reservoir).  Of course there is a lot of uncertainty in the forecasts, and we would 
certainly be able to optimize the dispatch better if there is less uncertainty and we are sure of the 
future prices and precipitation.  Even if we can get protection from uncertainty (say by hedging 
price risk by engaging in forward market transactions),46 we would still have an “option” 
feature47 in the water allocation process.  The water allocation process would lead to a decision 
rule (that may need to be updated continuously) that would allocate water among the different 
periods of the year based on the best available forecasts and information today.  
 
In reality, of course, hydroelectric generators deal with more complex operational conditions.48   
While the optimization problem is more challenging, the basic principles remain the same.  The 
bottom line on discretionary hydro dispatch is that we would need to consider how much profit 
we would make in the future before committing to selling today.  As a general rule, the strategy 
is to withhold discretionary output in the periods of relatively lower demand hours (because 
prices would be relatively lower in such periods) and produce in periods with relatively higher 
demands (because prices would be higher in such periods).  In a nutshell, allocation of water 

                                                 
44 The problem would be more complicated if ancillary services markets are also included, but the basic principles 
would remain the same.  In particular, when making reserves available, there is an element of “eating your cake and 
having it too,” because there is a likelihood that reserves will not be called, and hence water will not be spent.  
45 For pumped hydroelectric generators, the problem is more complicated; the pumping action is equivalent to water 
inflow into a reservoir, with the water inflow itself being a decision variable. 
46  It is harder to hedge weather risks such as drought. 
47 We would retain this option value even if all output were sold in the forward markets.  The reasoning is that we 
would still want to optimize the dispatch in the spot markets; for example, if the opportunity costs were higher than 
the current period market price, we would find it more profitable to cover the short position by buying from the 
market.  The option value will depend on the uncertainty of forecast and the generator’s risk preferences; it must be 
included in the cost calculations because it reflects a true cost of dispatch.  
48 For example, the hydro system may be required to operate under minimum runoff constraints, environmental 
constraints, and constraints of irrigation, navigation, etc. 
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across different periods is a difficult problem, made more complex by the uncertainty in the 
forecast.   
 
As this strategy has the tendency to shift the aggregate supply curve to the left as the demand 
curve is also shifting to the left, it could result in less pronounced price spreads between peak 
and off-peak periods.  Therefore if there are significant hydro resources in the market, then the 
optimal water allocation process tends to “levelize” prices over time.  That is, the prospect of 
high prices in some future or peak periods can and do get reflected as high prices during the 
current or off-peak periods. 
 
How would one bid hydroelectric output into the market for any given time-period, assuming a 
uniform-price auction?49  It would depend on the optimal policy found by solving Problem P.  
For example, suppose that the optimal policy is to withhold all the output if the market-clearing 
price is lower than, say, $20/MWh; conversely, the optimal policy may be to sell the maximum 
possible hourly output if the market-clearing price is higher than, say, $30/MWh.  The band of 
bid prices could reflect uncertainty of price forecast for this and other periods.  The optimal 
policy may then guide us into bidding the following:  bid some MW at $20/MWh, some more at 
$22/MWh; and so on, until all allocated output is exhausted at $30/MWh.50  Therefore, there 
may be a tendency to bid not only relatively high prices (reflecting opportunity costs in other 
periods) during some periods, but the bids may also include an option value that reflects the 
uncertainty in our forecast. (Conversely, when we are sure that the uncertain opportunity costs in 
other periods will be lower than this period’s market clearing price, we may choose to bid 
relatively low prices to guarantee selection.)  
 
The behavior of other market participants could also affect hydroelectric bids.  Suppose that it 
turns out that a large baseload generating plant has a sudden forced outage in the spring and that 
the outage is expected to last through the summer.  Then this may lead to increase in expectation 
of higher prices in the summer; consequently, this could get reflected as a sudden and legitimate 
increase in the hydro generator’s bids in the spring. 
 
Therefore, hydroelectric bids could be complicated curves, based on expectations and 
uncertainty of profits from current and future periods. 

                                                 
49 For the underlying mathematical theory, see R. Rajaraman and F. L. Alvarado, "Optimal Bidding Strategies in 
Electricity Markets Under Uncertain Energy and Reserve Prices", PSERC Report 03-05, April 2003 
(http://www.pserc.wisc.edu/ecow/get/publicatio/reports/2003report/alvarado_bidding_report_0411.pdf).  
50 See examples 4.1, 4.2, and 4.3 of the reference Rajaraman and Alvarado (2003).  
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8. APPENDIX B: CALCULATION DETAILS FOR EXAMPLE 3 
 
This section derives the entries in Tables 1(a)-(b) and Table 2 for Example 3. 
 
DERIVATION OF OPTIMAL DISPATCH POLICY (TABLES 1(a)-1(b)): 
 
The question we address to solve the optimal dispatch problem is:  if the generator is in some 
state g in period t, and if the price is p, then what is the optimal dispatch and what are the optimal 
profits?   
 
In period 2, if the generator is UP2 and if the price is HIGH ($65/MWh) — row 1, column 2 of 
tables 1(a) and 1(b) — it is optimal to produce 100 MW for a profit of 100*(65 − 30) = $3500. 
(The generator has incremental costs of $30/MWh, while the price is $65/MWh; therefore it is 
optimal for the generator to maximize its output.)  
 
Similarly, in period 2, if the generator is UP2 and if the price is LOW ($10/MWh) —  row 2 
column 2 of tables 1(a) and 1(b)  —  it is optimal to produce as little as possible (the required 
minimum 90 MW) at a loss of 90*(5 − 30) = ($2250).   
 
As another example, in period 1, if the generator is UP1 and if the price is HIGH ($45/MWh) — 
row 3, column 1 of tables 1(a) and 1(b) — it is optimal to produce 100 MW to make a profit of 
100*(45 − 30) = $1500.  
 
All other individual entries of Tables 1(a) and (b) are similarly filled. 
 
DERIVATION OF OPTIMAL COMMITMENT POLICY (TABLE 2 AND FIGURE 3): 
 
Now we use the results of Tables 1(a)-(b) to derive the optimal commitment strategy.  The 
commitment strategy is derived by working backwards from the final period to the current period 
(this is the backward DP method).51   
 
The optimal commitment strategy is found by calculating Valuet for period t, as given in Table 2. 
Recall that Valuet is the expected cumulative profit from period t to the terminal period, provided 
the optimal commitment and dispatch policy is followed during this interval.  The reader is 
referred to equation (1) for a formal definition of Valuet. 
 
The optimal commitment policy is given in Figure 3.  The optimal state transitions are given by 
bold arrows.  The state transitions depend on price level.   
 
We now show how to derive Figure 3 and Table 2 by working backwards from the terminal 
period to the initial period using the recursive equation 1. 
 
                                                 
51 This is also the same "tree" method used to value financial options.  
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COMPUTATION OF VALUE2  
 
We start by computing the Value2 entries corresponding to period 2 (second column of Table 2). 
We illustrate a few sample calculations. 

•  If the generator is UP2 and if the price is LOW ($5/MWh) in period 2, then profits from 
this period are obtained from Table 1b.  For this case, the value is -$2250 (column 2, row 
2).  From Figure 2A, the generator can go to either UP2 or DOWN in the next period, t=3.  
However, because Value is negative infinity for the UP2 state in period 3, it is optimal to 
go DOWN in period 3.  This optimal transition is shown in Figure 3 (see arrow from UP2 
to DOWN in period 2).  Therefore Value for period 2 for generator state UP2 and price 
LOW is the Value of the DOWN state in period 3 + current period profits = 0 − 2250 =   
−$2250 and this is entered in column 2, row 2 in Table 2. 

•  If the generator is DOWN, and if the price is HIGH ($65/MWh) in period 2, then the 
generator will not run (see row 5, column 2 of Table 1a) and profits in this period are 
zero (see row 5, column 2 of Table 1b).  From Figure 2A, the generator can go to either 
UP1 or DOWN in the next period, period 3.  However Value is negative infinity for the 
UP1 state in period 3, so it is optimal to go DOWN in period 3.  This optimal transition is 
shown in Figure 3 (see arrow from DOWN to DOWN in period t=2).  Therefore Value 
for period 2 for generator state DOWN and price HIGH is the Value of the DOWN state 
in period 3 + current period profits = 0 + 0 = $0 and this is entered in column 2, row 5 in 
Table 2. 

•  If the generator is UP1, and if the price is HIGH ($65/MWh) in period 2, then the 
generator will produce 100 MW run (see row 3, column 2 of Table 1a) and profits in this 
period will be $3500 (see row 3, column 2 of Table 1b).  From Figure 2A, the generator 
can only go to UP2 in the next period, period 3.  However Value is negative infinity for 
the UP2 state in period 3.  This optimal transition is shown in Figure 3 (see arrow from 
UP1 to UP2 in period t=2).  Therefore Value for period 2 for generator state UP1 and price 
HIGH is the Value of the UP2 state in period 3 + current period profits = -∞+ 3500 = −∞ 
and this is entered in column 2, row 3 in Table 2. 

•  Similarly all the remaining entries in column 2 of Table 2 and the optimal state 
transitions in period 2 (Figure 3) can be derived. 

 
COMPUTATION OF VALUE1  
 
We now derive Value1 for period 1 (column 1 of Table 2).  We illustrate some sample 
calculations. 
 

•  If the generator is UP2 and if the price is LOW ($33/MWh) in period 1, then profits from 
this period are obtained from Table 1b, which is $300 (column 1, row 2).  From Figure 
2A, the generator can go to either UP2 or DOWN in the next period, period 2.   

a. If it goes to UP2 in period 2, then Value2(UP2,LOW)=-2250 while 
Value2(UP2,HIGH)=3500.  Hence E(Value2(UP2,p2)|p1=LOW) = 0.1*3500-
0.9*2250 = -$1675.52     

                                                 
52 From Figure 2B, probability(p2=LOW|p1=LOW) = 0.9, while probability(p2=HIGH|p1=LOW) = 0.1. 
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b. If it goes to DOWN in period 2, then Value2(DOWN,LOW)=0 and 
Value2(DOWN,HIGH)=0.  Hence E(Value2(DOWN,p2)|p1=LOW) = 0.9*0+0.1*0 
= $0.53   Therefore E(Value2(DOWN,p2)|p1=LOW)  > E(Value2(UP2,p2)|p1=LOW)  

c. Clearly, then it is optimal to go DOWN in period 2 if price is LOW in period 1.   
This optimal transition is shown in Figure 3 (see arrow from UP2 to DOWN in 
period 1 corresponding to price in period 1 being LOW). Therefore Value for 
period 1 for generator state UP2 and price LOW is the expected Value of the 
DOWN state in period 2 + current period profits = 0 + 300 = $300 and this is 
ente3red in column 1, row 2 in Table 2. 

•  If the generator is UP2 and if the price is HIGH ($45/MWh) in period 1, then profits from 
this period are obtained from Table 1b, which is $1500 (column 1, row 1).  From Figure 
2A, the generator can go to either UP2 or DOWN in the next period, period 2.   

a. If it goes to UP2 in period 2, then Value2(UP2,LOW)=−2250 while 
Value2(UP2,HIGH)=3500.  Hence E(Value2(UP2,p2)|p1=LOW) = 
0.5*3500−0.5*2250 = $625.54     

b. If it goes to DOWN in period 2, then Value2(DOWN,LOW)=0 and 
Value2(DOWN,HIGH)=0.  Hence E(Value2(DOWN,p2)|p1=HIGH) = 0.5*0+0.5*0 
= $0.55   Therefore E(Value2(UP2,p2)|p1=HIGH)  > 
E(Value2(DOWN,p2)|p1=HIGH).  

c. Clearly then it is optimal to go UP2 in period 2 if price is HIGH in period 1.   This 
optimal transition is shown in Figure 3 (see arrow from UP2 to UP2 in period 1 
corresponding to price in period 1 being HIGH). Therefore Value for period 1 for 
generator state UP2 and price HIGH is the expected Value of the DOWN state in 
period 2 + current period profits = 625 + 1500 = $2125 and this is entered in 
column 1, row 1 in Table 2. 

•  If the generator is UP1 and if the price is HIGH ($45/MWh) in period 1, then profits from 
this period are obtained from Table 1b, which is $1500 (column 1, row 3).  From Figure 
2A, the generator can only go to UP2 in the next period, period 2.   

a. If it goes to UP2 in period 2, then Value2(UP2,LOW)=-2250 while 
Value2(UP2,HIGH)=3500.  Hence E(Value2(UP2,p2)|p1=HIGH) = 0.5*3500-
0.5*2250 = $625.56     

b. Clearly then it is optimal (indeed, this is the only choice) to go UP2 in period 2 if 
price is HIGH in period 1.   This optimal transition is shown in Figure 3 (see 
arrow from UP1 to UP2 in period 1 corresponding to price in period 1 being 
HIGH).  Therefore Value for period 1 for generator state UP1 and price HIGH is 
the expected Value of the UP2 state in period 2 + current period profits = 1500 + 
625 = $2125 and this is entered in column 1, row 3 in Table 2. 

•  If the generator is UP1 and if the price is LOW ($33/MWh) in period 1, then profits from 
this period are obtained from Table 1b, which is $300 (column 1, row 4).  From Figure 
2A, the generator can only go to UP2 in the next period, period 2.   

                                                 
53 From Figure 2B, probability(p2=LOW|p1=LOW) = 0.9, while probability(p2=HIGH|p1=LOW) = 0.1. 
54 From Figure 2B, probability(p2=LOW|p1=HIGH) = 0.5, while probability(p2=HIGH|p1=HIGH) = 0.5. 
55 From Figure 2B, probability(p2=LOW|p1=HIGH) = 0.5, while probability(p2=HIGH|p1=HIGH) = 0.5. 
56 From Figure 2B, probability(p2=LOW|p1=HIGH) = 0.5, while probability(p2=HIGH|p1=HIGH) = 0.5. 
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a. If it goes to UP2 in period 2, then Value2(UP2,LOW)=-2250 while 
Value2(UP2,HIGH)=3500.  Hence E(Value2(UP2,p2)|p1=LOW) = 0.1*3500-
0.9*2250 = -$1675.57     

b. Clearly then it is optimal (indeed, this is the only choice) to go UP2 in period 2 if 
price is LOW in period 1.   This optimal transition is shown in Figure 3 (see arrow 
from UP1 to UP2 in period 1 corresponding to price in period 1 being LOW). 
Therefore Value for period 1 for generator state UP1 and price LOW is the 
expected Value of the UP2 state in period 2 + current period profits = 300 − 1675 
= −$1375 and this is given in column 1, row 4 in Table 2. 

•  If the generator is DOWN, and if the price is HIGH ($45/MWh) in period 1, then the 
generator will not run (see row 5, column 1 of Table 1a) and profits in this period will be 
zero (see row 5, column 2 of Table 1b).  From Figure 2A, the generator can go to either 
UP1 or DOWN in the next period, period 2.   

a. If it goes to UP1 in period 2, then Value2(UP1,LOW)=-∞ and 
Value2(UP1,HIGH)=-∞. Hence E(Value2(UP1,p2)|p1=HIGH) = 0.5*(-∞)+0.5*(-
∞)=-∞.58

  
b. If it goes to DOWN in period 2, then Value2(DOWN,LOW)=0 while 

Value2(DOWN,HIGH)=0.  Hence E(Value2(DOWN,p2)|p1=HIGH) = 0.5*0+0.5*0 
= $0.59    Therefore E(Value2(DOWN,p2)|p1=HIGH)  > 
E(Value2(UP1,p2)|p1=HIGH). 

c. Clearly, then it is optimal to go DOWN in period 2 if price is LOW in period 1.   
This optimal transition is shown in Figure 3 (see arrow from DOWN to DOWN in 
period 1 corresponding to price in period 1 being LOW).  Therefore Value for 
period 1 for generator state DOWN and price LOW is the expected Value of the 
DOWN state in period 2 + current period profits = 0 + 0 = $0 and this is given in 
column 1, row 5 in Table 2. 

 

                                                 
57 From Figure 2B, probability(p2=LOW|p1=LOW) = 0.9, while probability(p2=HIGH|p1=LOW) = 0.1. 
58 From Figure 2B, probability(p2=LOW|p1=HIGH) = 0.5, while probability(p2=HIGH|p1=HIGH) = 0.5. 
59 From Figure 2B, probability(p2=LOW|p1=HIGH) = 0.5, while probability(p2=HIGH|p1=HIGH) = 0.5. 


