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Abstract:  This paper discusses a new model of an inverter-
driven induction motor that enables direct animation and 
visualization of the inverter and motor operation. The models 
of the inverter and induction motor are physically based 
model in actual quantities. As such they enable direct 
animation and visualization of the operation of the inverter-
driven induction motor. The paper discusses the models and 
the animation and visualization approach. Specifically, the 
animation and visualization screens are discussed in terms of 
the displayed information. The implementation is in Open GL 
that permits rendering as well as rotation, panning, and 
zooming in real time. The paper presentation is by means of a 
live presentation of the animation and visualization models.  
 
Introduction 

 
Inverter-driven induction motors have many advantages: (a) 
use of rugged and inexpensive induction motors without the 
disadvantage of high starting currents, and (b) speed control 
over a wide range, and (c) economic operation in applications 
of variable speed. Intensive research activities focus on 
improvements of inverter-driven induction motors. This 
research can be facilitated with high fidelity models of these 
systems and animation and visualization methods. This paper 
presents such an approach. 
 
The paper first presents the computational engine, the model 
of the inverter-driven induction motor and the approach 
towards the animation and visualization. Specific examples 
are provided. 
 
The Virtual Power System Concept 

 
Recent advances in software engineering have made it 
possible to develop dynamic system simulators that operate in 
a multitasking environment. The addition of graphical user 
interface tools and hardware-accelerated graphics make the 
final product an indispensable tool to the understanding of the 
operation of the system. Many products have been developed 
along these lines for power system engineering. Most of these 
are focused on simulating the system under sinusoidal steady 
state operation. Projecting the capabilities of the new 
technologies, claims of replacing physical laboratories with a 
virtual environment have surfaced. A virtual laboratory 
should have the following features: 
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1. Continuous simulation of the system under study. 
2. Ability to modify the system under study during the 

simulation, and immediately observe the effects of 
the changes. 

3. Provide advanced output data visualization options 
such as animated 2-D or 3-D displays that illustrate 
the operation of any device in the system under 
study. 

 
The above properties are fundamental for a virtual 
environment. The first property guarantees the uninterrupted 
operation of the system under study in the same way as in a 
physical laboratory: once a system has been assembled, it will 
continue to operate. The second property guarantees the 
ability to connect and disconnect devices into the system 
without interrupting the simulation of the system. This 
property duplicates the capability of physical laboratories 
where one can connect a component to the physical system 
and observe the reaction immediately. For example 
connecting a motor to the power supply and observing the 
startup transients, etc. The third property duplicates the 
ability to observe the simulated system operation, in a similar 
way as in a physical laboratory. 
 
In principle, the minimal requirements of a virtual 
environment can be achieved with present software and 
hardware technology.  However, this task is nontrivial.   For 
example, simulation methods that will accurately capture the 
system response under all possible conditions require wide 
band models for all power system components. This fact 
becomes apparent if one considers specific examples such as 
a power transformer.  Nevertheless the technology exists to 
achieve all three requirements of a virtual environment. On 
the other hand, once a virtual environment has been 
developed, it can be of greater educational value than a 
physical laboratory.  For example, in a physical laboratory we 
are limited as to what we can directly observe. Consider an 
electric motor. In a physical laboratory we can observe the 
motor speed, measure the torque etc., but we cannot observe 
the inner workings of the motor, magnetic field distribution 
and interaction, small rotor oscillations, etc. A virtual 
laboratory can provide this information using appropriate 
visualization techniques. In a physical laboratory, most fast 
transients will be missed because of limitations in human 
observability speed. A virtual laboratory can provide this 
capability. For, example, the operation of the system can be 
1 

17.00 (c) 2002 IEEE 1

default
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.



Proceedings of the 35th Hawaii International Conference on System Sciences - 2002
slowed down or paused and restarted to study a specific fast 
transient condition. 
 
In the past few years, we have undertaken an effort to explore 
the development of a virtual simulation environment. The 
central piece of this effort is a time domain simulator of 
dynamical systems in a multitasking environment. In this 
environment, visualization objects have access to the 
instantaneous conditions of the components and the overall 
system. Thus detailed 3-D “movies” of the instant-by-instant 
operation of the component or the system can be generated. 
This paper presents the application of this technology to 
inverter-driven induction motors. 
 
The paper provides a brief overview of the new tool, the 
mathematical formulation of the simulator and the data flow 
between the time domain simulator and the visualization 
objects. The paper focuses on the inverter-driven induction 
motor. It presents the modeling of this system and the 
approach towards the animation and visualization of this 
system. 
 
Description of the Virtual Power System 
Environment 

 
The internal structure of the Virtual Power System 
environment is illustrated in Figure 1.  This architecture was 
developed with consideration on the minimal representation 
of system components and the requirements of a virtual 
environment.  In the background is the network solver that is 
a time domain simulation program.  The network solver is 
based on the representation of each system component with 
its algebraic companion form (ACF) [1]. The ACF is 
developed from the integro-differential equations of a 
component by numerical integration. The ACFs of all 
components in a system are related via the connectivity 
constraints. Application of the connectivity constraints yields 
a quadratic network equation that is solved at the network 
solver. 
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Figure 1.  The Virtual Test Bed Architecture 
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The network solver is continuously executed providing the 
simultaneous solution of the entire system and determines the 
state of each component of the system.  This information is 
passed back to the individual devices for animation and 
visualization of a specific component or groups of 
components.  The Virtual Test Bed has been developed in a 
multitasking environment, thus allowing parameter changes 
and immediate system response observations. 

 
Any power system component can be modeled in such a way 
that it can be interfaced with the Virtual Power System. 
Appendix A describes the procedure for an induction 
machine. The point is made that the model development of 
the induction machine is physically based, i.e. the stator as 
well as the rotor are explicitly represented in their own 
variables, in other words no convenient transformations are 
used. This is important for animation and visualization since 
the actual physical quantities can be displayed. In the case of 
the induction motor, one can observe the frequency of the 
rotor currents and how it changes as the induction machine 
accelerates or decelerates. The inverter model is also 
similarly modeled. 
 
Example System 

 
This example illustrates the dynamics associated with an 
inverter-driven induction motor. The overall system is 
illustrated in Figure 2. It consists of a source, a transmission 
line, a transformer, a rectifier, an inverter and an induction 
machine and the mechanical load of the induction motor. 
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Figure 2.  Example System of Inverter-Driven Induction 
Motor and Mechanical Load 
 
The figure illustrates a number of meters that monitor various 
physical quantities of the system, i.e. speed, torque and 
voltage versus time plots.  In addition to these graphs, two 
animation objects are included which show the operation of 
the inverter and the operation of the induction motor in an 
animated way. A snapshot of the animation is shown in 
Figures 3 and 4. 
2 
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Figure 3.  A Snapshot of the Animation of the Inverter 
Showing the Voltage Distribution Along the Circuits of 
the Inverter. 
 

 
 
Figure 4.  A Snapshot of the Animation of the Induction 
Motor Operation Showing Torque, the Voltage 
Distribution Along the Circuits of the Inverter 
 
Figure 3 shows a screen snapshot in which the voltage 
distribution along the circuits and components of the inverter 
are displayed with a graph perpendicular to the plane of the 
inverter. Note that the inverter is represented as a circuit in a 
plane. The overall display can be rotated, panned and zoomed 
as the simulation progresses to view the evolution of the 
voltages from all possible angles. Similar animations can be 
provided for the electric current 
 
Figure 4 illustrates a snapshot of the induction motor 
operation. Note that in this particular snapshot, the three-
dimensional display of the induction motor is provided. The 
rotor rotates as the simulation progresses. The torque, stator 
magnetic flux, rotor magnetic flux and air gap magnetic flux 
are illustrated on planes perpendicular to the motor axis. The 
displays of these quantities are continuously updated as the 
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simulation progresses so as to provide the animation. The 
entire display can be rotated, panned and zoomed as the 
simulation progresses to view the evolution of the state of the 
induction motor from all possible angles. Similar animations 
can be provided for other physical quantities of the motor. 
 
It is important to note that the system is multitasking allowing 
multiple animations of the same system. For example one can 
create an animation of the inverter showing the inverter 
voltages, another animation of the inverter currents and 
another animation of the motor position, torque and magnetic 
fluxes. All these animations can be simultaneously viewed on 
three different windows. 
 
Conclusions 
 
The technology for the development of virtual power system 
laboratories was demonstrated.  However, much more work 
remains to develop a comprehensive library of visualization 
modules for the plethora of existing power system elements.  
We have discussed our recent work towards the development 
of a virtual simulation environment and presented a specific 
application example of an inverter-driven induction motor. It 
is clear that virtual laboratories can be quite beneficial from 
the educational point of view as they can provide insight of 
the system under study that are impossible in a physical 
laboratory. The presentation of the paper includes a live 
demonstration of the inverter-driven induction motor 
example. 
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Appendix A: Induction Motor Model 
 
The dynamic equations of the electrical system of an induction 
machine are derived in this section. The induction machine can 
be viewed as a set of mutually coupled inductors, which 
interact among themselves to generate the electromagnetic 
torque.  Straightforward circuit analysis leads to the derivation 
of an appropriate mathematical model. 

 

Figure 1. A general induction machine as a set of 
mutually coupled windings 

 
In the process of derivation, the following assumptions are 
made: (1) the machine is cylindrical; (2) space mmf and flux 
waves are sinusoidally distributed (neglecting the teeth and 
slots effects); (3) the saturation, hysteresis, and eddy currents 
are neglected. Figure 1 illustrates the stator and rotor 
windings of an induction machine: three phase stator 
windings, and three phase rotor windings. The rotor may be 
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wound rotor or squirrel cage rotor. In either case, the rotor 
windings can be idealized in the same way as the stator 
windings. In fact, there is a procedure for representing the 
squirrel cage by an equivalent set of sinusoidally distributed 
windings.  Note that all inductors are mounted on the same 
magnetic circuit and thus they are all magnetically coupled. 
The position of the rotating rotor is denoted with the 
electrical angle between the stator phase as magnetic axis (a 
stationary reference) and the rotor phase ar magnetic axis, 

)(trθ . The mechanical rotor position angle is: 

)()( t
p
2t rm θ=θ     (A.1) 

 
where p is the number of poles of the rotating magnetic field 
in the air gap. 
 
Application of Kirchhoff's voltage law to the circuit of Figure 
1 yields: 
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)(tabcsλ  is the vector consisting of the magnetic flux 

linkages of stator phase as, bs, and cs, respectively. )(tabcrλ  
is the vector consisting of the magnetic flux linkages of rotor 
phase ar, br, and cr, respectively. Note that if  

 
( )ssss rrrdiagR =   

 
( )rrrr rrrdiagR =   

 
then, we have balanced rotor windings and stator windings. 

 
In Equations (A.2) and (A.3), the magnetic flux linkages are 
complex functions of the rotor position and the electric 
currents flowing in the various windings of the machine. The 
magnetic flux linkages of the phase a, b, and c are: 
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The notation in above equations is obvious. ( )msls LL +  is 

the self-inductance for each of stator windings, and msL  is 

the stator magnetizing inductance. ( )mrlr LL +  is the self-

inductance for each of rotor windings, and mrL  is the rotor 

magnetizing inductance. srL  is the maximum mutual 
inductance between a stator phase winding and a rotor phase 
winding. Notice that the mutual inductances in matrix 
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)(tLsr  are dependent on the position of the rotor, which is 
time varying. This makes the overall system highly nonlinear 
and time varying. 

 
The electromagnetic torque is given by the equation: 
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power converted from electrical power into mechanical 
power and can be computed by differentiating the field 
energy function )(tw fld  with respect to the rotor mechanical 

position mθ . In particular, we have: 
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Upon substitution and some manipulations, the rotor 
equations are expressed in the form: 
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