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Abstract 

 
This paper presents alternative methods to compute the 
equilibrium condition immediately following a 
disturbance to an electric power system.  The first uses 
the brute force method of simply integrating the 
dynamic model until it reaches steady state.  The second 
uses the straightforward analytical choice of setting all 
time derivatives of the dynamic model to zero and 
solving the remaining algebraic equations for the 
equilibrium values of the dynamic states.  This method 
requires the creation of new commercial software to 
solve the large-scale network algebraic equations 
simultaneously with the dynamic equilibrium equations.  
The third uses a method that takes advantage of existing 
commercial load flow software to perform the major 
portion of the solution process.  These load flow 
solutions then iterate with the de-coupled algebraic 
equations for each generator. 
 
Keywords: Dynamic equilibrium, contingency analysis, 
load flow, steady-state stability. 
 
1. Introduction 
 
Traditional power system security analysis includes the 
simulation of static as well as dynamic performance of a 
power system in response to a list of possible 
disturbances [1-3].  The static analysis normally relies 
on load flow as the primary commercial software to 
predict the post-contingency equilibrium condition.  
However, traditional load flow analysis makes a variety 
of assumptions that are not suitable for computing the 
equilibrium immediately following a disturbance.  For 
example, normal load flow assumes the system is 
operating at rated frequency which implies that all 
synchronous machines are turning at rated synchronous 
speed.  In virtually all disturbances, the post-
contingency equilibrium will include a change in 
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generator speeds as governors respond to mismatches 
between system load and generation.  Similarly, 
generator controlled voltages are assumed to be the 
desired values as determined by control set points.  In 
the actual post-contingency condition, the voltage 
regulators will provide controls which are based on the 
pre-contingency reference set points.  This may be 
different from the assumption of some desired bus 
voltage.  This difference can be considerable when the 
desired bus voltage is remote from the generator.   
 
To see the issues associated with this calculation, 
consider the traditional basic load flow program that has 
the following computational procedure for a system 
with m generator buses and n-m load buses: 
 

a. Specify the swing bus voltage magnitude and 
angle. 

b. Specify the m-1 generator bus voltage 
magnitudes and real power generation. 

c. Specify the loads at each load bus in terms of 
real and reactive power 

d. Solve the appropriate Kirchhoff current law 
equations for the n-m unknown load bus 
voltages (magnitude and angle), and the m-1 
generator bus voltage angles. 

e. Compute the m generator reactive power 
requirements. 

f. Compute the swing bus real power 
requirement. 

 
Implicit in this formulation is the assumption that the 
frequency is nominal and therefore all generators are 
turning at rated synchronous speed.  In this formulation, 
it is also possible to specify bus voltages other than 
generator bus voltages (i.e. remote buses that are more 
critical than the generator terminal buses).  As such, the 
load flow solution represents the desired equilibrium 
assuming all controls are set to provide the desired 
values of frequency and various bus voltages 
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(determined by the system operator).  The important 
point here is that the load flow solution does not solve 
for the equilibrium condition for fixed control inputs, 
rather for specified conditions throughout the network. 
 
In the actual power system, the controllers will respond 
to a disturbance by performing their intended function 
of returning sensed quantities near their pre-contingency 
set points.  This may or may not result in the desired 
network conditions that would normally be specified in 
a post-contingency load flow.  That is, a post-
contingency load flow would specify the same desired 
conditions as the pre-contingency load flow.  The 
difference between this post-contingency load flow and 
the actual post-contingency equilibrium can be 
significant.  This means that the post-contingency load 
flow solution does not compute the correct dynamic 
equilibrium needed to perform steady-state stability 
analysis.  The remainder of this paper addresses this 
issue and alternative methods to compute the post-
contingency equilibrium. 
 
2. The dynamic model 
 
To see how dynamic steady-state equilibrium compares 
to “load flow” analysis, it is necessary to examine a 
typical dynamic model.  As in the load flow model 
discussed above, the following dynamic model assumes 
that the generator buses are numbered 1 to m and load 
buses are numbered m+1 to n.  The model neglects the 
very fast “stator/network” transients, but includes field 
flux decay, one damper winding, shaft inertial 
dynamics, automatic voltage control and speed control 
through a turbine/governor [4].  Each variable and 
parameter could contain a subscript i which ranges from 
1 to m. 
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The stator model consists of Kirchhoff’s voltage law for 
each generator bus.  There are m such sets of equations. 
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Similarly, the following equations are the standard 
Kirchhoff’s current law equations for the m generator 
buses.  They include possible loads (injected notation) 
at the generator bus. 
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The following equations are the standard Kirchhoff’s 
current law equations for the n-m pure load buses. 
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This model includes 9m differential equations with the 
following dynamic states: 
 

x = [Eq’, Ed’, δ, ω, Efd, Rf ,VR, TM, PSV]t 
 
Each entry of x is a vector of m variables (one for each 
generator).  At this point it is important to point out that 
one angle in the system model can be eliminated.  Since 
all of the angles in the model eventually appear as the 
difference between two angles, one may be explicitly 
removed.  For example, δ1 may be subtracted from all 
other angles (creating “difference angeles”) and the 
complete model without δ1 remains correct.  This is 
discussed again later in the paper. 
 
The model also includes 2m+2n real algebraic equations 
with the following algebraic states: 
 

y = [Id, Iq] t 
 

z = [VG, VL, θG, θL] t 
 
Where the subscripts indicate Generator or Load voltage 
magnitude and angles. 
 
The control inputs are: 
 

u = [Vref, PC] t 

 
In most dynamic analysis, the control inputs are 
maintained as constants.   
 
Using this notation, the above dynamic model is of the 
form: 
 

 
While this form corresponds exactly to the equations 
given above, it is not in a form that identifies the “load 
flow” portion of the model.  The model can be rewritten 
in the following form: 
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where the standard load flow variables are: 
 

zlf = [Vm+1,…,Vn,θ2,…,θn] t 
 
As such, H contains exactly 2n-m-1 equations that are 
solved for these 2n-m-1 variables. 
 
The vector G includes the 2m stator algebraic equations 
and m+1 equations not used in load flow (normally used 
to compute the generator reactive powers and the swing 
bus real power).  Thus G is 3m+1 equations. 
 
3. Pre-contingency equilibrium 
 
The pre-contingency equilibrium is normally a steady-
state condition at nominal frequency (which assumes 
perfect real-power generation balance with loads and 
losses).  In addition, the voltage control inputs in the 
above dynamic model are not specified a-priori.  
Alternatively, various system conditions are specified in 
their place.  For example, a generator terminal bus (or 
remote bus) voltage magnitude may be specified under 
the assumption that the system operators have adjusted 
the generator voltage regulator references (Vref) to 
provide this condition.  The load-flow algorithm 
discussed in section 1 is used to provide the resulting 
generator reactive power outputs and swing bus real 
power.  From this, the control inputs u are computed by 
setting the time derivatives of the dynamic model to 
zero and computing Vref and Pc.  Once these inputs are 
computed, they must be maintained constant when 
computing the post-contingency equilibrium. 
 
4. Post contingency load flow 
 
If a post-contingency load flow is performed using the 
new system conditions, the solution is not correct until 
operator action has restored the voltage and speed 
controllers to values which give the desired voltages and 
speed that are assumed in the load flow analysis.  While 
this may be correct for “long term” equilibrium 
following a disturbance, it is not correct for the 
immediate equilibrium following a disturbance.  Hence 
it is not correct for determining the stability of the post-
contingency equilibrium. 
 
5. Analysis by integration 
 
The first method that produces the correct post-
contingency equilibrium is numerical integration until 
steady state is reached.  By definition, this computation 
produces the correct immediate post-disturbance 
equilibrium.  However, this is a very expensive method 
to compute this result.   
3
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6. Analysis by simultaneous iteration 
 
The second method that produces the correct post-
contingency equilibrium is direct solution of the full set 
of algebraic equations obtained by setting the time 
derivatives of the dynamic model to zero.  This involves 
solving the following equations for x, y, z, given u: 
 

 
While this method should agree with the analysis by 
numerical integration, it also is expensive in the sense 
that new commercial software code would have to be 
written to perform this analysis.   
 
7. Analysis by partitioned iteration 
 
The third method that should produce the correct 
immediate post-contingency equilibrium is the 
partitioned iterative solution that utilizes existing 
commercial load flow software for the bulk of the 
analysis.  This analysis would involve the following 
sequential steps: 
 

a. Start with the base case steady-state 
equilibrium as determined by a standard load 
flow and all associated dynamic variable and 
input values. 

b. Create changes in the dynamic model (i.e. 
remove a line which changes the Ybus matrix). 

c. Evaluate the new generator real and reactive 
powers. 

d. Solve a standard load flow using the new Ybus 
matrix and generator powers.  This is 
equivalent to solving the 2n-m-1 equations of 
H for the 2n-m+1 variables in zlf defined 
above. 

e. Set F to zero and solve the 12m+1 equations in 
F and G for the 12m+1 variables x, y, zm.  
Notice that these equations are all in de-
coupled sets and hence can be solved by a very 
low-order solution program.  Actually this 
could be reduced by 1 equation by using angles 
referenced to the machine 1 angle. 

f. Compute new load flow input quantities (swing 
bus voltage magnitude and angle, generator  
voltage magnitudes and real power generation. 

g. Resolve the load flow using the new input 
quantities, and repeat this iterative process until 
convergence. 
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This method has the advantage that existing commercial 
software code can be used.  And, the additional software 
needed to compute the equilibrium involves de-coupled 
algebraic equations for the generators.  As such, the size 
of this software code should be small. 
 
8. Discussion and conclusions 
 
This concept has not been tested yet to see any problems 
which may arise in solution methods or convergence.  
There are several sticky issues which may enter the 
process.  The first is the issue of eliminating one 
generator angle and using difference angles.  The choice 
of angle to be eliminated may affect the convergence.  
A second is the issue of VAR limits in load flow vs the 
control limits in the dynamic model.  These do not have 
a perfect correlation and may impact the solution 
process.  A third is the issue of load models.  While the 
load flow model for loads is usually constant power, the 
dynamic model may be different (i.e. constant 
impedance or current etc.).  A fourth is the issue of 
variable frequency.  It may be necessary to include this 
variable frequency in the load flow algorithm.  The 
method needs to be tested for computational feasibility 
and convergence properties.   
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