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Abstract 
 
The problem of determining the time to complete multiple tasks that may proceed concurrently, 

sequentially, or both is considered. In the solution offered, each individual task completion time 

may be described with a number, interval, or distribution function. In the case of distribution 

functions, two task completion times might be independent random variables, as when the tasks 

are performed in different environments and proceed independently. Alternatively, completion 

times might be positively correlated, as when both depend on the quality of management and 

proceed within the same managerial environment, or they could be negatively correlated, as when 

resource sharing means that faster completion of one implies slower completion of the other. 

Finally, various factors might interact to make completion times dependent in a way that is 

difficult to characterize accurately. The solution offered avoids assuming that individual task 

completion times are independent or have any other dependency relationship. One application of 

the results is in project management, as in the context of PERT (Program Evaluation and Review 

Technique) diagrams. 
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1 Introduction 
 
Determining the time to complete all tasks in a network of tasks is easy when the time to 

complete each individual task in the network has a numerical value, harder when individual 

completion times are described using probability distributions, and still more challenging when 

these distributions are neither assumed independent nor assumed to have any other dependency 

relationship. A method is described here for determining completion times of task networks in the 

last case. We begin by describing each task completion time with a probability distribution 

function, noting that this includes as a special case a completion time described with a precise 

number since a number may be represented as a step distribution function (Figure 1, left). We 

later generalize to the case of left and right envelopes enclosing a family of cumulative 

distribution functions (CDFs) which, as a special case, allows a completion time to be represented 

as an interval describing a range of plausible values with high and low bounds but no information 

about the probability distribution within those bounds (Figure 1, right).  

 

 

 

 

Figure 1. (Left) the numerical value of time t1 is a special case of a cumulative distribution function 

(CDF) which is 0 below t1, and 1 at t1 or above. (Right) an interval [tlo, thi] is a special case of a family 

of distributions containing any CDF which is 0 below tlo and 1 (at or) above thi. 
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In real situations, two task completion times might be independent random variables, as 

when each is done in a different environment and they proceed independently. Alternatively, 

completion times might be highly positively correlated, as could occur if the tasks depend on the 

quality of management and proceed within the same managerial environment. As a third 

possibility, completion times might be quite negatively correlated, as could occur if the tasks 

proceed concurrently with shared personnel or other resources and faster completion of one 

entails slower completion of the other. A final and quite likely possibility is that various factors 

interact to make completion times dependent in a way that is difficult to characterize accurately. 

Therefore in the general case we wish to avoid assuming that individual task completion times are 

independent or have any other particular dependency relationship. A solution to this general case 

is offered. 

 The results have application to project management, where task completion time analyses 

can be useful as illustrated by the well-known PERT (Program Evaluation and Review 

Technique) method. 

 

2 Solution for the case of two concurrent tasks 

This section discusses the case of two concurrent tasks. Generalization to larger networks of tasks 

is discussed in Section 3.  

Consider concurrent tasks X and Y, each beginning when the task environment is in a 

start state S and whose joint completion brings about desired finish state F (Figure 2). Let Fx be 

the CDF of random variable tx, the completion time of task X, and let Fy be the CDF of random 

variable ty, the completion time of task Y. We begin by reviewing solution strategies when tx and 

ty are independent, and then generalize by removing the independence assumption. 

One solution strategy is the analytical one. The analytical approach to arithmetic on 

random variables is limited in the forms of the distributions it can handle and usually relies on the 

assumption of independence (e.g. Springer 1979). The Monte Carlo approach is a numerical 
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strategy that does not produce definite bounds, does not handle cases where one operand is a CDF 

and the other an interval except under severe restrictions, does not handle the case of unknown 

dependency between random variables, and has other limitations (Ferson 1996). Numerical 

convolution (Ingram et. al 1968; Colombo and Jaarsma 1980; Kaplan 1981) is an alternative 

numerical strategy that allows arithmetic operations to be applied to random variables with a wide 

variety of CDFs, and has been extended to capture discretization error via error bounds that 

propagate through the calculations and lead to left and right envelopes around the true solution 

(Williamson and Downs 1990; Berleant 1993; Cooper et al. 1996). See Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. PERT diagram showing a starting state S, a finish state F, and two tasks X and Y that must 

be completed to reach state F. Two different distribution functions Fx and Fy describe random 

variables tx and ty, which represent the completion times of tasks X and Y.   

 
Envelopes consist of non-crossing CDFs that enclose the paths of all CDFs consistent 

with the problem. These envelopes are often called probability bounds (Ferson et al. 1998) and, 

because they do not cross, the right envelope has first order stochastic dominance over the left 

(Levy 1992). Coarse discretizations for random variables tx and ty (e.g. Figure 3) lead to 

correspondingly large discretization error and therefore more widely spaced left and right 

envelopes. Finer discretizations would result in left and right envelopes that have more and 
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smaller steps and are closer together. The CDF for result t, the time to complete both tasks, must 

be some CDF enclosed by the left and right envelopes. 

   
   t = max(tx,ty),  tx and ty independent 

[ ]3,2∈t  
p = 1/8 

[ ]4,2∈t  
p = 1/8 

[ ]3,2∈yt
 p = ¼ 

[ ]4,3∈t  
p = 1/4 

[ ]4,3∈t  
p = 1/4  

[ ]4,3∈yt  
 p = ½ 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈yt  
 p = ¼ 

[ ]2,1∈xt  
 p = ½ 

[ ]4,2∈xt  
 p = ½ 

←        ↑ 
tx        ty  

 

Figure 3. Random variable tx is coarsely discretized (bottom row), and similarly for ty (right hand 

column). The binary operation appropriate to the task completion problem is max(tx,ty) because, for 

any samples of tx and ty, both tasks are complete when the one that finishes last is complete. The 

distribution of joint completion times is implicit in the set of interior cells (unshaded) of the joint 

distribution table, each of which is calculated from its corresponding marginal cells. For example, the 

upper left cell contains probability mass 1/8, which is the product of the probabilities of its marginal 

cells in the right hand column and bottom row, 1/4 and 1/2 respectively. The product is used because 

tx and ty are assumed independent (this assumption will be relaxed later). The upper left cell contains 

the interval [2,3] because its marginal cells have task X complete in time [1,2] and Y in time [2,3], so 

the time to complete both could potentially be anywhere within that interval. The cumulation over t 

of the interior cells is bounded by the left and right envelopes shown, with the separation between the 

envelopes due to the undetermined distribution of each cell�s mass across its interval which could, in 

extreme cases, be concentrated at the interval low or high bound (Berleant 1993).  

  

Left and right envelopes are each derived from a joint distribution table such as that shown in 

Figure 3. The probability mass shown associated with each interior cell of a joint distribution 
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table is the product of the probability masses in its corresponding marginal cells if the operands 

are independent, but relaxing the assumption of independence leaves them undetermined. 

Therefore when the dependency relationship between the operands is unknown, the process 

illustrated in Figure 3 requires significant modification (Berleant and Goodman-Strauss 1998). 

Regardless of the dependency relationship between the marginals, the masses of the interior cells 

are constrained to some extent by the marginals, which require the masses of all the interior cells 

in a row to sum to the mass of the marginal cell at the right of that row, and the masses of the 

interior cells in a column to sum to the mass of the corresponding marginal cell at the bottom of 

that column. Consequently the summed mass of any particular subset of interior cells will 

typically have a range of possible values, and for a properly chosen subset the maximum or 

minimum of this range yields a point on the left or right envelope. More specifically, obtaining 

the height of the left envelope at time t requires maximizing the collective probability mass of the 

interior cells whose intervals have low bounds below (or equal to) t subject to the row and 

column constraints, because the mass of each of those cells either may (if the interval�s high 

bound is above t) or must (if the interval�s high bound is not above t ) be in the cumulation at t. 

The process is analogous for finding the height of the right envelope: minimize the sum of the 

probability masses of the interior cells whose intervals have high bounds below or equal to t 

(Berleant and Goodman-Strauss 1998). Figure 4 explains the process, which can be done by hand 

for a very small table although in the general case linear programming (LP) is more practical. The 

left and right envelopes have staircase-like forms. In Figure 4, for example, the heights of the left 

and right envelopes at t=3.5 hold for all other values of t between 3 and 4. Because for staircase-

shaped curves the heights for only a limited number of values of t need to be found to fully 

characterize the envelopes, the number of LP problems is correspondingly limited. Figure 4 also 

shows the full envelopes.  
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Figure 4. An example. 

Each interior cell interval in the following joint distribution table has bounds defined by max(tx,ty) 

for its associated (shaded) marginal cell intervals. While interior cell probabilities are constrained by 

the marginal cell probabilities, they are not fully determined because no assumptions are made about 

the dependency relationship between tx and ty. 

[ ]3,2∈t  
p11 

[ ]4,2∈t  
p12 

[ ]3,2∈yt
p = ¼ 

[ ]4,3∈t  
p21 

[ ]4,3∈t  
p22 

[ ]4,3∈yt
p = ½ 

[ ]5,4∈t  
p31 

[ ]5,4∈t  
p32 

[ ]5,4∈yt
p = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt
p = ½ 

  ←     ↑ 
  tx     ty 

 

Consider for example the cumulative probability of t at 3.5. Bolded probabilities masses p11, p12, p21, 

and p22 can contribute to the left envelope of t at 3.5, because the low bounds of the intervals in those 

cells are ≤3.5. Therefore those probabilities could all be in the cumulation at t=3.5, and in the 

extreme case that p12, p21, & p22 happen to be concentrated at the low bounds of their intervals, will 

be (and to find points on the envelopes, we are interested in extreme cases). To maximize this 

cumulation of p11, p12, p21, and p22, their sum must be maximized (at the expense of non-bolded 

probabilities p31 and p32), yielding  p11+p12,+p21+p22=3/4  as shown in the following solution: 

[ ]3,2∈t  
p11=¼ 

[ ]4,2∈t  
p12=0 

[ ]3,2∈yt
p = ¼ 

[ ]4,3∈t  
p21=0 

[ ]4,3∈t  
p22=½ 

[ ]4,3∈yt
p = ½ 

[ ]5,4∈t  
p31=¼ 

[ ]5,4∈t  
p32=0 

[ ]5,4∈yt
p = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt
p = ½ 

←      ↑ 
tx      ty  

 

(continued on next page) 
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(Figure 4 continued) 

For the other envelope, the (unary �sum� of) italicized probability mass p11 is minimized, yielding 0 

as shown in the following solution: 

[ ]3,2∈t  
p11=0 

[ ]4,2∈t  
p12=¼ 

[ ]3,2∈yt
p = ¼ 

[ ]4,3∈t  
p21=½ 

[ ]4,3∈t  
p22=0 

[ ]4,3∈yt
p = ½ 

[ ]5,4∈t  
p31=0 

[ ]5,4∈t  
p32=¼ 

[ ]5,4∈yt
p = ¼ 

[ ]2,1∈xt  
p = ½ 

[ ]4,2∈xt
p = ½ 

←      ↑ 
tx      ty  

These maximum and minimum cumulations of  3/4 and 0 hold not only for t=3.5 but also for all other 

t from 3 to 4, because no interior cell has an interval with an endpoint in that range, as graphed next. 

 

 

 

 

 

 

Repeating this process for appropriate values of t yields the following full envelopes around 

t=max(tx,ty). 

 

the envelopes. Finer discretization would yield smaller steps in the envelopes and hence envelopes 

that are, on average, closer together. 

Figure 4 (end). 

Although the marginals used here are 

the same as in Figure 3, the envelopes 

are farther apart because the 

dependency between the random 

variables is unspecified, so the 

inferential power of the independence 

assumption is absent. The 

discretization,   coarse  in  this  example, 

also affects the degree of separation of 
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When linear programming is applied to minimization and maximization problems of this 

type the objective function is the sum of the probabilities of the subset of interior cells to be 

maximized or minimized, and the constraint set consists of one for each row and one for each 

column. A general-purpose linear programming algorithm such as the simplex method can be 

used, but a faster choice is the transportation simplex method, which applies to certain problems 

such as these containing only row and column constraints. 

To apply the transportation simplex method to optimize the distribution of 

probability masses across interior cells, the cost coefficients of the cells in the subset 

whose probability mass is to be maximized or minimized are set to one, the cost 

coefficients of the remaining cells are set to zero, and the allocations of the cells are their 

probability masses. In our software implementation, problems involving generating 

envelopes from a 16x16 joint distribution table require approximately 14 seconds using 

the simplex algorithm but only 1 second using the transportation simplex algorithm, on a 

Pentium III PC running Windows NT. 

 

3 Generalizing the solution to networks of concurrent and sequential tasks 

Extending the approach from two concurrent tasks to larger networks of tasks requires solving 

three problems: (1) determining the completion time of two tasks that run not concurrently but 

sequentially, (2) determining the completion time of three or more concurrent tasks, and (3) using 

results as inputs to obtain further downstream results. These problems may be solved as follows.  

(1) To determine the completion time of two sequential tasks, their individual completion 

times are added, because one completes and then the next begins. To add them, the same 

procedure that was described earlier for concurrent tasks is applied except that the 

intervals in the interior cells of the joint distribution table are obtained by performing 
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tx+ty instead of max(tx,ty). Thus for each joint distribution tables in Figure 4, the top left 

cell would contain the interval [3,5]=[1,2]+[2,3] instead of [2,3]=max([1,2],[2,3]). 

(2) To handle three concurrent tasks, the result for two of them is calculated, and that result 

used as the completion time for a composite task that proceeds concurrently with the third 

task. In other words, for concurrent tasks X, Y, & Z, we wish to calculate 

max(max(xt,yt), zt). This is a case of using intermediate results as inputs, discussed next. 

(3) To use a result as an input to another calculation, we must convert a pair of left and right 

envelopes, which is what a result looks like, into a set of intervals and associated 

probability masses, which is what a marginal in a joint distribution table looks like. To 

convert, first note that the envelopes consist of horizontal and vertical line segments. This 

allows the space they enclose to be partitioned into a stack of rectangles (Figure 5, top). 

Each rectangle defines an interval whose low bound is a value on the horizontal axis at 

which there is a vertical segment of the left envelope (forming the left side of the 

rectangle), and whose high bound is a value on the horizontal axis at which there is a 

vertical segment of the right envelope (forming the right side of the rectangle). The mass 

of the interval is the increment in the cumulative probability represented by the (bottom-

to-top) height of the rectangle. The result of this partition process is a set of intervals and 

their associated probabilities, usable as a marginal in a joint distribution table for another 

arithmetic operation (Figure 5, bottom). 

 

4 Using inferences from result envelopes 

Consider three types of inference that may be drawn from a pair of left and right envelopes. 

1) The probability of finishing all the tasks by some time T0 is at least P0 in Figure 6. 

Similarly, the probability of not finishing by time T0 is at least (1-P1). 
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    t=max(tz,tw)  

[ ]5,2∈t  
p= 

[ ]7,2∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]3,2∈wt  
p = 0.25 

[ ]5,3∈t  
p= 

[ ]7,3∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]4,3∈wt  
p = 0.5 

[ ]5,4∈t  
p= 

[ ]7,4∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]5,4∈wt  
p = 0.25 

[ ]5,2∈zt  
 p = 0.2 

[ ]7,2∈zt  
 p = 0.1 

[ ]7,6∈zt  

 p = 0.3 

[ ]9,6∈zt  

 p = 0.3 

[ ]9,8∈zt  

 p = 0.1 

←        ↑ 
tz        tw  

Figure 5. Staircase shaped envelopes partitioned into a set of intervals and masses (top). 

These might represent a random variable tz=max(tx,ty), used as a marginal in the last row of 

a joint distribution table (bottom), and combined with the concurrent completion time tw of 

some other task W. The interior cell probabilities of the table are undetermined since no 

dependency relationship was defined between the marginals, and so cannot be given values. 
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Figure 6.  Left and right envelopes associate probability intervals with time points. If the 

envelopes describe cumulative probability of task completion over time, then the probability 

of completion by time T0 is within the interval [P0 ,P1], and by time T1, [P2,1].   

 
2) Suppose that p(some outcome)∈ [P,1]. For example in Figure 6, p(task completion by 

time T1)∈ [P2,1]. The interval [P2,1] is qualitatively different from a point estimate 

somewhere between P2 and 1 that would derive from an analysis that produced a single 

distribution function instead of left and right envelopes. This is because, unlike a point 

estimate, p∈ [P2,1] indicates the plausibility of two distinct scenarios with different  

implications, (1) certain completion (within the model limits), and (2) uncertain 

completion. Decisions about resource allocation on the overall project or about deadlines 

to contract for could depend on which scenario is correct, yet the implied opportunity to 

seek further information to enable discriminating, or at least to reduce the second order 

uncertainty in completion time would not be available from an analysis that produced a 

point probability estimate. 

3) Consider the problem of determining the probability that one task will finish later than 

another, p(ty>tx). The probability of one task or path taking longer than another is relevant 

in such applications as project management where task networks represent PERT 

diagrams describing the prerequisite structure of tasks in a project. A simple example is 
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two tasks that begin at the same time, as in Figure 1. A generalization is two tasks 

embedded in a network of tasks, such as in Figure 7 for final tasks CF and EF. In the 

generalization the tasks need not start at the same time, and the times at which they 

complete depend on both the task itself and any prerequisite tasks in the network. These 

prerequisite tasks may form a simple sequence as in the case of task EF with prerequisite 

partial path SDE, or contain concurrency as in the case of task CF with prerequisite, 

concurrent, partial paths SAC and SBC.  

Figure 7. A network of tasks. The times to complete tasks SB and SD are shown as 

cumulative distributions. The time to reach state E is the sum of the times to complete SD 

and DE, and if the dependency relationship between the completion times for SD and DE are 

unknown the sum is a pair of envelopes rather than a single cumulative distribution. 

  

Solving this type of problem requires determining p(ty>tx), where tx and ty are sample 

values of random variables for the time points at which two tasks X and Y, or CF and EF, 

etc., complete. To do this, and relate it to standard techniques, we first provide a 

continuous solution for the case of independent distributions, then give the discrete form 

of the solution, then an intervalized discrete form, and finally remove the independence 

assumption.  
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In the case of a continuous solution for independent distributions, if the density 

functions of the task completion times are )(tf x and )(tf y  and sample completion times 

are tx and ty, then 

(1) � �
∞

−∞= <<∞−
�
�

�

�

�
�

�

�
=>

t tt
xyxy dttfdttfttp

0

)()()( 0 . 

Intuitively, �
<<∞− tt

x dttf
0

)( 0  is the area under xf over all times earlier than some given time t, 

which is p(t>tx), or the probability that t is later than the completion time tx of task X. The 

probability that the completion time of task Y is within a time period centered at t with 

width dt is p( dttt y 2
1±∈ )= .)( dttf y  The probability of both (t>tx) and )( 2

1 dttt y ±∈  is 

therefore the product of their individual probabilities, �
<<∞− tt

xy dttfdttf
0

)()( 0 , and 

integrating this expression over all possibilities for t gives equation (1). 

Discretizing (1) gives � �
∞

−∞= <<∞−
�
�
�

�
�
�
�

�
∆∆=>

t tt
xyxy ttfttfttp

0

)()()( 0  for values of t and 

t0 spaced ∆t apart. This can be intervalized, bounding the discretization error and giving  
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where the Tx and Ty are intervals over tx and ty such as might appear in the marginals of a 

joint distribution table, p(Tx) and p(Ty) are their associated probability masses, and 

xyx TTT ,, and yT are their low and high bounds.  

As an example of equation (2) consider the joint distribution table in Figure 8. 

The low bound of p(ty>tx) is the sum of the probability masses of cells labeled True, 

which is 0.789. The high bound is the sum of the masses of cells labeled True or Uncertain, 

which is 0.939, yielding ]939.0,789.0[)( ∈> xy ttp . 
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To remove the independence assumption, the masses of the interior cells are 

reapportioned among the interior cells within the limits imposed by the row and column 

constraints using linear programming to minimize the summed masses of the cells labeled 

True, giving a low bound of 0.61, and then reapportioned again to maximize the summed 

masses of the cells labeled True or Uncertain, giving a high bound of 1. The new result, 

]1,61.0[)( ∈> xy ttp , as expected is wider than the earlier result of 

]939.0,789.0[)( ∈> xy ttp , which benefited from assuming independence. 

ty>tx, tx and ty independent 

True 
p=.005 

True 
p=.006 

True 
p=.008 

True 
p=.01 

True 
p=.021

Uncertain
p=.021 

Uncertain
p=.01 

False 
p=.008 

False 
p=.006 

False 
p=.005 

[10.1,11.1] 
p=.1 

True 
p=.01 

True 
p=.012 

True 
p=.016 

True 
p=.02 

True 
p=.042

True 
p=.042 

Uncertain
p=.02 

Uncertain
p=.016 

False 
p=.012 

False 
p=.01 

[11.1,12.1] 
p=.2 

True 
p=.02 

True 
p=.024 

True 
p=.032 

True 
p=.04 

True 
p=.084

True 
p=.084 

True 
p=.04 

Uncertain
p=.032 

Uncertain
p=.024 

False 
p=.02 

[12.1,13.1] 
p=.4 

True 
p=.01 

True 
p=.012 

True 
p=.016 

True 
p=.02 

True 
p=.042

True 
p=.042 

True 
p=.02 

True 
p=.016 

Uncertain
p=.012 

Uncertain 
p=.01 

[13.1,14.1] 
p=.2 

True 
p=.005 

True 
p=.006 

True 
p=.008 

True 
p=.01 

True 
p=.021

True 
p=.021 

True 
p=.01 

True 
p=.008 

True 
p=.006 

Uncertain 
p=.005 

[14.1,15.1] 
p=.1 

[5,6] 
p=.05 

[6,7] 
p=.06 

[7,8] 
p=.08 

[8,9] 
p=.1 

[9,10] 
p=.21 

[10,11] 
p=.21 

[11,12] 
p=.1 

[12,13] 
p=.08 

[13,14] 
p=.06 

[14,15] 
p=.05 

←      ↑ 
tx      ty 

 
Figure 8. Joint distribution table representing ty>tx, for independent tx and ty. Each interior 

cell is labeled True if ty>tx for ty and tx in the intervals of the marginal cells of that interior 

cell,, False if instead ty<tx, and Uncertain if the marginal cell intervals overlap (indicating that 

the unspecified details of the distributions of the marginal cell masses over their intervals 

determine whether ty>tx for all, some, or none of the interior cell mass). 

 

To restate an example, this process could be used to bound the probability that 

the completion time of task X will be later than that of task Y in a PERT diagram 

conforming to Figure 1. The process could also be used in a more complex example such 

as bounding the probability that task CF will complete later than task EF in Figure 7. The 

completion time of each of these tasks will be in the form of envelopes, which when 
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converted to marginals will have overlapping intervals as in Figure 5. However any 

overlap is irrelevant to equation (2), which justifies Figure 8. Ultimately such results 

could support management decisions about resource allocation intended to optimize the 

overall completion time of the entire project.  

 

5 Software 

Crystal Ball (www.decisioneering.com) and @risk (www.palisade.com) are well-known 

commercial products that rely on Monte Carlo simulation, thereby inheriting the shortcomings of 

Monte Carlo simulation noted earlier in Section 2.  

RiskCalc (Ferson et al. 1998) is a commercially available package that can do the 

operations on random variables used here, although its algorithm (Williamson and Downs, 1990) 

is different and more complicated than the one used here, some further details of which have been 

described by Berleant and Goodman-Strauss (1998). Our software, Statool, is downloadable from 

http://www.public.iastate.edu/~berleant/statool.html. Both systems run under Windows on a PC. 

Statool requires Visual Basic to be installed.  

   

6 Conclusion 

We have shown how to solve a simply stated problem with significant implications: determining 

completion times of networks of tasks in the absence of assumptions about both the forms of 

distribution functions and their independence or other dependency relationships. Results are left 

and right envelopes bounding the space of plausible CDFs. Completion times of individual tasks 

may be expressed as numbers, intervals, distribution functions, or left and right envelopes.  

Real problems frequently pose a variety of uncertainties. Therefore methods for obtaining 

results with minimal assumptions and while accounting for uncertainty remain an important area 

of investigation. 
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