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This paper presents the design and pricing of financial contracts for the supply and procurement of interruptible electricity service. While
the contract forms and pricing methodology have broader applications, the focus of this work is on electricity market applications, which
motivate the contract structures and price process assumptions. In particular, we propose a new contract form that bundles simple forwards
with exotic call options that have two exercise points with different strike prices. Such options allow hedging and valuation of supply
curtailment risk, while explicitly accounting for the notification lead time before curtailment.

The proposed instruments are priced under the traditional GBM price process assumption and under the more realistic assumption (for
electricity markets) of a mean reverting price process with jumps. The latter results employ state-of-the-art Fourier transforms techniques.

S weeping changes in the electric power industry around
the world over the last decade have been directed
at increasing competition in the generation of electricity.
This has been accompanied by a commoditization of elec-
tricity with the emergence of spot markets, along with
forward and derivative markets. On the operations side,
various forms of supply contracts serve purposes such as
risk management and economic efficiency improvement
through load management. Such contracts can be emulated
and priced by means of financial instruments. Of particular
interest are contracts that facilitate demand-side participa-
tion in the mitigation of supply shortages for energy and
reserves. Newly deregulated electricity markets have shown
very little demand elasticity. Price spikes have reached
$7,000-$10,000 per MWh compared to normal prices of
around $25 per MWh. This has brought the need for
demand responsiveness to the forefront to make these mar-
kets workable. Failures of markets for reserves (that are
needed to ensure system reliability) in California, New
England, and New York have also been largely attributed
to the lack of demand-side response and spurred renewed
interest in “load as a resource.”

Two key elements that are needed to enable demand side
participation in the mitigation of price spikes and provision
of reserves are the metering and control technology that
will make such response possible, and appropriate contrac-
tual arrangements that will provide appropriate incentives
to loads to subject themselves to curtailment. While load
curtailment can provide an efficient substitute for genera-
tion capacity in providing balancing energy and reserves,
it is erroneous to treat load and generation resources
as interchangeable in terms of market design and par-
ticipation incentives. The flexibility and response capa-
bility of both generation and load resources are predicated

on metering and control technology. However, while
generation resources are physically constrained by their
ramping capability, given proper communication and con-
trol, the responsiveness of load resources is cost driven.
Load can respond instantly to a contingency by the flip of
a switch, but the cost of such a response may be high. Dif-
ferent load types have different costs associated with noti-
fication time and duration of an interruption. For example,
heating and cooling applications with some form of storage
can provide quick response but would be more sensitive
to duration, while manufacturing-type load would be sen-
sitive to notification time but less sensitive to duration
of a curtailment. Hence, proper design of contracts that
enable loads to hedge their specific risk associated with
service interruptions is essential in recruiting a portfolio
of demand-side resources that will meet the requirements
for responsiveness and economic efficiency to make load a
viable resource.

This paper focuses on the pricing of three interruptible
supply contracts emulated using forwards and options. In
particular, we propose a new contract form that bundles
a simple forward contract with an exotic call option that
has two exercise points with different strike prices. Such
options allow hedging and valuation of supply curtailment
risk while explicitly accounting for the notification lead
time before curtailment. Our analysis can also be consid-
ered as a starting point for analyzing more complex con-
tracts with multiple strike points.

We model the behavior of electricity spot prices using
three single-factor stochastic processes that have been
widely used in the asset pricing and commodity pricing lit-
eratures. First, the canonical geometric Brownian motion
(GBM) model is considered for illustrative purposes and to
link our study to past literature in the area (see Gedra 1991,
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Gedra and Varaiya 1993, and Oren 1999). In this model
the spot commodity is viewed as a tradable security. This
is clearly inappropriate for electricity, which is essentially
nonstorable (even in markets where there is a large amount
of hydrogeneration only water, i.e., the fuel, can be stored
and not the final product, i.e., electricity. Hence, such
storage will not mitigate temporal shortages of genera-
tion capacity.). Also, the volatility of future spot prices
in this model increases without bound while there is evi-
dence that commodity prices, and more specifically elec-
tricity prices, exhibit mean reversion (see Kaminsky 1997).
Second, we consider a model where the logarithm of elec-
tricity spot price follows a mean-reverting process of the
Ornstein-Uhlenbeck type, also known as an affine diffu-
sion (AD). This model has been used in modeling com-
modity prices (see Bjerksund and Ekern 1995, Ross 1995,
and Schwartz 1997). In this case, the spot price, or equiva-
lently its logarithm, is not an asset in the usual sense but is
viewed as an underlying state variable upon which contin-
gent claims can be written. Gibson and Schwartz (1990) and
Miltersen and Schwartz (1998) have also proposed multi-
factor extensions of this model in the literature. These intro-
duce stochastic convenience yield as an additional factor
in the model. Convenience yield is defined as the benefit
from holding inventory of the commodity and is not easily
justified in electricity markets, as electricity is almost non-
storable. Schwartz and Smith (2000) provide an alterna-
tive model with two state variables, modeling mean rever-
sion in short-term prices and uncertainty in the equilibrium
level to which prices revert respectively, which is equiva-
lent to the model with convenience yield. Finally, we con-
sider a mean-reverting jump-diffusion model, which falls in
the class of affine jump diffusions (AJDs). Merton (1976)
introduced single-factor jump-diffusion models in his sem-
inal work. The jump part of the model is usually modeled
using a Poisson-driven process. More recently, Hilliard and
Reis (1998) have used multifactor AJD models, introduced
in Duffie and Kan (1996), for describing commodity prices.
Deng (1999) was the first to use multifactor AJD models
to describe electricity spot prices (also, see Birge and Kou
1999 for a single-factor specification). Deng presents several
specifications, one having regime switching and one with a
second factor to incorporate stochastic volatility. The intro-
duction of jumps in electricity spot prices captures abrupt
changes in the market caused by unpredictable events such
as outages and is consistent with near nonstorability. This,
however, leads to incomplete markets. As our interest is
in the pricing of contingent claims on the state process,
we work directly under an equivalent martingale measure.
Duffie et al. (1998) point out that the existence of some
equivalent martingale measure and the absence of arbitrage
are essentially equivalent properties even when markets are
incomplete (also, see Harrison and Kreps 1979). We do not
address estimation or calibration of the models but note that
the behavior of prices can also be modeled under the “orig-
inal” or “data-generating” measure. Reasonable assump-
tions about the functional form of the state-price density

(also known as the “pricing kernel” or the “marginal-rate-
of-substitution process”) lead to our model under an equiv-
alent martingale measure (Duffie et al. 1998).

While various authors have considered the pricing of for-
ward contracts and simple options, we present new pricing
formulae for the exotic option embedded in one of our
contracts. We use transform analysis developed in a series
of papers by Stein and Stein (1991), Heston (1993), and
others and generalized in Duffie et al. (1998) to price the
contracts under the affine jump diffusion (see Deng 1999
for an application to electricity derivatives). We extend
Duffie et al’s methodology of calculating transforms for
simple options to the case where the option can be exer-
cised at two time points and use a multivariate inversion
technique developed in Shepard (1991) to arrive at almost
closed-form solutions for the exotic option in our anal-
ysis. We leave extensions to regime switching, which accu-
rately describes spikes in electricity prices, and stochastic
volatility, which can be attributed to unpredictable demand
and weather patterns, to future research.

An alternative methodology to model commodity prices
relies on the forward curve as input to the model. Heath
et al. (1992) first suggested this approach for modeling
interest-rate-based securities. Amin et al. (1995) develop
similar models for the term structure of energy futures
prices. Deng et al. (1998) use a third approach of modeling
futures prices directly.

Thompson (1995) presents a framework to analyze path-
dependent claims of the kind analyzed in this paper.
Thompson considers take-or-pay contracts where the take-
or-pay level is enforced over a period of time covering a
multiple number of exercise points, with or without a make-
up clause over a number of such periods. Using lattice-
based methodology he shows that for contracts without a
make-up clause, an analytical formula can be derived that
can be used to calculate the optimal amount to exercise at
each point. If a make-up clause is included this analytical
form is not the most practical form for calculation, and
he suggests using a grid search to determine the optimal
amount. This methodology is especially useful when the
price process follows geometric Brownian motion. Our
approach can be seen as an alternative to lattice-based
methods when there are a few exercise points in a jump-
diffusion setting where the simplicity of the lattice-based
methods is lost.

The remainder of the article is organized as follows. We
describe the design of the contracts using standard financial
instruments in §1. In §2, we present pricing formulae for
the GBM and AD processes. We discuss the AJD model
and introduce transform analysis used for pricing contracts
under this model in §3. In §4, we conclude and discuss
some possible extensions of our work. All the proofs are
collected in an appendix.

1. CONTRACT DESIGN

Interruptible or curtailable service contracts aim to
supply electricity at reduced cost by taking advantage of
customers’ flexibility to manage their load. Many utilities
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have introduced such contracts in the past as part of various
demand-side management programs. Such contracts allow
suppliers to provide electricity to those customers who are
willing to pay the highest prices in times of scarcity and
give customers lower rates. Chao and Wilson (1987) first
studied the implementation of such contracts as priority
service. If the time of notification of curtailment is only
a few minutes before delivery, the supplier can substitute
these demand-side measures for reserve capacity that it
must have on hand for reliable operation of the grid. This
reduces cost of operation and the need for expansion of
capacity. While a shorter warning time gives a supplier
the flexibility it needs to reduce costs, from the customer’s
point of view earlier notification of an impending curtail-
ment may be crucial in mitigating the shortage cost of an
interruption (for example, by closing operation). A similar
situation may exist with respect to long-term supply con-
tracts. Strauss and Oren (1993) describe a methodology for
the design of priority service price schedules with such an
early notification option. Another type of interruptible ser-
vice is one where the option of curtailment is with the
customer. Such contracts exist between load-serving enti-
ties (LSE) and independent power producers (IPP), where
the LSE purchases electricity from the IPP only if the con-
tracted price is below its marginal cost (or the spot price if
a spot market exists).

With deregulation of the electric power industry in the
United States and around the world, quantity controls such
as curtailments are being replaced by price signals pro-
vided by daily and hourly spot markets for electricity that
have been established as part of the industry restructuring.
In such markets, a customer can benefit from its flexibility
by responding to the price signal and exercising its “real
option” to reduce consumption when the spot price is high.
Such an approach requires that the customer actively par-
ticipate in the spot market. Customers that prefer to avoid
the risk of price fluctuation can “hedge” the price risk
by entering into forward commitments. A forward contract
guarantees a fixed price for power regardless of the spot
price (these can also be implemented as contracts for dif-
ference, where any differences in the spot price from the
forward price are settled ex post). Simple hedges, however,
do not account for a customer’s flexibility and willing-
ness to curtail its load when the spot price is high because
of shortages or high demand. Customers with such flexi-
bility could exercise their curtailment option and sell back
their forward-acquired power during periods of high spot
prices. Alternatively, these customers could sell their option
to their electricity supplier in exchange for a fixed rebate
on the forward price. A call (put) option gives its holder
the right but not the obligation to buy (sell) electricity at a
predetermined “strike” price. The call (put) option will be
exercised only when the spot price is higher (lower) than
the strike price. Holding portfolios of these basic securities
can simulate more complex payoff structures. The rebate or
interruptible rate discount would equal the actuarial value
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of the option. Different load types have different costs asso-
ciated with notification time and duration of an interrup-
tion. For a particular load type, if interruption costs change
significantly as time approaches time of delivery, this calls
for contracts with multiple points at which the outlook for
the delivery period is evaluated and supply decisions are
made. We consider the three interruptible supply contracts
described above in our analysis. All of the contracts have
one feature in common—they involve forward contracting
with some optionality built into the forward contract. We
now describe the replication of these contracts with for-
wards and options in greater detail.

1.1. Interruptible Supply Contract
or “Callable Forward”

Gedra (1991) and Gedra and Varaiya (1993) introduce
“callable forwards” as potential substitutes for interruptible
service contracts and provide a thorough analysis of their
efficiency properties. In a “callable forward,” the customer
is “long” one forward contract and “short” one call option,
which has a customer-selected strike price. The supplier
holds opposite positions and can exercise the call option
whenever the spot price exceeds the strike price, effectively
canceling the forward contract at the time of delivery. The
discount that the customer gets on the forward price is the
option price at the time of contracting, continuously com-
pounded to the delivery date (see Figure 1 for a timeline
of this contract).

1.2. Dispatchable Independent Power Producer
Contract or “Putable Forward”

Gedra (1991) and Gedra and Varaiya (1993) also propose
“putable forwards” to emulate dispatchable independent
power producer (IPP) supply contracts. In a “putable for-
ward” the customer is “long” one forward contract and
“long” one put option, which has a supplier-selected strike
price, while the supplier holds opposite positions. The cus-
tomer can exercise the put option whenever the spot price
is below the strike price, effectively canceling the forward
contract at the time of delivery. In this case, the premium
that the customer pays on the forward price is the option
price at the time of contracting, continuously compounded
to the delivery date.

Figure 1. Timeline for the contract.
Expiration time
Time of Early exercise time - forward
Contracting - option
t t t »
T T, T>

Position by Supplier
Short 1 forward contract
plus for
"callable forward" Long | call
"putable forward" Short | put
"callable forward with early notification” Long 1 double call
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1.3. Interruptible Supply Contract
with Early Notification

One shortcoming of the “callable forward” is that a cus-
tomer with high interruption cost, e.g., an industrial cus-
tomer, may not provide a viable strike price for the contract.
On the other hand, including another earlier date, perhaps
even a few months before delivery will provide incentive
for such firms to plan shutdowns in a period of forecasted
scarcity. This could be the case when there is a weak rainy
season for a hydrodominated grid or planned shutdowns
of some major electricity plants. We will call this contract
an interruptible service contract with early notification (see
Strauss and Oren 1993 and Oren 1999).

To understand the efficiency properties of such a contract
let us assume that a customer has a shortage cost $V; per
MWh if curtailed close to delivery, but a lower shortage
cost of $V; per MWh if notified of curtailment at an ear-
lier time, T,. Efficiency dictates that this customer should
be curtailed at time 7, only if the spot price is above its
reservation price of V., (and if curtailment has not occurred
earlier). We can also evaluate the efficient decision at T,
by looking at the two alternatives available at 7|. We can
either notify the customer of curtailment at 7,, essentially
killing the time-T, option of curtailing just before delivery,
or wait until 7, and retain the option. In this case, the effi-
cient decision is to notify that curtailment will occur at T,
only if the forward price at 7, is greater than the shortage
cost at T, plus the option value of time-T7, curtailment.

This efficient outcome can be replicated by a double call
option with two strike prices specified by the customer,
k. and kr,, for times 7, and T, respectively. Oren (1999)
shows that the strike prices specified by a rational customer
will be its reservation prices (from shortage costs) and the
instrument will be able to replicate an efficient outcome
that would reflect decisions taken by a benevolent central
planner with perfect information about shortage costs. The
discount that the customer gets on the forward price is the
price of this double call option at the time of contracting,
continuously compounded to the date of delivery. In order
to price the double call, we begin by analyzing its payoff
at time 7. If the double call is exercised at 7| the sup-
plier is free to enter into a new forward contract, which
yields a payoff of fr, —k;, at T, (ky, is the maximum for-
ward price the current customer would contract for at T
for delivery at T,). Exercising the option at 7|, however,
means that the time-7, option embedded in it is killed.
Therefore, the optimal exercise policy is to exercise only if
fr, >k, where e 7T (k — k) = Cy, (ky, |k), the value of
the time-7, curtailment option. The forward price & is the
effective strike price at which the double call is exercised
at T,. If the double call is not exercised at 7|, its value
after that time is equal to that of a simple call option with
strike price k;, expiring at 7,. This call will be exercised
only if the spot price at 7, is greater than the strike price.
Therefore, the double call is able to replicate the efficient
decisions mentioned above.

Figure 2. Analyzing the payoff of the double call

option at time 7.

4 Payoffat T

Payoff of special call
option with strike
price k

time-T>call
option value
A

Value of time-T>
call option at _
forward price k

Payoff of compound
put-on-call option

>
»

kn '\gfrif::icﬁ s Forward Price at T

We now proceed by breaking up the payoff of the double
call at 7, into payoffs of three simpler derivatives—a spe-
cial call option expiring at T, with strike price k (actual
payoff does not occur until 7, and the slope of the effec-
tive payoff at 7, is not equal to 1), plus the value of the
time-7,, call option given that the forward price is k, less
the price of a compound put option (with the time-7, call
option as underlying) with strike price e ™" (k — k).
The price of the call option at time ¢ (before time 7)) can
therefore be written as (see Figure 2)

Clky, k) f) = C (kIf)+e T Cy (ke fr, =)
— P (e T (R —kp)I£,)s (1)

where the first term is the value of a special call option
expiring at T, with strike price k. The second term is
the discounted sure value of the time-7, call option at a
time-7, forward price of k. The third term is the price of
a compound put-on-call option that allows the holder to
sell, at time 7, the time-7, call option at a strike price of

e T (k —ky).

2. GEOMETRIC BROWNIAN MOTION
AND AFFINE DIFFUSION

The proliferation of financial derivatives has led to many
developments in techniques for modeling these instruments
(see Cox and Rubinstein 1985, Hull 2000). The litera-
ture dealing specifically with financial modeling in elec-
tricity markets, however, is more recent (see Cater 1995,
Kaminsky 1997, Pilipovic 1998, Oren 1999, and Deng
1999). Oren uses geometric Brownian motion GBM to
describe the electricity spot price process and derives prices
of the three contracts under this canonical form. This sec-
tion first revisits the pricing problem under GBM and pro-
vides a simpler formula for the double call option than the
one derived in Oren. As noted above, in this model the
spot commodity is viewed as a tradable security, which
is clearly inappropriate for electricity. Also, the volatility
of future spot prices increases without bound. It has been
observed, however, that electricity prices exhibit mean
reversion due to production characteristics and seasonal
effects (see Kaminsky 1997). The GBM assumption will
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therefore produce systematically erroneous results when
used for pricing electricity contracts and derivatives. How-
ever, as we will see below, these results are useful in the
sense that they can be easily extended to the more real-
istic mean-reverting price process. For the mean-reverting
case we then consider a model where the logarithm of the
spot price follows a mean-reverting process of the Ornstein-
Uhlenbeck type also known as an affine diffusion (AD). In
this case, the spot price, or equivalently its logarithm, is not
an asset in the usual sense but is viewed as an underlying
state variable upon which contingent claims can be written.

We make the following assumptions throughout our
analysis:

ASSUMPTION 1. The interest rate, r, is a constant.
ASSUMPTION 2. The volatility parameter, o, is a constant.

Also, Let E¢[-|F,] denote the expectation under the
measure Q conditional on information at time ¢, F,.

2.1. Geometric Brownian Motion

Under geometric Brownian motion the spot price process
follows:

a5, =u,dt+odB,, 2)
S

where S, is the spot price, 1, and ¢ are drift and volatility
parameters, respectively, and B, is standard Brownian
motion. It can be shown by an application of Girsanov’s
theorem (see Oksendal 1995) that under the equivalent mar-
tingale measure or the risk-neutral measure (see Harrison
and Kreps 1979), the process will follow:

ﬁ=ra!t+cmrB,Q, 3)
S,

where B,Q is Brownian motion under the risk-neutral mea-
sure and r is the interest rate. We can write down the pro-
cess for In S, under the equivalent martingale measure by
applying It&’s lemma to (3) (see Oksendal 1995). Observe
that given S,, In S; will be normally distributed.

I,
dIn§, = (r—itr“)dt—i—a'dB?. 4

The above implies that lnss—f ~ N((r = 30T — 1),
o*(T — 1)) and thus the spot price is lognormal at time T.
This is the usual Brownian motion model used to model
stock prices.

2.1.1. Forward Prices. Consider a forward contract for
delivery at time T,. The forward price of an underlying at
the time of contracting, ¢, is defined as the price paid at
delivery that sets the price of a derivative with the payoff
Sz, — f, to zero. As the values of all derivative securities
are martingales (after discounting) under the risk-neutral
measure (see Harrison and Kreps 1979, Duffie 1996), the
forward price can be expressed as

1 =EQ[ST2IF,]=EQ[exp{1nST:}|F,]. (5)
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Because the forward price is an expectation of a time-
T, random variable, it will be a martingale under the risk-
neutral measure before time 7,. We can write down the
process followed by f, using Itd’s lemma on (3):

df, = of, dB?
Sofn =1 eXP{”%UZ(Tz_’)‘FU(B%—BIQ)}» (6)

Forward prices are also lognormal under this model and
will converge to the spot price at the time of expiration, 7,.

2.1.2. Option Pricing. As described before, a call option
expiring at time 7, on a forward contract for delivery at the
same time is a security with a payoff of (f. —k,)*, where
fr, is the price of the underlying at the time of éxpiration,
kT; is the strike price and the notation (x)* = max(x, 0).
Using the valuation principle described above, the call
option can be valued as

Colkrlf) = ECLe™ 70 (fr, — kp,)TIF]. ™

Evaluating the above expectation using (6) for the for-
ward price at T,, one can derive a formula for the option
price (see Figure 3 for a plot of the time-T, option prices
at various time points before expiration). This formula is
also known as Black’s formula (see Black 1976).

PROPOSITION 1. The option value in a “callable forward
with early notification” after time T, is the price of a simple
call option on the forward. The discount on the forward
price in a “callable forward” is '™ times the option price
given by

Cilkp|f,) =€ [f,N(d,) —kp,N(d,)], (8)
where f, is the forward price at time t, and ky, is the strike
price of the option,
_In(f,/k;)+30°(GBM.1.T;)
' o(GBM., t,T,) '
dy,=d, —o(GBM, 1, T,),

t,=T,—tand 0*(GBM, t,,t,) = ad* . (t,—t,) for two time
points t,, t, and t, > t,. The premium on the forward price

Figure 3. Value of the time-7, call option under GBM

(ty=T,-T).

w S ul
[a] o (]

Call Option Value -- §$
[ )
o =]

20 40 60 80 100
Forward Price -- $
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Figure 4. Optimal exercise policy for the double call
option.
60
ur
I' 50 fn:lOO
8 40 Exercise at t=T,
-
~
~ 30
[
_Aj 20 Exercise att=T) )
s fri=25
Y10
& 0 fra |

0 10 20 30 40 50 60
T, Strike Price --$

in a “putable forward” is e’ times the price of a put
option given by

Pz(krz If) =e [ f, N(_dl)_szN(_dZ)]' )

ProoF. See Appendix or Black (1976) for an alternative
derivation.

2.1.3. The Callable Forward with Early Notification.
In the previous section we show that the holder of a double
call option will exercise it at time T, only if the forward
price is above the effective strike price k (see §1.3). If early
exercise is not optimal, the holder will exercise the option
at 7, only if the spot price is above the T, strike price.
Figure 4 shows an example of this optimal exercise policy
when the forward price at T, is $50 and the spot price at
T, is $40. The double call option will be exercised at T
if the 7, strike price is below the indifference curve corre-
sponding to fr, = $50. Additionally, if the T strike price
is above this curve, but the 7, strike price is below the T,
spot price of $40 (shaded area in the plot), the option will
be exercised at 7.

To price the double call option before time 7, we had
broken down the option payoff at 7, into three simpler
derivatives (see Equation (1)). We can use the results
in Proposition 1 to price the first two terms. The third
term is a compound put-on-call option with a payoff of
[e" @ T (k = kg ) — Cy, (ky, | )] at time T,. We use
results in Geske (1979) adjusted for the fact that the under-
lying is an option on a forward contract to price this term.
This leads to Proposition 2 (see Figure 5 for a plot of the
values of the double call option under GBM at various
time-points).

PROPOSITION 2. The discount on the forward price is e™
times the price of the double call option:

ks, kr | £)
=e " f,N(dy)— /;N(dd)]
+e kN () —kn, N(d)] = P (K [f), (10)

Figure 5. Value of the double call option under GBM

(=T,-T).

60 f
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where f, is the forward price at time t.t) =T, —1t,t, =
T,—t,ty=1,—T, and

J_ In(k/k7,)+30*(GBM, T,, T,)
b o(GBM, T,,T,) '
d»=d,—o(GBM.,T,,T,);
_In(f,/k)+50%(GBM, 1, T))
T o(GBM, 1, T))
d,=dy,—a(GBM,1,T));

s

PIC,OT, (k, lfr) = e~rrszQN2(_a2’ by, — [ —

- e""zf,Nz(—a,, by =)~
+ e Mk N(—a,),

where k, = e (k — ky,), Ny(a, b; p) is the bivariate
normal distribution with correlation p, and

B In(f,/k) + $0*(GBM, 1, T,)

a= o(GBM, 1, T,) ’
_In(f,/kr,) +30°(GBM, 1. T) d o [T,
1= o(GBM, 1, T,) PENL

ay=a,—o(GBM,t,T,) and b,=b —0o(GBM,t,T,).

ProOOF. See Appendix.

2.2. Affine Diffusion (Mean Reverting)

We now assume that the spot price follows the stochastic

process:

das

—S—'=K(,u—lnS,)+adB,, (1)
!

where k > 0 is the magnitude of the speed of adjustment

to the long-run mean log price, u, and B, is standard

Brownian motion. For tractability, we make the assump-

tion that g is constant. Ideally, one could model season-

ality through this parameter by using a seasonally adjusted
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long-run mean. Using similar steps as before one can show
that the process followed by the log spot price under the
risk-neutral measure is

dX, =x(0—X,)dt + o dB?, (12)

where X; =1In S, and 6 is the risk-adjusted long-run mean.

Incorporating mean reversion in the spot price process
results in time-dependent volatility of the forward price.
Spot and forward prices remain lognormal in this case with
different volatility than the GBM case (see the proof of
Proposition 3 in the appendix for details). As the forward
price will converge in value and variance to the spot price at
the delivery date, pricing formulae under an affine diffusion
will have the same form as the GBM case with a different
variance term. This leads to Proposition 3.

PRrOPOSITION 3. Option prices, and hence discounts in the
forward contracts under an affine diffusion, will have the
same form as the GBM case with the variance term
replaced by

2
o* (MR, ¢, t,) = Z—K[l —exp{—2k(r, —1,)}]. (13)

Proor. See Appendix.

Figure 6 shows the value of the time-7, call option under
a mean-reverting spot price. Because information about
mean reversion is included in the forward price, the only
noticeable difference between option prices under GBM
and the affine diffusion is the lack of time value in the affine
diffusion case for longer time periods before expiration,
i.e., the value converges rapidly to a steady state. Figure 7
is a plot showing the value of the double call option for
various time points before the early exercise date.

3. AFFINE JUMP-DIFFUSION

This section extends the models in the previous section to
include jump behavior in the price process. Nonstorability
of electricity causes steep changes in prices with changing
supply and demand conditions, which can be modeled as
jumps in the price process. We use a class of processes

Figure 6.  Value of the time-7, call option under an

affine diffusion (1, =T, —T,).
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Figure 7. Value of the double call option under an

affine diffusion (1; =T, — T)).
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called affine jump-diffusions (AJDs), which incorporate
many characteristics useful for modeling electricity spot
prices (see the Appendix for a brief introduction to AJDs).
Various aspects of the price process such as mean rever-
sion, stochastic volatility, and jumps can be modeled using
this class of processes. An advantage in calculating option
prices using AJDs is that the Fourier transform of the dis-
tribution of the underlying is known—for some cases up
to the solution of ODEs (see Duffie et al. 1998). This pro-
vides almost closed-form option pricing formulae in terms
of the inverse of the transforms rather than in the form of
infinite sums as have been derived in the past (see Merton
1976, Bates 1991, and Hilliard and Reis 1998). Because our
interest is in the pricing of contingent claims on the under-
lying state process, we work directly under an equivalent
martingale measure. Under this measure, we assume that
the logarithm of the spot price will follow the stochastic
process:

dX,=k(0—X,)dt+0odB°+> dZ.. (14)

i=1

where X, =1InS,; &, 6, and o are parameters; B,Q is standard
Brownian motion under the equivalent martingale mea-
sure; @, and Z's are independent compound Poisson pro-
cesses under Q, with arrival intensities, A; and exponential
jump-sizes with transforms, ¢,(c, 1) = T_lﬁ for i=1,2
(¢,(c, t) = E[e”*], where x is the jump size and ¢ is a
complex parameter). We use two Poisson processes with
positive and negative expected jump values and different
intensities to model unexpected increase and decrease in
prices, respectively. The choice of the number of jumps
to be included in the model will mainly be decided by
the need for parsimony in the number of parameters to be
estimated.

3.1. Transforms and Forward Prices

Define the transform of Xr.:

Y(v,1, Ty, X,) = E%[e "™ exp{v X, }|F,]. (15)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



842 / KAMAT AND OREN

Except for the discounting, this is the characteristic func-
tion of the distribution of X;,. As V¥ is the expected dis-
counted payoff of a single random variable, We™ "' will
be a martingale under Q (some regularity conditions are
required; see Duffie et al. 1998). Following Duffie et al. it
is conjectured that the transform will have an exponential
affine form (see the Appendix for some justification of this
functional form):

V(v 1,75, X,)
=expla’((T, — 1), v) + B'((T, — 1), v) X,]. (16)

Because special cases of this process are Gaussian, the
exponential affine form is a natural choice. It can be shown,
by applying It6’s lemma, that the transform takes this form
for the one time-point case, where a’ and 3’ solve the fol-
lowing ODEs (see the Appendix for a derivation. Duffie
et al. 1998 derive these ODEs for a multifactor model):

iB’(t,v)-}—B(B'(t,v),t) =0 B(0,v)=v,
a (17)
Ea’(t, v)+AB(,v),1)=0 o'(0,v) =0,

where for complex c,
B(c, t) = —ke,

1
A(c,t) =kbc+ 50’62 - r—+—Z/\j(¢j(c, t)—1).
We can integrate the differential equations to get
ﬁ/(t, U) — Ve—x@r,

2.,2
& (1,0) = Ov(1 — ey 4 X1 — g2
dx

A —1

—rt-Z—’ln[—”’—]. (18)
;K j

The forward price is given by (see Equation (5) for the

definition)

fi=e "W (1,1, T,, X,)

6 o’ 2
=expl0(1 —e™" '2)+Z;(1 —e ") —rt,

/\' ,U.'—l Kty
_Z_;_(j_ln[———_u-ei"’Z—l:'_i_e 9~X,’, (19)
J J

where 1, =T, — 1.

We take parameter values from Deng (1999) (see
Table Al in the Appendix) for illustrative purposes.
Figure 8 shows forward curves under contango (spot
price = $24.63) and backwardation (spot price = $120.00).
The long-term mean spot price is $30.00.

The forward price will converge to a higher quantity than
the long-term mean, depending on the parameters for the
mean-reverting and jump parts of the model. Observe that
the increased volatility from the jumps contributes a signif-

Figure 8.  Forward curves under contango and backwar-

dation (affine jump-diffusion).
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icant amount in forward prices and that they converge well
above the long-term mean.

3.2. Option Pricing

We calculate option prices under this model by expressing
the option price in terms of simpler securities which are
functionals of the transform, ¥, and use inversion formulae
to derive almost closed-form solutions of the call option
price. Let G, ,(y) denote the price of a security that pays
e“*7 at time T in the event b. X; < y. One can express the
call option price expiring at 7, in terms of these simpler
securities as follows:

C,(k72|f,) =G, (- lnsz) - leGoﬁl (=In krz)- (20)

This leads to Proposition 4 (see Figure 9 for the value
of the simple call option under an affine jump diffusion).

PRrROPOSITION 4. The option value in a “callable forward
with early notification” after time T, is the price of a simple
call option on the forward. The discount to the forward
price in a “callable forward” is e’ times the option price

Figure 9.  Value of time-7, call option under an affine

jump-diffusion.
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given by
Clkz,1f.)
=e"’2f,(%—% Owlm[«v(l—iv,t,L?,X,)e"ﬁ"”‘"krz]dv)
ey, (% B %/Ooc Im[¥(—iv,1, T;, X, )e 2 tvinkry | dv)’

21

where f, is the forward price at the time of contracting, ki,
is the strike price, and WV is the transform of the log spo}
price distribution at T,.

The premium on the forward price in a “putable for-
ward” is e’ times the price of a simple put option given by

Plky,|fD

o0 ; riy—ivink
—e Tk, 11 r=Im[W(iv,1,7,.X,)e TZ]dU
N2 7l v

2wy vf,

(22)

ProOF. See Appendix.

3.3. Callable Forward with Early Notification

As before, at time 7, we can determine a unique forward
price, k, as the effective forward price at which the double
call option will be exercised at T, (see the discussion in
§1.3). The optimal exercise policy will therefore remain the
same. We can now proceed in a similar manner and price
the double call option before time 7, by pricing the three
simpler derivatives in (1). In the previous section we had
derived the process followed by the forward price and we
could price the intermediate call option, C’, directly using
this process. Here, we begin by determining the transform
of the forward price at T,.
We can write this as

D(y,t, T, X)) = EQ[e”‘T"” exp{yYr, }1F,], (23)

where Y, is log forward price at 7| (to be expressed in
terms of X,). Using the formula for f; in Equation (19),
we have

yYYr, =yInfy =yr(T,—T))+ye' (T, - T)), 1)
+yB (T, = T), DXy,
O(y,1,T), X,) = E%[e7" " Vexp{yr(T, - T))
+ya' (T, —T\), 1)
+yB (I, -T), DX, }|F].  (24)
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The forward price transform at 7 can now be written as
D(y.t, 7, X,)
=exp[yr(T,=T)+y'(T,—T)), 1)
+a' (T, -0, yB (T, = T\), 1))
+BWT =0, yB((T,=T). X,].  (25)

This option can now be priced using Proposition 4. For the
compound put option in the double call, we need to work
with a joint transform of the forward price at 7, and T5. To
see this, we write the put option as the expected value of
the discounted payoft under Q:

P = E%e " (k= Cp (kp | f1,)) T |F]
= E%[e™" Ky Moyt | Fr
—EC[e M ECle " fr, Mgy, tni,
Miser i [F1]
+ EQ[‘**”'EQ[‘—;”’ZICT2 Tin £, 310 k7, |Fr.]
sttt |- (26)

where we use following notation for the indicator func-
tion: f,=1if x >y, =00.w. Now, k| > Cp, (sz|le) is
equivalent to In f7, <Ink (see Figure 2). Using the law of
iterated expectations we can write the above as

=k|EQ[€’~”l TTlnf,| glnLIFx]
_ EQ[e—rrz exp{ln frl} TTlnle <ini T Fry2inkr, ‘Fr]
+ kTZEQ[ek”z TTlnle slnl;ﬂlnfr:zlnkyz |F:]~ (27)

To evaluate these expectations we define the joint transform
of the log forward price at T, and 7,:

Fr]

D' (u,v,t, Ty, 75, X,)
=EC[e” " Vexplu Y, +v Y, }|F]. (28)

where Yy, =In f; and Yy, =In fr, = X;,, because the for-
ward price will converge to the spot price at delivery. We
conjecture the same form as in the single time-point case
(this holds for the first two models where the distribution
is bivariate normal):

Q' (u,v, 8, 1), T,, X,)=expla(t,,u,v) +B(t, u,v)X,]. (29)

Before 7, this can be seen as the discounted payoff of a
random variable and therefore, e ® will be a martingale
under Q. Applying Itd’s lemma (see Protter 1990 for the
complex version) we see that, as before, @ and 8 have to
follow (17). To determine initial conditions consider @ :

P = ECle" T exp{uYy +vY7 }|Fy ]
=exp{uY; }EC[e" " exp{vY, }|Fy ]

(as Y7, is known at time T)). (30
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One can recognize the second term as the transform of
the forward price for the one time-point case and substitute
from (16). Thus, one can write ®;. as

' (u, v, T, T,. Ty, Xy,)
= exp{(urt; + ua'(t;, 1)+ a' (5, v))
+(uf (15, )+ B'(15, v) X7, }- (31)

One can now solve for @, by solving (17) for the boundary
conditions:

alty, u, v)y=urt; +ua'(ty, 1)+ o' (15, v),
Bty u, v)=up' (13, 1) + B'(£3, v).

We can use the joint transform, @', to evaluate the expec-
tations in (27) by expressing the compound option value as

(32)

P (ky|f) =k Gyl (Ink) — e~ £T1,(1, Ty, T,)
ek N1, T), T), (33)

where k, is the strike price for the compound put-on-call,
G" 7 is as defined in §3.2, and I, and I1, are defined as

EC[e 2 exp{lInfy, } Minsy, <tok Mingy, 2inky, |£:]
Eo[eexp{iny ]IF) ’

EQ[e"'Z ﬂl“.le glnkﬂ]nsz Zlnsz IFI]
EC(e 7 F]

HI(I’TI’TZ)z

IL(,T,,Ty)=
(34)

It can be easily confirmed that II, and II, € [0, 1], and
thus they can be determined by calculating their character-
istic functions and inverting according to the method devel-
oped in Shepard (1991) (see Bakshi and Madan 1998 for
an application to option pricing). To evaluate 11, and II,
observe that if we treat these as distribution functions, we
can express their characteristic functions as

®'(ip, 1 +ip,t,T,,Ty, X,)

0,1,t, 7.1, X,)
' (ip, i, t,T,. T, X,)
®(0,0,¢t,7,,T,. X,)

0,(d, 0.1, 7,15, X,)=
(35)

0,(¢,¢.0.T,, 15, X;) =
This leads to Proposition 5 (see Figure 10 for a plot of the
double call option under an affine jump diffusion).

PROPOSITION 5. The discount in the “callable forward with
early notification” is equal to et times the price of the
double call option at time t (before T)):

Cilke,. kr,|f) = G} _,(=Ink) =k, G}, (~Ink)
+e "G, _ (= Inky,|fr, =)
— kg, Go_y (= Inky, |f7, = k)
~(k, Gy (Ink) — e ™ f 11, (2, Ty, Ty)
+e"’3kTZH2(t, T,.T;)), (36)

Figure 10.  Value of the double call option under an

affine jump-diffusion.
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1 1 o Im[d(1— ’[’T’X ri +ivink
=e"f, __*[ [d—ivt.Ty, X )e ]dv ,
2o o,
GE).—1(_1“I_<)
_ —rh(l | mIm[qj(——i’U’[’Tl,Xr)eHﬁ—iulni] )
¢ 2T dv,
2 mJ0 v

Gy _((—Inkq|f7, =k)

=e "2k l_l mIm[\P(]_iU,t.TstI)ertf"HUl"sz]dv
2 mh o, ’

G()v—l(_lnkrzlfr]=/_()
—rr(l 1 e Im[W(—iv,2,T,, X,)e ke | )
=e 37 dv |,
2 750

v
G(r)’El(lnl_c)
:eArr’ (l _ —l-/wlm[q)(_lv’ t’ Tl’Xr)enlivlnl_(]dU)s
2w v
I, (2,7,.T,)
1 1 ;=Re[®,(0,¢,1,T,,T,. Y, Je ok
_ ‘__/ (0,(0,¢ 1242 Tl)e ]dd)
2 wlh ¢
1 1/1 1 ;~Re[0,(,0,t,T,,T,, Yy )e ¢k
(o1 ___/' [ l(d) .1 2 T,) ]d(,b
4 2\2 7/ ip
1/1 1 ;~Re[®,(0,¢,1,T,,T,, Yy )e 4n
+_(___/ [6( ! 7, ]dcp)
2\2 @l i@

e

Re[® —o.t.T,.T,, Y, .Y e—idsln/Iv+np1nkr2
_ [0)(d.—,1. T, (;, 7 Y,) ]d¢d¢)>:|’
¢

1 /w/w Re[®l(¢)’¢”t’T1,Tz,YT,’YTz)e_i¢lnE7i‘p]nk72]
272 0o Jo
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and
Hz(t,TpTz)
I 1 (=Re[0,(0,$,1,T,, Ty, Yy, )e~*"
_ ——-f [0,(0,¢ 1072 Tl) ]dd)
2 wh ¢
(L (L RO OLT R
4 2\2 wh i¢
1 ( 1 1 > Re[®2(0. ‘Pv [s Tl ° T2’ YTv)e_i‘bl"kH]
—_ —_— . - d¢
2\2 7wl e
| fw/' m( RC[@;(¢7, .1, 1,,T,, YT| s YTz)e—iaﬁInl_(—iwlnsz]
272 Jo Jo b
. —i¢Ink+iglnkr,
_Re[02(¢,—<PJ~TuT;:TwYTz)e e T_]d¢d¢>)]

where W is as defined in (16), ® as defined in (25), and
O, and O, as defined in (35).

Proor. See Appendix.

As seen in the mean-reverting case, the double call
option does not have much time value for long periods
before expiration, i.e., its value approaches a steady state
with respect to time to expiration.

4. CONCLUDING REMARKS
AND FUTURE RESEARCH

In a competitive electricity market, financial instruments
and derivatives based on underlying commodity contracts
will play an important role as means for risk manage-
ment. Such instruments can also emulate traditional con-
tracts between customers, utilities, and independent power
producers aimed at improving the efficiency of resource
utilization. The availability of contracts that enable loads
to properly hedge their curtailment risk and pricing of such
contracts under realistic price models will facilitate load
participation in the mitigation of energy and reserve short-
ages and provide demand response that is needed for a
workable competitive market. The California Independent
System Operator (CAISO) is currently exploring ways to
enlist “Load as a Resource” for creating alternatives to gen-
eration reserves in its ancillary service markets.

This paper studies the pricing problem of three
efficiency-motivated instruments in the electric power
industry. Using increasingly complex price processes, the
instruments are priced using forward contracts and option-
like derivatives. The contract prices are first calculated
under the canonical GBM model. This is then extended to a
mean-reverting spot price diffusion by showing that option
prices have the same form under this model with a dif-
ferent variance term. We then introduce jumps in the spot
price process and use transform analysis to arrive at almost
closed-form formulae under this model.

We observe that mean reversion causes option prices to
reach a steady-state value with respect to time to expiration,
unlike the GBM case for which option prices approach a
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constant growth rate. This convergence is because under the
mean-reversion assumption, the distribution of the under-
lying at time of expiration converges to a steady-state distri-
bution. We also observe that volatility from jump behavior
can contribute significantly to forward and option prices.

Further research is needed to extend the present model to
include another factor, such as regime-switching behavior
or a factor that models stochastic volatility in spot prices.
An immediate problem in extending the transform anal-
ysis technique to these models is that option prices depend
on two random variables. While this does not pose a
problem for the “callable forward” and the *“putable for-
ward” (see Deng 1999 for models with multifactor spec-
ifications), pricing the ‘“‘callable forward with early noti-
fication” becomes analytically intractable. In this case,
determining the optimal exercise policy will require that
both electricity forward price and the volatility level (or
regime) be observed at 7). This implies that there will not
be a unique electricity price at which the later call option
price is equal to the payoff from killing it at 7. There will
instead be a family {(forward price, volatility)} or {(for-
ward price, regime)} as there will be one such price for
each level of volatility or regime. Therefore, the problem of
pricing the double call option before T, cannot be broken
into a simple call option and a compound put-on-call option
as before. One would need to directly evaluate the expec-
tation using Monte Carlo simulation or numerically solve
the partial differential equation associated with the double
call option.

Another extension that can be pursued is to price con-
tracts with multiple exercise points. A triple call option can
be priced using Monte Carlo simulation where the almost
closed-form solution to the double call provided in this
study is used to calculate the payoff at the first strike point.

APPENDIX

List of parameters and variables

a; = Placeholder for parameters of normal distribution
in call option formulae;
b, = Placeholder for parameters of normal distribution

in call option formulae;

B, = Standard Brownian motion;

¢ = Complex parameters in transform;

d, = Placeholder for parameters of normal distribution
in call option formulae;

f, = Forward price at time  for delivery at time T);

F, = Information set at time ¢;

k, = Strike price of compound put option;

k, = Strike price of exotic option at exercise time t;

k = Effective strike price of early exercise time;

Q = Equivalent martingale measure;

r = Interest rate;

S, = Spot price at time t;

t, = Period of time equal to 7} —1;
t, = Period of time equal to 7, —1;
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t; = Period of time equal to 7, — 7;

= Time of contracting;

= Early exercise time;

= Expiration time/Delivery date;

= Complex parameters in transform;

= Complex parameters in transform;

= Shortage cost at time ¢;

= Natural logarithm of spot price;

= Compound Poisson process i under measure Q;
= Complex parameters in transform,

= Complex parameters in transform;

= Complex parameters in transform;

= Rate of mean reversion;

= Arrival intensity of Poisson process;

= Long-run mean price for X;

= Mean size of jumps in Poisson process i;
= Dirift parameter of price process;

= Risk-adjusted long run mean price for X;
= Volatility parameter of price process.

NEeE®F NSNS

>R 6 R SN X

-~

SEETE

§

We use t; = T, — T, = 0.5 years in all our examples.

PrOOF OF PrOPOSITION 1. We need to evaluate the expres-

sion

C (k| f,) = E?[e7" 7" (fr, — kg )T|F,]. (A1)
This can be expressed as

C,(kr,|1,)

20 1 +
e (rem|den -] k)

e R eI
.——————ex T ————
2a0HT, — 1) P 2031, — 1) Y
o 1 N
:/ e"(rz"’f,exp[—ia“(n—t)+y}
o

Ty o ar )
.—————ex ——
270X (T, —t) P 204(T,—1) Y

* 1
_ / ek,
.

P 2moX (T, — 1)

-ex (—L—) dy (A2)
P\" 2021, =1y )"

Table Al. Parameter values for

examples in the paper
(from Deng 1999).

Parameter Value

1.70
3.40
0.74
6.08
0.19
7.00
—0.11

ErE>Q X

where y* =1In(ky, /f,) + 307(T, — t) using the expression
for the forward price in (5). To write this expression in
terms of the standard normal distribution, we substitute

Yy =0 (T,—1)

o o(h-) and dy=d,—o(T,=1). (A3)

This leads to Black’s formula in (8). The put option price
can be easily calculated using put-call parity to get (9):

Pk, |f) = Cilkp | f)) + e ky, —ef,. O (Ad)

PROOF OF PROPOSITION 2. We need to show that the option
price formulae for the simpler derivatives are as shown. We
have

Colky, k| f) = Clp (kIf) + e T0C, (ky, | fr, = k)
— P (€ (k= Ky )| £), (AS)

where the terms are as defined in §1.3. The first term can
be written as

C, 1, (kIf) = E°[e™ ™" (fr, = k)*|F]. (A6)

Factoring out e~ leaves us with the price of a simple call
option with strike k expiring at T,, which can be priced
using the formula in Proposition 1 adjusted for the dif-
ferent strike price and expiration date. The second term is a
simple call option price, which can be priced directly from
Proposition 1 by substituting & for the forward price at T,.
The third term can be written as

Prc“ar,(e_m(l_‘ - le)|F,)
= E°le™" (k, = Cp (kr, | f7,))"|F,]
= EQ[‘?_”'kl TTkxzcr, (kryIFr) |F/]
- EQ[e_N'l':Q[e_”}fT2 ﬂlnf72>lnl(12 |FT,]
“Mezer, Gyt 7]
+EQ[9_”' EQ[eqt“sz Thnf,2>1nk72 |FT1]
: ﬂk1>CTI (kry f7)) |Fr]’ (A7)

where k, = e~ (k —kz,), and we have used the def-
inition of a simple call option price. It can be noted
that k, = Cy,(kr,|f7,) is equivalent to In f; < Ink. Also,
because given f, the log futures price at time 7, is a
N(lnf,— %o-ztl, o’t,) random variable, all the expectations
in the above formula can be expressed in terms of normal
or bivariate normal distributions. Consider the second term
(after expanding using the law of iterated expectations):

EQ[e_”'e_”—‘fTIN(dI) ﬂk,;c,l (krylfry) |Fr]

Ink ~ 1
=efrt2./ N(dl)_“——‘zﬂ-o- - e‘
oo Y, 1
1 x—lnf,+%ozt|)
. - 2 , A
e"p[ o 2 fos -
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where we have used the fact that the log futures price is
normally distributed at 7| and d, is d, evaluated with the
forward price at t =T,.

Making a change of variables,

x—Inf,+1a%t
_xohfitson (A9)
NG
we get
=enf, [ N@De() dy, (A10)

where @(y) is the standard normal density function and
In(f,/k) + Lot
a, = ——.
! o
Now,
d = In(f7, /kr,)+ %Uzl}
1= oJh ;

substituting for In f7,, we have

(Al1)

(Al12)

i oJiy+Infr, +30%, —Ink;, + 107,
b o5
b —
=P (A13)
V1i—p?

n(f, /ky, )+ L0
where b, = —(f'/—:\/_{z— and p=— /%

Therefore the second term:

=e " fiNy(—a,, b; p), (A14)

where N,(a, b; p) is the bivariate Normal distribution with
correlation p. One can do similar substitutions for the other
terms to get

co —ri h
Pr,Tl (kIIfr) =e .szNZ(_az, b,; _\/;)
2
—rl tl
—¢ ‘erz(‘al,b};—\/;)
2

+e "k N(—a,), (ALS5)
where a, and b, are as above and

a,=a,—0/t, and b,=b,—0. /1. O

PrOOF OF PROPOSITION 3. We begin with the price process
in (12) for the log spot price under the risk-neutral measure:

dX,=«x(0—X,)dt+0o dB?, (A16)

where X, =InS,.

We will show that given X,, X, will be Gaussian, and
its mean and variance are given by
E9X7|F] =0+ (X, —0)exp{—k(T =0} =pn/, (A7)

t
-

Var?[X,|F,] = ‘2’—[1 —exp{=2k(T—1)}] = 9.  (AI8)

K

KAMAT AND OREN / 847

We can then use the GBM formulae in this case with the
variance term substituted. We integrate the stochastic dif-

ferential equation for X using ¢** as an integrating factor
(see Oksendal 1995):

j;Te"‘ dX, = /tTe'“KHdSvfITe’“KXS ds+/rTe’“0stQ.
(A19)

We can eliminate the terms containing X by applying It0’s
lemma to Y, = e*X,. The remaining terms can be easily
integrated to arrive at the spot price at T:

T
X =0+ (X, —0)exp{—k(T —t)} —i—/ age™ =9 dBe.
t
(A20)

Because the It6 integral is a Gaussian random variable,
X7 will be Gaussian with mean (the It integral has zero
mean):

E°[X7|F]=0+(X,~0)exp{—k(T— 1)} =p.  (A21)

Also, using Itd isometry (see Oksendal),

T 2
Varl[X;|F,] =E[< f oe =) dB?) ]
t

T
= f o2e~ (T g, (A22)
t

which can be integrated to give

Var?[X,|F,] = ;—;[1 —exp{—2k(T—1)}]=97. (A23)

i

As before, the log forward price will be normal under the
risk-neutral measure (spot price will be lognormal).

fo = E°[S;|F,] = E°[exp{ln S7}|F,]. (A24)

To arrive at an explicit formula, define the (discounted)
characteristic of X, as follows:

®D(u,t,T,X;) =E[e "7 Dexp{uX,}]. (A25)

One can use the familiar exponential affine for the charac-
teristic function of X; ~ N(u, v?) to get

®(u,t,T,X;) :exp{ ~r(T—t)+up” + %uzﬂzT } (A26)
The forward price is given by ¢’ (T —t)®(1,¢, T, X;):
[ =exp{6+ (X, — 0)}exp{—«(T —1)}

+g;[l —exp{—2«(T —1)}]. (A27)
The above implies that forward term structure does not con-
verge to the long-term mean of the spot price, but instead

to a larger quantity depending on the volatility and rate of
mean reversion.
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We can use Itd’s lemma to arrive at the process followed
by f (this will have zero drift).

df, = exp(~k(T — 1)}af dB

1
dinf, = —50'2 exp{—2«(T —1)} dt

+ exp{—«(T —t)}o dB2, (A28)
1 o?
o Infr=Inf - EZ—K[I —exp{—2x(T —1)}]
T
+ f ge =) 42, (A29)
3

Forward prices will also be lognormal under this model
with different variance than in the GBM case. Therefore,
the same formulae will apply with a different variance
term. [

Affine Jump-Diffusions

In this section of the Appendix we describe some properties
of affine jump-diffusion (AJD) processes that are used in
§3. We restrict ourselves to single-factor AIDs (the general
case is considered in Duffie et al. 1998). Consider a more
general case of the AJD described in (14):

2
dX, = (kg+x,X,)dt+0dB2+) " dZl,

i=]

(A30)

where X, = InS,, «,, k, and o are parameters, B2 is
standard Brownian motion under the equivalent martingale
measure, Q, and the Z's are independent compound Poisson
processes under Q, with arrival intensities, A;, for i =1, 2.
For a detailed description of Poisson processes see Ross
(1996). A Poisson process is defined as a counting process
possessing the following properties:

1. N(0)=0;

2. The process has stationary and independent incre-
ments;

3. P{N(h) =1} = Ah+o(h);

4. P{N(h) > 2} = o(h);
where N(t) represent the number of “events” that have
occurred up to time ¢ and o(h) is the asymptotical order
symbol, i.e., f is defined as o(h) if

(A31)

To get a compound Poisson process we assume that each
of the Poisson “events” lead to a jump of a random magni-
tude, ¥;. We assume that the jump sizes are exponentially
distributed. The effect of adding this process to what we
had in (11) is that if an event occurs, then neglecting the
continuous part, at time ¢+ & the state variable will have a
value of X, , = X, +7Y,.

All the models analyzed in this study are special cases of
(A30). The GBM formulation uses &, = r —1/202, k, = 0.
The mean-reverting affine diffusion uses k, = k6, K, = —k.

Both specifications use constant volatility ¢ and do not
model jump behavior (equivalent to setting the arrival inten-
sities to zero). The AJD in §3 uses the mean-reverting
model parameter for the continuous part and the compound
Poisson process described above for the jump part.

We first justify the use of the exponential affine form
for the Fourier transform of the state variable at time T,
(see Equation (16)). As in the proof of Proposition 3, we
proceed by eliminating terms having X,, by using ¢™** as
an integrating factor: '

T T T
f e dX, = f e "k, ds+f ek, X, ds
t t H

T 2 T
+[ e g dB? + Z/ e xS leg (A32)
i

=171

The remaining terms can be integrated to arrive at an
expression for the spot price at 75:

K K
X = =2 (X4 2 ) expl (T, 1)
1 1

T, 2 .0
+[ oenmapl Ly [ e gz (A33)
3 i=1 T

Thus, X;, is a sum of random variables A ~ N (u,?, v2")
(mean and variance given in (A17) and (AI8)) and B
(which equals the last term above), which is a complicated
random variable but is a function of time only. Note that
in A, only the mean is a function of X, and is linear in it.
Consider the transform of X7, as defined in (15):

Y(v,1, T, X,) = E%[e”" " exp{vX, }|F,]. (A34)
This can be written as
V(v,t, Ty, X,) = E[e™" "> exp{vA + vB}|F]. (A33)

The transform of a normally distributed random variable is
given by

(A36)

1 T
E9exp{vA}|F,] = cxp[,uf2 + Evzv’zf. }

which is exponentially affine as in (16). The discounting
term and the transform of B are both functions of time
only and will add to the &' term. As W is the discounted
expected payoff of a single random variable, We™" will
be a martingale under Q. Applying It6’s lemma to We™"
(substituting from Equation (16)) we can write its drift as
(see Protter 1990)

d ' v 1 ’
Ea —r+KOB +50’ﬂ2

d
+ > A (B0 - 1)+ (EBI+K|B,>X, =0. (A37)

Because this holds for all values of X,, we get the ODEs
in (17).
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Proor oF ProrosITION 4. Define the characteristic of
Ga,b()’) as

éa,b(v) =/ eV dGa,b()’)

M

=V¥(a+ivb, 1, T, X,). (A38)

We now use inversion methods to determine the call for-
mula explicitly using (see Duffie et al. 1998 for an explicit
derivation)

Y(a,t, T,X,)
Gop(y) = ————=-
I > Im[¥ jub, 1, T, X,)e ™
SL m[¥(a+iv D G (A39)
aw Jo v
The call price can therefore be expressed as
C(kT2 fz)
(Y, T,X)
B 2
1 = Im[W(l—iv,t, T, X,)e V"] )
- — dv
T J0 v
(\P(O, t,T,X,)
2
o [ (—; )t T, X ——mlnkT2
_ L i (=i e ] dv). (A40)
a 7o v

To get the call price in terms of the forward price at r,
observe that

(1,6, T,X,)=e"f, and ¥(0,1,T,X,)=e".

(A41)

Substituting these terms in the option pricing formula, we
arrive at (21). We can similarly write the put price as

P (kg |f,) = kr,Go (Inkp,) =G, (Inkz,). (A42)

Proceeding in the manner above, we get (22). O

PROOF OF PROPOSITION 5. Again, we need to show that
the option price formulae for the simpler derivatives are as
shown. We have

Colks, kr | f) = Cl 1 (k|f,) + e ™ Cy, (ky,
- Pr(:arl (e_”‘(I:t _kT,)|f1)'

Now the first two terms are a straightforward application
of Proposition 4 using the appropriate transform inversion.
The third term can also be expressed as (33):

fr, =k)
(A43)

P (ki If) =k, Gy D (Ink) — e £I1, (1, T, T5)

ek IL(1, T, T). (Ad4)

The first term can be evaluated using an application of
Proposition 4. To evaluate I1, and II, we use the charac-
teristic functions in (35). Now, for a bivariate distribution,
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F(a, b), of two random variables S and P, we can express
F(§<a,P>2b)as

F(S<a.P2b)=F(S<a)—F(S<a,P<b). (A45)

If the characteristic function, @(¢, ¢; S, P), of F is known
we can use the method in Shepard (1991) (see Bakshi and
Madan 1998 for an application to option pricing) to invert
O(¢, ¢; S, P) to get the desired probabilities given by

o . —ida
l—if Re[@(qb,Oh, S)e
0

F(S<a)= - i

5 ]d¢, (A46)
F(S<a,P<b)

1
F(S<a)+5F(P<b)

1
I
1 % p O(d, ¢; S, P)eida~iet
(o [ e 20—
RO )
Re[ oo dbde).  (A47)

The compound option formula can be derived by applying
the above results to I, and II,.

B | —
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