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Abstract

We define a model for the evolution of a long series of
electric power transmission system blackouts. The model
describes opposing forces which have been conjectured to
cause self-organized criticality in power system blackouts.
There is a slow time scale representing the opposing forces
of load growth and growth in system capacity and a fast
time scale representing cascading line overloads and out-
ages. The time scales are coupled: load growth leads to
outages and outages lead to increased system capacity. The
opposing forces result in a dynamic equilibrium in which
blackouts of all sizes occur. The model is a means to study
the complex dynamics of this dynamic equilibrium. The
Markov property of the model is briefly discussed. The
model dynamic equilibrium is illustrated using initial re-
sults from the 73 bus IEEE reliability test system.

1. Introduction

Electric power transmission systems are large complex
systems which operate near their capacity limits and exhibit
cascading failures which often lead to blackouts. Any regu-
larities or dynamics in series of blackouts of a nation’s elec-
trical power supply are likely to be of interest both because
of the challenging complexity and size of the power system
and its importance to the national infrastructure.

Recent analyses of time series of North American black-
outs show evidence of long range correlations and proba-
bility distributions which suggests that the power system is
exhibiting dynamics consistent with self-organized critical-
ity [4, 5]. Moreover, [4] suggests a qualitative account of
the processes which could give rise to self-organized crit-
icality in a power system. The processes are a slow, sec-
ular load increase and the various engineering responses
to blackouts. The slow, secular load increase tends to re-
duce the margins of transmission lines and hence increases
the risk of cascading failure and blackouts. The various
engineering responses to blackouts include improvements

in operating policies, maintenance and equipment or con-
trols and all these responses tend to increase the margins
of transmission lines. It is conjectured in [4] that these op-
posing processes come to a dynamic equilibrium which is
self-organized critical. The main purpose of this paper is to
define a model detailing these processes to allow its com-
plex system dynamics to be critically examined and better
understood.

A self-organized critical system is one in which the non-
linear dynamics in the presence of perturbations organize
the overall average system state near to, but not at, the state
that is marginal to major disruptions [2, 8]. Self-organized
critical systems are characterized by a spectrum of spatial
and temporal scales of the disruptions that exist in remark-
ably similar forms in a wide variety of physical systems.
One of the defining examples of self-organized criticality is
the idealized running sandpile, which organizes itself to a
critical gradient in which avalanches of all sizes occur. The
blackout model is constructed with a broad analogy to the
processes occurring in the sandpile in mind.

For this study of power system global complex dynam-
ics, the model is “top-down” and represents the processes in
greatly simplified forms, although the interactions between
these processes still yield complex behavior. The simple
representation of the processes is desirable both to study
only the main interactions governing the complex dynamics
and for pragmatic reasons of model tractability and simula-
tion run time.

Intrinsic to this type of model are both slow and fast time
scales. Load growth and responses to blackouts occur on a
slow time scale of days to years and the cascading events
causing blackouts occur in a fast time scale of minutes to
hours. The slow dynamics are indexed by days so that load
growth and responses to blackouts are updated daily, al-
though the changes may be small.

The fast dynamics are cascading events. Events are the
outage of a line or the limiting of flow on a transmission
line to its maximum. Events can happen at any time but
tend to be more more likely and more widespread at peak
load when the network is most stressed. For simplicity, the



daily peak load is chosen as representative of the loading
during each day and the events are computed based on that
peak load. Each day has the possibility of one cascade of
events. The lines involved in the cascade are represented
but the timing of events is neglected.

2. Slow dynamics

2.1. Network model

There are n buses and each bus is either a load or a gen-
erator. Let

Pik = real power injected at bus i on day k.

Pk = (P1k, P2k, P3k, . . . , Pnk)T

Pk is the vector of real power injections on day k. The
power injections must satisfy the overall power balance∑

i Pik = 0.
There are m transmission lines. Let

Fjk = real power flowing on line j on day k.

Fk = (F1k, F2k, F3k, . . . , Fmk)T

Fk is the vector of m line flows on day k. The line flows
must satisfy

−Fmax
jk ≤ Fjk ≤ Fmax

jk j = 1, 2, · · · , m (1)

Fmax
jk models a thermal or other type of limit on line j on

day k.
Each transmission line is modeled as an inductance

which may include the inductance of any equipment in the
line such as transformers. Failure of this equipment is mod-
eled as a failure of the line.

A DC (linearized) power flow model with no losses is
assumed. It follows that there is a linear relation between
power injections and line flows on day k:

Fk = APk (2)

The matrix A represents the network constraints as ex-
plained in more detail in Appendix B.

On day 0 there are power injections P0 and flows F0

satisfying F0 = AP0 and −Fmax
j0 ≤ Fj0 ≤ Fmax

j0 , j =
1, 2, · · · , m.

2.2. Slow load increase

The slow load increase is modeled as

Pk = P0

k∏
	=1

λ	 (3)

where λ1, λ2, λ3, · · · are independent, identically dis-
tributed bounded continuous random variables in
[λmin, λmax] with mean value λ slightly larger than
one. For example, λ = 1.00005. The daily multiplication
by λk represents a slowly increasing secular load trend
with an additional random component.

Then the initial flows on day k are

Fk = APk = AP0

k∏
	=1

λ	 = F0

k∏
	=1

λ	 (4)

These power injections and flows apply before any cascad-
ing events on day k.

2.3. Fractional overloads

Define the fraction of overload on line j on day k by

Mjk =
Fjk

Fmax
jk

(5)

A line with Mjk < 1 has margin remaining whereas a line
with Mjk > 1 is overloaded. The vector of overloads

Mk = (M1k, M2k, M3k, . . . , Mmk)T (6)

describes the initial pattern of loading in the network on day
k and is part of the state vector of the slow dynamics.

The fast dynamics on day k depend on the initial pattern
of loading Mk. In particular, heavily loaded lines are more
likely to be involved in cascade of events leading to a black-
out. Blackout is defined as load shedding or the network
solution becoming infeasible. Some cascades may redis-
tribute power in the network but preserve the loads and this
outcome is not counted as a blackout. Also on some days
there may be no events. The outcome of the fast dynam-
ics on day k is a list of the lines that overloaded or outaged
during that day’s cascade and whether or not there was a
blackout.

2.4. Improving the lines

We first describe the procedure for increasing the trans-
mission line capacity based on which lines were involved in
the blackout. Then the ways in which this procedure models
improvements to the system capacity are discussed.

After the fast dynamics are finished, the line flow limits
for the next day are obtained. If there was no blackout,
the line flow limits are unchanged. If there was a blackout
then the line limits of those lines that overloaded or outaged
during the cascade are increased:

Fmax
j(k+1) =




µkFmax
jk ; blackout and line j overload

on day k
Fmax

jk ; otherwise
(7)



where µ0, µ1, µ2, · · · are independent, identically dis-
tributed bounded continuous random variables in
[µmin, µmax] with mean value µ. The mean value µ
controls the size of the average increase in the line flow
limit. For example, µ = 1.05 specifies a 5% average
increase in the line flow limit. More generally, µ controls
the average rate of improving the transmission system
capacity. We assume that

1 < λmax < µmin (8)

In practice it is customary for utility engineers to make
prodigious efforts to avoid blackouts and especially to avoid
repeated blackouts with similar causes. These engineer-
ing responses to a blackout occur on a range of time scales
longer than one day. Responses include repair of damaged
equipment, more frequent maintenance, changes in oper-
ating policy away from the specific conditions causing the
blackout, installing new equipment to increase system ca-
pacity, and adjusting or adding system alarms or controls.
The responses reduce the probability of events in lines re-
lated to the blackout, either by lowering their probabilities
directly or by reducing component loading by increasing
line capacity or by transferring some of the line loading to
other lines. The responses are directed towards the lines
involved in causing the blackout. Thus the probability of
a similar blackout occurring is reduced, at least until load
growth degrades the improvements made.

The modeling in (7) is a crude representation of these
responses to the blackout. The response is modeled as hap-
pening only on the next day, but the effect of the modeled
response does persist until it is effectively cancelled by the
slow load increase. In cases in which the response lowers
the probability of line failure or transfers loading to other
lines the model roughly approximates these responses as an
increase in the line capacity. (As detailed in section 3, a line
with an increased capacity will have a smaller probability
of outage or overload.)

The update of the line flow limits can also be expressed
as an update in the fractional overloads, taking into account
the daily flow increase (3):

Mj(k+1) =




µ−1
k λkMjk ; blackout and line j overload

on day k
λkMjk ; otherwise.

(9)

The generator maximum power limits are assumed to
grow with the average load:

Pmax
ik = (λ)k+1Pmax

i0 ; bus i a generator (10)

The model does not represent generator outages.

3. Fast dynamics of cascading events

The fast dynamics of the cascading events on day k are
described by the (lower case) variables

fj = power flowing on line j during events on day k

f = (f1, f2, f3, . . . , fm)T

pi = power injected at bus i during events on day k

p = (p1, p2, p3, . . . , pn)T

The dependence of these variables on the day k is omitted
from the notation for brevity.

The power injection and flow vectors p and f are updated
as the cascade proceeds. The fast dynamics are initialized
with the initial flows and injections for day k:

f = Fk (11)

p = Pk (12)

The initial flows and injections f and p do not necessarily
satisfy the network constraints.

3.1. Initiating random line outages

Blackouts are often initiated by line outages caused by
weather, operator error, or device malfunction or failure
such as false line trips or substation fires. This initiating
event is modeled as an outage of a line or lines according to
an independent probability of failure of each line:

Probability{line j outaged} = h0(Mjk) (13)

where h0 is a positive and non-decreasing function.

3.2. Random outage of overloaded lines

Overloaded lines are sometimes outaged either automati-
cally or by operator action. Alternatively, the overload may
be corrected without a line outage. This is modeled as an
outage of a overloaded line according to an independent
probability of failure of each line:

Probability{overloaded line j outaged} = h1(Mjk) (14)

where h1 is a positive and non-decreasing function.

3.3. Power redispatch

Whenever a line is outaged or overloaded, or a genera-
tor exceeds its maximum limit, it is necessary to redispatch
the injected powers to satisfy the system constraints. The
injected powers include both generators and loads but gen-
eration redispatch is much preferred to load shedding. (If
it is impossible to satisfy the system constraints, then the



network solution is infeasible and this is considered to be a
blackout.)

The redispatch is formulated in a conventional way as an
optimization to minimize the change in generation or load
shed subject to the system constraints [10, 11, 12]. The op-
timization minimizes the cost function

∑
generators

|pi − Pik| +
∑
loads

100(pi − Pik) (15)

subject to overall power balance

n∑
i=1

(pi − Pik) = 0 (16)

and the line flow limits

−Fmax
jk ≤ fj ≤ Fmax

jk j = 1, 2, · · · , m (17)

where f = Ap (18)

and the requirement that load shedding be positive and less
than the total load

Pik ≤ pi ≤ 0 ; bus i a load (19)

and the generator limits

0 ≤ pi ≤ Pmax
ik ; bus i a generator (20)

Note the hundredfold larger weight on load shedding so that
load shedding is much more expensive than generation shift
[11]. The A matrix used in (18) must incorporate the effects
of any line outages. A slightly more detailed implementa-
tion of this optimization as a linear program is presented in
Appendix A.

The optimization is a simple model of how operators
might redispatch power in response to an overload or an
outage. Blackouts can also include events which cascade
without intervention from the operator; in these cases, the
optimization gives a solution compatible with the system
constraints with less assurance that it is representative of
the actual redispatch.

3.4. Iteration

The cascading events are computed by the following it-
eration.

1. Initialize the flows and injections according to (11) and
(12).

2. Determine the initiating event line outages (if any) ac-
cording to (13).

3. If any limits are not satisfied or if a line has been out-
aged in the previous step, redispatch the power injec-
tions according to the optimization in section 3.3. If
the optimization is infeasible, stop the iteration. Pro-
duce a list of lines that were overloaded during the op-
timization.

4. For each line that was overloaded in step 3, determine
whether it is outaged according to (14).

5. If lines were outaged in step 4, then go to step 3. If no
lines were outaged in step 4, then stop the iteration.

Model blackout is defined as the occurrence of load
shedding during the iteration or the optimization being in-
feasible. The output of the iteration is a list of the lines that
overloaded or outaged during the iteration and whether or
not there was a blackout.

The iteration represents cascading events in two ways:
Line outages can cascade as the iteration steps proceed.
Also line overloads can cascade during the solution of the
optimization in step 3.

The cascade modeling only seeks to produce a list of
lines that could plausibly be involved in cascading events
which lead to a blackout. In particular, the cascade is con-
sistent with the network topology and constraints. However,
the modeling does not seek to reproduce any details of the
cascade.

4. Analogy with the sandpile

We briefly indicate the roughly analogous structure and
effects in a sandpile model that shows self-organized crit-
icality [2, 8]. This rough analogy was used to guide the
construction of the blackout model.

Consider a large, idealized sand pile that has grains of
sand added at a continuously varying location. When the
local maximum gradient gets too large, sand at that location
is more likely to topple. Events are the toppling of sand
and cascading events are avalanches. The system state is a
vector of maximum gradients at all the locations in the sand
pile. The driving force is the addition of sand, which tends
to increase the maximum gradient, and the relaxing force is
gravity, which topples the sand and reduces the maximum
gradient. These opposing forces cause the system to con-
verge to a dynamic equilibrium in which the average sand-
pile gradient is below the angle of repose. In the dynamic
equilibrium, avalanches of all sizes occur and there are long
time correlations between avalanches.

The analogy between the main quantities in the sand pile
and the power system is summarized in Table 1. There
are also some distinctions between the two systems. In the
sandpile, the avalanches are coincident with the relaxation



Table 1. Analogy between power system and
sandpile

power system sandpile

system state fractional overloads M gradient profile
driving force load increase λ addition of sand
relaxing force line improvements µ gravity

event line limit or outage sand topples
cascade cascading lines avalanche

of high gradients. In the power system, each blackout oc-
curs on fast time scale (less than one day), but the knowl-
edge of which lines caused the blackout determines which
line capacities are improved after the blackout. The black-
out model has inherent inhomogeneity due not only to the
inhomogeneity of the transmission line network, but also
due to the inhomogeneous distribution of loads and genera-
tors. Many sandpile models have much greater homogene-
ity.

5. Results

5.1. IEEE 73 bus RTS-96

The IEEE Three Area Reliability Test System–1996 is
a benchmark system for bulk power reliability studies de-
scribed in detail in [7]. The system has 73 buses and 108
lines and consists of 3 identical areas connected by a few
tie lines.

To extract the data needed for the DC load flow compu-
tation, reactive power injections and line capacitances and
resistances are neglected. The generation at buses 113, 213,
313 is adjusted to 136 MW to give overall power balance.
The initial MW line flow limits Fmax

j0 are approximated by
the long-time emergency MVA ratings (24 hours) from [7].
Parallel lines are combined into one line and the optional
DC link is not included.

Table 2. Model parameters

value comment

λ 1.00005 mean load daily growth factor
λ rλ r uniformly distributed in [1/1.4, 1.4]
µ 1.005 line improvement factor
h0 0.001 probability of line outage
h1 0.3 probability of overloaded line outage

The main model parameters are shown in Table 2. The
average daily load growth factor λ = 1.00005 corresponds
to an annual load growth of approximately 2%. (The 2%

annual growth rate is based on the growth of US electric
utility production from 2500 billion kWh in 1985 to 3000
billion kWh in 1995 according to the graph on page 3 of
[3].) The line improvement factor µ (generally a random
variable) is a constant and the probabilities h0 and h1 (gen-
erally functions of fractional overload) are also constants.
The implementation of the model is described in more de-
tail in [6].

To examine the model behavior, a time series was gener-
ated using the model on the IEEE RTS-96 system. The time
series has 50,000 days (about 137 years) and 3926 blackouts
(about 29 per year).

5.2. Power served

Since the load increase is fixed, the power served de-
pends on the line improvement factor µ. If µ is low, lines
are more often stressed, there are a larger number of black-
outs and the average power served is lower. Figure 1 shows
the power served for two values of µ. The power served
grows exponentially to match the load increase, but in the
case of the lower value of µ (upper curve in Figure 1) the
power served has a higher number of larger negative spikes
corresponding to the power shed.

Figure 1. Power served for two values of µ.

If the line improvement factor µ is a constant, then the
line improvements must be applied sufficiently frequently
so that the network capacity can follow the increasing load.
In the model, line improvements arise from the blackouts
and the overall system improvement depends on the num-
ber and extent of the blackouts. There is a self regulat-
ing process by which the system produces a distribution of
the number and size of blackouts which gives the average
rate of system improvement required by the load increase.
Through this process the system reaches a kind of equilib-
rium in a dynamical or statistical sense. This dynamic equi-



librium exists despite the secular evolution of the supply
and demand. The dynamic equilibrium is better illustrated
with the evolution of quantities such as the fractional line
overloads.

5.3. Fractional line overloads

The fractional overloads Mjk form part of the state vec-
tor of the slow dynamics and describe the daily pattern of
loading in the system. Since there are 108 lines, the frac-
tional line overloads evolve in the 108 dimensional Eu-
clidean space R108. Mjk of line j on day k can be aver-
aged over the lines to give 〈Mjk〉j or averaged over time to
give 〈Mjk〉k. Both are useful as they demonstrate different
aspects of the system dynamics.

The time evolution of the line average 〈Mjk〉j is shown
in Figure 2. Figure 2 shows a dynamic equilibrium in the
line averaged fractional overloads which is reached after
about 20000 days (about 55 years).

There are fluctuations around the mean value which get
larger as 〈Mjk〉j generally increases to equilibrium. The
fluctuations get larger when the lines are generally closer to
the system capacity because in the more highly stressed net-
work there are more opportunities for cascades propagating
further and hence larger blackouts.

A slow evolution to the equilibrium and increased fluc-
tuations near the system capacity can also be observed in
the evolution of the number of instantaneous topplings in
running sandpile models [9].

Figure 2. Time evolution of line averaged frac-
tional overloads 〈Mjk〉j

Once the system has reached dynamic equilibrium we
can compute the time averaged fractional overloads 〈Mjk〉k
for each line. Figure 3 shows 〈Mjk〉k for each line and com-

pares the values for three different calculations using line
improvement factors µ that vary by two orders of magni-
tude. The differences in µ must cause the system equilib-
rium dynamics to differ in their detailed evolution. In spite
of the large differences in µ, the three curves are remarkably
similar and the distribution of 〈Mjk〉k over the lines appears
robust. Moreover, our experience is that the distribution of
〈Mjk〉k is insensitive to how the dynamic equilibrium was
arrived at.

The particular form of the distribution of 〈Mjk〉k over
the lines depends on the structure of the network. In partic-
ular, the distribution of 〈Mjk〉k depends on the distribution
of generators and loads as well as the line configuration.
Thus the distribution of 〈Mjk〉k seems to contain interest-
ing information intrinsic to the power system.

In the running sandpile, the quantity analogous to
〈Mjk〉k is the time averaged local sandpile gradient. The
rate at which the sandpile is driven can be varied by vary-
ing the rate of addition of sand grains. The sandpile self
organizes to a dynamic equilibrium in which the averaged
gradient has a profile which depends on the local coupling
and the distribution of sources but is robust to perturbations
and the rate of addition of sand grains.

Figure 3. Line distribution of time averaged
fractional overloads 〈Mjk〉k in steady state.

5.4. Blackouts

After the initial transient, the dynamical evolution of
the system leads to a series of cascading events that are
blackouts when there is load shedding. Figure 4 shows the
number of line outages per blackout as a function of time.
The number of line outages per blackout is one measure of
blackout size. As with the fractional overload evolution,



this time series also reaches an apparent dynamical equilib-
rium which includes events of all different sizes, once again
characteristic of this type of complex system dynamics.

Since we have plotted the outages for a long period of
time, Figure 4 gives the impression of a continual blackouts.
On the contrary, blackouts are intermittent and in fact hap-
pen rather sparsely as illustrated by Figure 5 which shows
only a few blackouts in a period of 100 days.

It is important to point out that after each blackout the
lines responsible are “improved”, thereby removing the im-
mediate cause of the blackout. Nevertheless, the system will
still have another blackout caused by another weakness at
some time. It is characteristic of these systems that while
individual causes can be fixed or avoided, there will always
be some system weakness or trigger which will start a cas-
cade that will lead to another blackout.

Figure 4. Blackout size time series

6. Comments on Markov aspects

It is convenient to define the load growth factor for day
k relative to day 0:

Λk =
k∏

	=1

λ	 (21)

Equations (3) and (4) for the initial daily power injections
and line flows become

Pk = ΛkP0 (22)

Fk = ΛkF0 (23)

The slow dynamics can be characterized by the evolution of
the vector of flow limits Fmax

k and Λk. Since Λk specifies
the initial daily flows Fk via (23), an equivalent characteri-
zation is the evolution of the vector of fractional overloads

Figure 5. Blackout size time series for 100
days only

Mk and Λk. It is better to work with the fractional overloads
because the fractional overloads seem to remain bounded.
Thus the state space is Rm+1, where m is the number of
transmission lines.

Given Mk and Λk on day k, one can obtain the initial
power injections Pk and flows Fk using (22) and (23). Then
one can obtain Fmax

k from Mk and Fk using (5). The cas-
cading events on day k depend only on Mk, Pk, Fmax

k ,
and Fk. (Note that the probabilities h0 and h1 depend only
on Mk.) The next day’s initial margins Mk+1 are obtained
from the outcome of the cascade on day k via the indepen-
dent random variable µk (see (9)). Λk+1 is simply given
by Λk+1 = λk+1Λk, where λk+1 is an independent random
variable. There is no dependence on days previous to day k.
Therefore (M1,Λ1), (M2,Λ2), (M3,Λ3), · · · is a discrete
time, continuous state Markov process. This Markov prop-
erty of the evolution of the slow dynamics may be useful in
future analysis of the model.

6.1. A simple case

Some of the features of the model can be observed in a
very simple case. Consider a single transmission line with
a generator at one end and a load at the other end. We can
focus on the line overloads only by choosing h0 = 0 and

h1(Mjk) =
{

0 ; Mjk ≤ 1
1 ; Mjk > 1 (24)

so that line outages happen when the line is overloaded.
Overloading of the single line always implies load shedding
and blackout. That is, the fast dynamics reduce to blackout
whenever Mk > 1.



It is convenient to define

xk = log Mk (25)

ak = log λk (26)

bk = log µk (27)

We also write amin = log λmin, amax = log λmax, and
bmax = log µmax. Then the slow dynamics (9) with xk ∈ R
are

xk+1 =
{

xk + ak ; xk < 0
xk + ak − bk ; xk ≥ 0 (28)

Note that (8) implies that ak − bk < 0. There is a globally
attracting, positively invariant region (−∞, amax). If we
additionally assume that amin ≥ 0 (load never decreases),
then there is a globally attracting, positively invariant region
[amin − bmax, amax).

Now we restrict to the special case in which the random
variables λk and µk are constants. It follows that ak and bk

are constants and we write a = ak and b = bk. Then [a −
b, a) is a positively invariant region and for initial condition
x0 ∈ [a − b, a) the solution is

xk = b

〈
k

a

b
+

x0 − a

b

〉
+ a − b (29)

where the brackets 〈·〉 indicate modulo 1. In the generic
case of a/b irrational, xk is almost periodic and the average
value of xk is a − (b/2). This illustrates the approximately
cyclic nature of the model when applied to a single line.

One could imagine the behavior of the model on a net-
work as many single lines with complicated couplings due
to the interactions between the lines when they are limited
or outaged. Very long approximately cyclic patterns are
possible in the network dynamics and it would be interest-
ing to investigate the relation of these approximately cyclic
patterns to the complex dynamics of interest.

7. Conclusion

We have defined a model which includes the essentials of
slow load growth, cascading line outages, and the increases
in system capacity caused by the engineering responses to
blackouts. Lines fail probabilistically and the consequent
redistribution of power flows is calculated using the DC
load flow approximation. Cascading line outages leading
to blackout are modeled and the lines involved in a black-
out are predicted. The engineering response to the black-
out is crudely modeled as an increase in line margin for the
lines that were involved in the blackout. The model imple-
ments the qualitative explanation of self-organized critical-
ity in power system blackouts proposed in [4].

As appropriate for a first study of global dynamics,
the model represents the forces conjectured to cause self-
organized criticality in a simple fashion. Moreover, the par-
ticular forms of the model simplifications are chosen with

a view to improving the tractability of simulation and anal-
ysis. The slow dynamics of the model is a discrete time
Markov process with a continuous state space of high di-
mension.

To begin our investigation of the model, we have illus-
trated its characteristics on a lossless version of the 73 bus
three area IEEE Reliability Test System-1996. The model
converges to a steady state which is the dynamic equilib-
rium of interest. The time average of the pattern of over-
loads in the dynamic equilibrium appears to be a robust fea-
ture of the dynamic equilibrium. Similarities of the results
with those from a self-organized critical running sandpile
are noted.

A companion paper [6] studies the model in a variety of
artificial power networks with a regular structure. Of partic-
ular interest in [6] are the results on a regular 94 bus network
with 3 lines connected to each bus. Although this is an ar-
tificial network with more regularity than a real power net-
work, three lines incident on each bus is approximately the
average for large power networks [1]. The probability den-
sity function of the blackout sizes obtained from the model
shows good agreement with the corresponding probability
density function from a time series of avalanches from a
running sandpile model. Since the running sandpile model
is a defining example of self-organized criticality, these ini-
tial results suggest that the model can produce a result con-
sistent with self-organized criticality.

The model shows promise for probing the complex dy-
namics of power system blackouts. However, even such a
simplified model is complicated and we can not yet claim
definitive results from the few cases briefly examined so far.
Much more work is needed to use the model to try to un-
derstand the complex dynamics of power system blackouts.
The first tasks are to study and refine the model in large
power networks of a more typical topology and to improve
the extent and methods of analysis.
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A. LP formulation in incremental variables

It is convenient to let ∆pi = pi−Pik. Also, to implement
the absolute value in the generator part of the cost function,
let ∆pi = ∆p+

i − ∆p−i for bus i a generator. Then the
optimization becomes the linear program:

Minimize the cost function∑
i∈G

(∆p+
i − ∆p−i ) +

∑
i∈L

100∆pi

subject to
n∑

i=1

∆pi = 0

−Fmax
jk −Fjk ≤ ∆fj ≤ Fmax

jk −Fjk j = 1, 2, · · · , m
0 ≤ ∆pi ≤ −Pik ; bus i a load

0 ≤ ∆p+
i ≤ Pmax

ik − Pik ; bus i a generator

−Pik ≤ ∆p−i ≤ 0 ; bus i a generator

where
∆fj = fj − Fjk = A ∆p

B. Network equations

This appendix reviews a standard DC load flow formu-
lation for readers outside power systems. All bus voltages
phasors are 1.0 per unit in magnitude. Let θi be the volt-
age angle at bus i. Define the n vector Θ of voltage angles,
including the zero angle of the reference bus.

Let bij be the susceptance of the transmission line join-
ing bus i to bus j. Transmission line resistance is neglected.
The n × n matrix B is defined by

Bii =
∑

bus j connected to bus i

bij (30)

Bij = −bij (31)

The DC load flow equations are

P = BΘ (32)

B has rank n − 1 because of the constraint that the powers
in the vector P sum to zero. Inverting (allowing for the
singularity of B and using the zero angle of the reference
bus) gives

Θ = XP (33)

The flow on the line connecting bus i to bus j is bij(θi−θj)
and this can be written in matrix form for all the lines as

F = NΘ (34)

Then
F = NXP = AP (35)


