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Abstract—The use of market mechanisms to determine genera-
tion dispatch, and the natural tendency to seek improved economic
efficiency through rapid market updates, raises a critical issue. As
the frequency of market-based dispatch updates increases, there
will inevitably be interaction between the dynamics of markets de-
termining the generator dispatch commands, and the physical re-
sponse of generators and network interconnections. This paper ex-
amines questions of stability in such coupled systems by means of
numeric tests using various market update models, (including de-
tailed generator/turbine/governor dynamics) for the New England
39 bus test system. The results highlight the nature of potential in-
stabilities and show the interaction modes between physical and
market quantities through eigen-analysis. Understanding of poten-
tial modes of instability in such coupled systems is crucial both
for designing suitable rules for power markets, and for designing
physical generator controls that are compatible withmarket-based
dispatch.

Index Terms—Dynamic coupling, eigenvalues,market dynamics,
power system dynamics.

I. INTRODUCTION

THE POTENTIAL benefits of near real time competitive
markets to determine power production in the electric

power industry has long been discussed. A key element for
realizing potential benefits from markets is the presence of
a robust transmission grid that allows widespread access of
power consumers to a range of (often geographically disperse)
generators controlled by competitive producers. In general,
as networks around the world have become better connected,
and the number of potential options available has increased,
the pressure for reliance on market mechanism has grown
stronger [7]. However, these same conditions (large numbers
of widespread generation sources coupled to a long distance
transmission network) create a physical system in which the
potential for undesirable dynamic response, and even electro-
mechanical instability, is very real.
When designing power exchanges and policies for In-

dependent System Operators (ISO) to manage competitive
provision of electric power, it is necessary to consider whether
the market operation itself leads to stable equilibrium con-
ditions. At the same time, the physical power system must
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exhibit acceptable electromechanical response (with stability
as a minimum criterion). If market mechanisms are used to
determine generator dispatch (with near real-time updates of
the dispatch commands) there will exist dynamic coupling
between the market update process and the physical response
of the generator/network dynamics.
Therefore, under the assumption of market-based dispatch,

considering of the stability of the coupled system incorporating
both market operation and electromechanical power system dy-
namics simultaneously is necessary. There has been relatively
little prior work in this topic within power systems literature.
As rules for market-based dispatch vary throughout the US and
around the world, any analytic treatment must make certain as-
sumptions of how physical system conditions and market re-
sponse interact. Alvarado [2], [3] considered the effect of cou-
pling in one direction, with energy imbalance in the physical
system, with or without network congestion, driving the market
response. The work by Mota and Alvarado [4] gives the basic
modeling for full, two-way dynamic coupling between market
dynamics and power system electromechanical response. A dis-
crete time frequency domain formulation is discussed by Bhat-
tacharya in [12].
This paper refines the modeling in [4] and proposes a new

frequency error coupling model. Furthermore, the stability of
market-only dynamics and coupled system dynamics is exam-
ined in system parameter space based on a larger test network.
Before further discussion, it is useful to state the underlying

assumptions [2], [3]:
• Marginal production costs are affine linear functions of
generated power.

• Marginal benefit functions are negatively sloping affine
linear functions of power consumption.

• A generator’s power output command is a function of its
marginal cost and the market price for power. Demand is
also a function of marginal benefit and power price.

• Response of power suppliers and consumers to observed
price is represented by continuous dynamics (as opposed
to a discrete-time model of periodic price updates). The
producer/consumer response characteristics are repre-
sented by first order linear differential equations.

• Network-wide power production is not precisely balanced
to power consumption at all times; therefore instantaneous
energy imbalance and frequency variation result. Energy
imbalance leads to the need to control such imbalance to
prevent system damage or unwanted relay action.

Section II describes the behavior of power producers and
consumers in a market driven environment. Section III presents
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TABLE I
TYPICAL RANGE FOR POWER MARKET PARAMETERS (POWER IN p.u. WITH 100 MW BASE)

the ideal energy imbalance driven market-only dynamic
model. Section IV outlines the power system dynamic models.
Section V proposes the improved frequency error market-only
dynamic model. When the interconnected power system is
coupled with market dynamics, the combined system can
exhibit the dynamic behavior which is different from that of
each subsystem. This is discussed in Sections VI and VII. In
order to check the effect of the interaction between the two
subsystems, numerical eigenanalysis is used to characterize
possible interactions, using the example of the New England 39
bus test system [14]. Variation in key parameters is examined
to determine ranges of values that yield stable operation.
The numerical studies suggest that to create a successful

power market structure, market designers and regulators cannot
ignore the dynamic interaction between the market and the
physical, electromechanical dynamics of the power system.
The analysis of this paper applies directly to any market

where real time prices are computed and adjusted sufficiently
rapidly (e.g., PJM, California, etc.) and where the generation
(and possibly the loads) are permitted to respond to the posted
prices.

II. PRODUCER/CONSUMER BEHAVIOR

By neglecting network losses,1 the producer and consumer
behavior for power producers and consumers in a market
driven environment can be approximated by the following
simple first order differential equations

(1)
(2)

where
Power supply of producer ;
Power demand of consumer ;
Marginal cost of supplier ;
Marginal benefit of consumer ;
Price of power.

The above equations describe the following qualitative be-
havior: a generator increases its production when price exceeds
its marginal production cost. Loads act to increase consumption
when marginal benefit exceeds price. Each maximizes its profit
or benefit by matching its marginal cost/benefit to market
price at equilibrium. First order differential equations allow
approximate representation of generator ramp rates and lags in
response to power price changes.

1Consideration of losses in the stability analysis of the paper would require
the use of the complete power flow model for the entire network as part of the
formulation, or at least the inclusion of penalty factors. Since some markets op-
erate successfully without explicit inclusion of losses, we consider this an un-
necessary complication at this time. However, extension of this work to include
losses is straightforward and should not affect our conclusion.

The units of measure and assumed range for power price ,
power supply and power demand , power producer cost
parameters and , power consumer benefit parameters
and , the ramp rate of and are listed in Table I. In our
numerical example to follow, the parameters of , , ,
are chosen to match the above equilibrium equations and the
power flow results for the New England 39 bus system based on
a hypothetical power price of $40/MWh. Once the right hand
side parameters in the above equations are determined, one may
choose producer and consumer response constants and by
assuming that the ramp rate for generators and consumers lies
in the range of 1 20 MW/min. The specific power producer/
consumer parameters are given in Table V.

III. ENERGY IMBALANCE MARKET DYNAMICS

In a synchronous power system, energy imbalance cannot
be sustained indefinitely. It must be reduced or driven to zero.
In the traditional utility environment in the US, this objective
is attained by automatic generation control (AGC) [11]. In a
real-time market-driven model, it is reasonable to assume that
market mechanismsmight fulfill this role. In particular, onemay
hypothesize that price for power reflects the degree of energy
imbalance. That is, an excess of power supplied to the grid de-
presses the value of the power, and vice versa. This concept was
the basis for the proposals by Caramanis et al. [8] and has been
recently promoted further by [9], [10]. Variations in the value
of power depending real time energy balance is referred as fre-
quency regulation pricing or ACE (Area Control Error) pricing.
Under this model, and neglecting network loss effects, we pro-
pose the following equations to represent the ideal market-only
dynamics for power suppliers and power consumers:

(3)

(4)

where
System energy imbalance;
Power price response rate constant;
Market stabilizer gain for energy imbalance.

The parameters and depend on the design of the power
market. The result of an excess of energy is assumed to be a
reduction of power price derivative, which changes according
to the ratio . This ratio dictates the sensitivity of price to
system energy imbalance . Although power price feedback in
(4) tends to stabilize the market, it is optional. Its presence de-
pends on the market design. Without price feedback, the change
of price is dependent only on energy imbalance, and steady state
energy imbalance is driven to zero. With price feedback, the
change of price depends not only on energy imbalance but also



ALVARADO et al.: STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS 697

Fig. 1. IEEE TYPE 1 exciter system.

on the current price, and there remains a steady state error in
energy imbalance. In this paper we use (4) which includes price
feedback.

IV. POWER SYSTEM DYNAMICS

The synchronous machines, exciters and voltage regulators,
turbines and governors, are represented by well-established,
textbook models used for electromechanical stability studies
[5], [6].

A. Synchronous Machine Model
Synchronous machines are modeled by either a 3rd order flux

decay model or a 4th order two axis model depending on the
specification for each synchronous machine. Only the 4th order
two axis synchronous model is presented here; readers are re-
ferred to [5], for other synchronous machine models.
State Equations

(5)
(6)
(7)
(8)

where is the rotor angle relative to the synchronous reference
angle. The quantity is the per unit rotor speed deviation rela-
tive to the synchronous reference.
Stator Algebraic Equations

(9)
(10)

where

(11)

(12)

is the generator terminal voltage phasor, is the amplitude
of , is the phase angle of .

B. Exciter and Automatic Voltage Regulator (AVR) Model
Only IEEE type 1 exciter and AVR model is considered.

The block diagram of this model is shown in Fig. 1. The PSS
is assumed to be inactive. The exciter saturation function is

[6].

(13)

Fig. 2. Simplified speed-governor system.

(14)

(15)

C. Turbine and Speed Governor Model
The block diagram of the turbine and speed governor model

is shown in Fig. 2.

(16)

(17)

In Fig. 2, is the per unit rotor speed deviation relative to syn-
chronous speed, is the power command, and is the gen-
erator mechanical power.
If the market dynamics are considered, the power command
becomes the input point for coupling; it is set equal to the

output from the market dynamics model.

D. Power Flow and Load Representation
At generator buses the power balance equations are:

(18)

where
generator terminal complex power at gener-
ator bus and ;
terminal complex load at generator bus ;
complex power injection at generator bus ,
which is the function of bus voltages;
bus voltage magnitude vector;
conjugate of the generator current at gener-
ator bus .

The above equations can be rewritten as:

(19)

At load buses the power balance equations are:

(20)

where , is the power consumption at load bus .
is the complex power injection at load bus . In power flow com-
putation, loads are modeled as constant power. In power system
dynamic analysis, loads are modeled as constant admittances.
When market dynamics are considered, loads at nonconsumer
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Fig. 3. Coupled market/power system dynamic model.

buses (e.g., loads in power plants) are represented as admit-
tances and absorbed by the bus admittance matrix. At a power
consumer bus , the real power balance equation is modified as:

(21)

V. RELATION OF FREQUENCY ERROR TO ENERGY IMBALANCE

The preceding sections present the ideal market-only dy-
namic model in terms of the system energy imbalance . In
real systems such abstract energy imbalance is impossible to
measure. When the coupling between power system dynamics
and market dynamics is considered, a way must be found to
measure such energy imbalance. By analyzing the generator
rotor acceleration equation (8) and ignoring network losses,
the power demand is approximated by the sum of the square
bracketed terms in (8). Since the damping term usually is small,
the sum of all right hand sides of (8) closely approximates
system power imbalance, and thus integrates to energy imbal-
ance. Thus the weighted sum of frequency errors

is a good approximation to system energy imbalance.
The frequency error market-only dynamic model is described
by the following first order differential equations,

(22)
(23)
(24)

where is the average frequency deviation.
For the coupled market/power system, is set to equal to the

governor input . The coupled market/power dynamic model
can be best understood from the diagram of Fig. 3.

VI. MARKET/POWER SYSTEM LINEARIZED MODEL

The combined market/power system yields a set of differen-
tial/algebraic equations. The linearized version of the combined

market and power system differential and algebraic equations
has a structure that may be summarized in matrix form:

(25)
where

Jacobian of power market state equations w.r.t. power
market state variables;
Jacobian of generator state equations w.r.t. power
market state variables;
Jacobian of power system algebraic equations w.r.t.
power market state variables;
Jacobian of generator state equations w.r.t. generator
state variables;
Jacobian of generator state equations w.r.t. power
system algebraic variables;
Jacobian of power system algebraic equations w.r.t.
generator state variables;
Jacobian of power system algebraic equations w.r.t.
power system algebraic variables;
Jacobian of power market state equations w.r.t. power
system algebraic variables;
Jacobian of power system algebraic equations w.r.t.
power market state variables.

Using the Schur complement formula,2 the eigenvalues of the
coupled dynamic system can be computed from the matrix of
(25).

VII. NEW ENGLAND 39 BUS SYSTEM EXAMPLE

The effect of the interaction between the market and the
power system is illustrated using the classical New England
39 bus system. All the synchronous machines are modeled as
two axis 4th model except bus 1 which is treated as a 3rd order
flux decay model. All generator exciters and voltage regulators
are IEEE type 1. The turbines and speed governors for all the
generators are modeled using the aforementioned 2nd order
model. The original system data can be found in [1], [14].

A. Stability of the Power System
Using the modeling discussed in the preceding sections, the

computation of eigenvalues for system dynamics is straightfor-
ward. The eigenvalue plot for this stable power system is shown
in Fig. 4. There is a 0 eigenvalue. It comes from keeping all gen-
erator rotor angles as state variables. If synchronous machines
damping is ignored, a second zero eigenvalue appears [6].

2An augmented solution is also possible [13].
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Fig. 4. Eigenvalue plot of stable New England system.

Fig. 5. Stability region of the ideal market-only dynamics w.r.t. � and � for
the New England system.

B. Stability of Ideal Market-Only Dynamics
This section analyzes the stability of the ideal market-only

dynamic model presented in Sections II and III. If the market
dynamics are not coupled with the electric power system, the
computation of the eigenvalues associated with the continuous
market dynamics model is trivial. The market parameters are
given in the Appendix.
Assume the market parameters associated with power pro-

ducers and consumers are fixed. The stability region for the
ideal market-only dynamics with respect to market parameters

and is the shaded area in Fig. 5. For a specific pair of
min and $/MWh min (see Fig. 5), there is

a pair of critically stable modes .3 The com-
putation of the corresponding normalized participation factors
shows that these two modes are mainly associated with system
energy imbalance and power price with the corresponding
normalized participation factors 1.00 and 0.30, respectively.

3Markets in general tend to exhibit stable but oscillatory behavior with some
poorly damped modes common. Power systems are generally designed to have
only well dampedmodes. These different features of markets and power systems
must be taken into consideration when interpreting results from this work.

Fig. 6. Stability region of the coupled system dynamics w.r.t. � and � for
New England system.

Fig. 7. Stability regions of the ideal market-only and coupled system dynamics
w.r.t. � and � for New England system.

C. Stability of Interconnected System Coupled With Frequency
Error Market Dynamics

Consider next the stability of the coupled system. In order to
examine the mechanism of power market design, the frequency
error market dynamic model, described in Section V, is used
here. Using the formulation derived in Section VI, the eigen-
values of the coupled system can be easily calculated. The sta-
bility region with respect to the market parameters and is
shown as the shaded area in Fig. 6. For the pair of min,

$/MWh min, (see Fig. 6), there is one pair of criti-
cally unstable modes . The normalized partic-
ipation factors associated with power supply of power pro-
ducers, power price , machine rotor angles , the machine rotor
speed deviation , and the turbine mechanical power output
are shown in Table II. For this specific pair of unstable modes,
the states of the swing dynamics of the last machine have more
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TABLE II
SELECTED NORMALIZED PARTICIPATION FACTORS ASSOCIATED WITH THE UNSTABLE MODES (������ � �������) FOR THE
COUPLED SYSTEM (� � ��	
, � � ����$/MWh��	
, THE PARTICIPATION FACTOR ASSOCIATED WITH PRICE � IS 0.74)

TABLE III
SELECTED NORMALIZED PARTICIPATION FACTORS ASSOCIATED WITH THE SAMPLE POINT IN REGION (3) FOR THE COUPLED

SYSTEM (� � �����	
, � � ���$/MWh��	
, THE PARTICIPATION FACTOR ASSOCIATED WITH PRICE � IS 0.13)

TABLE IV
SELECTED NORMALIZED PARTICIPATION FACTORS ASSOCIATED WITH THE SAMPLE POINT IN REGION (4) FOR THE COUPLED

SYSTEM (� � ����	
, � � ���$/MWh��	
, THE PARTICIPATION FACTOR ASSOCIATED WITH PRICE � IS 0.76)

participation due to its relatively large inertia and large contri-
bution to system energy imbalance. Putting the above two plots
together on scaled coordinate axes leads to a plot of stability re-
gions for both ideal market-only dynamics and coupled system
dynamics. This plot is shown in Fig. 7.
There are four regions (shaded areas) in this plot. Region (1)

and (3) are the stability regions for ideal market-only dynamics.
Region (1) and (2) are the stability regions for coupled system
dynamics. In region (1) both of the market-only system and cou-
pled system are stable. In region (2) the market-only system
is unstable, yet the coupled system is stable. In region (3) the
market-only system is stable, but the coupled system is unstable.
In region (4), both of the systems are unstable. From Fig. 7 it
is clear that for the different combination of market parameters

, one may have very different stability results. Hence,
when designing power market policies, both of market system
and electric power system must be considered to ensure reliable
and secure operation.
To examine the nature of potential instabilities, consider one

sample point, ( , ) pair, in each region. These four points
are shown in Fig. 7.

• For (0.2, 0.2) in region (1), both of the ideal market-only
system and the coupled system are stable.

• For (0.5, 0.2) in region (2), the coupled system is stable,
but the ideal market-only system is unstable with one pair
of unstable modes , mainly associated
with system energy imbalance and power price with the
corresponding normalized participation factors 1.00 and
0.15.

• For (0.15, 0.3) in region (3), the ideal market-only dy-
namics are stable, yet the coupled system is unstable with
only pair of unstable eigenvalues . Some
corresponding normalized participation factors associated
with this pair of unstable modes are listed in Table III.

• For (0.8, 0.4) in region (4), both of the market-only
system and the coupled system are unstable. The only one
pair of unstable modes for ideal market-only dynamics
is , which are mainly associated with
system energy imbalance and power price with the corre-
sponding normalized participation factors 1.00 and 0.30,
respectively. The unstable mode for the coupled system
is . Some normalized participation
factors associated with these two eigenvalues are listed in
Table IV.

VIII. CONCLUSION

This paper begins from a simple, intuitive dynamic model
for consumer/producer response and price setting in an electric
power market. Energy imbalance (the integral of power supply
and demand mismatch) is hypothesized as the key driving term
for updating price. A weighted average frequency is used as an
approximation to energy imbalance. A coupled dynamics model
that encompasses consumer/supplier response, market price up-
date, and the physical power/system dynamics is considered.
The key contribution of the paper is to examine the dynamic

impact of market design parameters (such as the sensitivity of
price to energy imbalance, or to its surrogate, average frequency
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error). In the market-only dynamic model, the system appears
able to tolerate high sensitivity of market price to energy imbal-
ance. In the more accurate coupled model that includes phys-
ical dynamics, this sensitivity behaves as a feedback gain, and
its value must be much smaller in order to maintain stability.
The implications of this result are significant: those designing

the power exchange policies and rules for ISOs for deregulated
power market must accommodate to the dynamic needs of
the system, and those designing system electromechanical
controls must take into consideration the conditions that will be
imposed on the power system by operation in a market-driven
environment.
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APPENDIX

TABLE V
MARKET DATA FOR THE NEW ENGLAND SYSTEM
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