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Abstract   This paper presents an alternative to estimate armature circuit parameters of large utility generators using 
real time operating data.  The alternatives consider the use of orthogonal series expansions in general and Hartley series 
in particular.  The main idea considers the use of orthogonal series expansions for fitting operating data (voltage and 
currents measurements) and/or synthetic input-output data.  This allows writing a set of linear algebraic equations that 
can be solved for the unknown parameters using the pseudoinverse.  Hence, the essence of the approach is the linear 
state estimation and the purpose of generalizing the solution to accept orthogonal series expansion in general is indeed 
providing ‘windows’ to view the same problem.  Although solutions are the same in all domains one wishes to employ 
the window that gives the best view and the most efficient computation.  The approach may be used for static as well as 
dynamic problems. The approach is tested for noise corruption likely to be found in measurements.  The method is 
found to be suitable for the processing of digital fault recorder data to identify synchronous machine parameters. 
 

 
1. INTRODUCTION 

     
 The use orthogonal series expansions are well known alternatives for approximation of functions. However, 

they may also be used to establish algebraic methods for the solution of problems described by differential equations, 
such as analysis of linear time invariant and time varying systems, model reduction; optimal control and system identi-
fication. The problem of system identification using orthogonal includes linear time invariant lumped and distributed 
systems [23], linear time varying lumped and distributed systems [12,13] and nonlinear systems [16,17]. The utilization 
of this series has the common objective of representing models efficiently, and calculating intermediate parameters rap-
idly for the given problem.  It can be said that the various domains cited are alternative ‘windows’ to view a problem, 
and one wishes to employ the window that gives the best view of the problem and the most efficient calculation. Al-
though solutions are the same in all domains, the bandwidth of the problem and numerical characteristics of intermedi-
ate matrices used are different, e.g. the set of equations of a particular problem may be sparser (or fewer) in one domain 
than in others. Typical examples are the applications of Laguerre polynomials [10,11], Legendre polynomials [12,13], 
Chebyshev polynomials of the first [14] and second kind [15], Fourier series [16], Walsh series [17], block-pulse series 
[18], Haar series [19] and Hartley series [20].  
 

The key point of the approach adopted in this paper for dynamic problems is the use of  the operational matrix 
P which relates the coefficients of a given function and the coefficients of its integral . Using the operational matrix of 
integration overcomes the necessity to use differentiated data, a fact that is usually avoided either by integration of the 
data or by using discrete time models. In fact, orthogonal series expansion and their operational properties transform the 
original differential input-output model to a linear algebraic (or regression) model convenient for direct least squares or 
pseudoinverse solution. 

  
Traditional methods of obtaining synchronous machine parameters are specified in IEEE and ICE Standards 

and other national electrical standards from many countries. These methods are often conducted under off-line condi-
tions. The parameters obtained by these methods may not truly characterize the synchronous machine under various 
loading conditions.  Many researchers have addressed the issues and problems associated with off-line parameter meas-
urements. However, the interest and need for on-line estimation of synchronous generator parameters has arisen in re-
cent years. On-line methods of obtaining machine parameters are most attractive due to minimal site/system impact and 
principally because they do not involve service interruption.  On-line methods also represent a way to take into account 
parameter deviation due to changes in load levels, saturation, and machine aging.  

  
     In this study, the utilization of the Hartley series in a linear state estimator for synchronous generator pa-

rameters is illustrated but the approach may account for the use of different domain.  The method is based on a dq0 



 

 

model.   The proposed method is verified using both synthetic data and operational data from a digital fault recorder. 
The effect of measurement noise corruption, always present in real time data acquisition, is also investigated. 

 
2. ORTHOGONAL SERIES EXPANSIONS AND OPERATIONAL PROPERTIES 

In this section general background on approximation using orthogonal series expansions and operational matri-
ces that is relevant for the material that follows is presented. The notation of presentation is kept general in order to in-
clude all possible domains.  With exception of some mathematical XXX‘rarezas’XXX, any function of time f(t) may be 
approximate to arbitrary errors using orthogonal series expansions.  It can be stated that all basis comprising the family 
of the orthogonal series expansions have same fundamental properties such as orthogonality that makes easy identifying 
their coefficients. Orthogonal series expansions also share other properties known as operational properties. In spite of 
having many common properties, orthogonal series expansions are different in their respective kernel functions or basis 
functions. Accordingly, while the kernel function of a complex series is e-jωt, the Hartley series utilizes cos(ωt) + 
sin(ωt), also known as the cosine-and-sine function or cas(ωt) as the base kernel. There exist also orthogonal series ex-
pansions where the kernels are step functions such as Walsh series, block-pulse series or the basic Haar wavelet  kernels 
are not restricted to be periodic such as the trigonometric or Walsh functions, that may be in fact aperiodic such as the 
wavelet family or the orthogonal polynomials. The later alternatives may be in fact better suited for problems involving 
aperiodic phenomena such as transient responses of systems. 

 
If the vector of basis function T(t) is used to include a particular set of basis kernels and denoted as (note that 

the prime notation indicates transposition), 
[ ] '

101)( nn TTTTTtT LL −−= . 
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Each coefficient of vector F,  Fn is calculated using inner product in Equation (1), 
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The operational properties of the orthogonal series may be written in terms of the operational matrices of inte-
gration and differentiation. The main concept around these properties is the fact that the integral of a orthogonal series 
may be also expressed as a orthogonal series. The same can be stated for orthogonal series and their derivatives. In gen-
eral terms the operational matrix of integration may by defined as 

                                                                    )()(
0

tPTdT
t

=∫ ττ                                                                                      

(2) 
where P is the operational matrix of integration. It becomes apparent from Equation (2) that operational matri-

ces provide a way to transform dynamic equations into algebraic equations as it was mention before and the concept 
may be in fact readily related to similar property observed in Laplace transform. Similarly, a operational matrix of dif-
ferentiation may be defined to hold Equation (3). 
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were D is the operational matrix of integration. Higher order derivatives and integrals may be found by using 

equation (2) and (3) recursively. Thus the nth derivative and integral of an orthogonal series may be written as 
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In general algebraic methods obtained from operational matrices may be stated as one approach. The particu-
larities of each domain are reflected in the numerical characteristics of matrices P and D and vector of coefficients F but 
do not modified the qualitative characteristic of the method. As an example of this, the operational matrices of integra-
tion and differentiation for the Hartley and Walsh domain are shown in Figure (1). It can be seem from Figure (1) that 
structures of P and D of different domains varies and also the sparsity of the matrices is different which make some of 
them more efficient than others for applications such as optimal control and system analysis. In terms of approximations 
the use of different domains is also relevant. For instance it may be enough a single term Walsh series to represent the 
switching function in a power converter but the signal may required a long Hartley series to achieved the same ap-
proximation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1) Operational matrices of integration, P, and differentiation, D, in Hartley and Walsh domains 
 
Open literature also shows some other matrices related to orthogonal series expansions that are relevant espe-

cially for the analysis of time varying systems such as the product matrix and matrix of coefficients [16] but they are not 
addressed in this paper. In recent years many papers have written to define the operational matrices in several domains. 
Appendix A shows how matrix P and D may be found for the orthogonal series of Hartley used to obtained the reported 
here. 

 
 

MACHINE MODEL 
                          

     A state space mathematical model for synchronous machine is used in stability studies is used to validate 
the approach presented in this paper. There are two models that have been developed, one using currents as state vari-
ables and another using flux linkages. The flux linkage models have nonlinear characteristics due to saturation and are 
very difficult to measure.  Continuous measurements of stator and field voltage and current are available and will be 
used as state variables in the current model.  The synchronous machine model considered here is applicable to a round 
rotor.  It has three stator windings, one field winding and two damper or amortissuer windings.  Applying Park’s trans-
formation and with the appropriate simplifications, the state space equations for a synchronous machine can be written 
as given by Equation (4).  Derivation of Equation (4) can be found in references [21] and [22], 
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In practice, constants used in Equation (4) are obtained directly with help of the manufacturer’s stability study 
data sheets, curve saturation and the equivalent circuit of  a synchronous generator. The derivation and calculation of 
the parameters for the generator under study are given in reference [22].  

 
 

2. PARAMETER IDENTIFICATION PROBLEM IN SYNCHRONOUS MACHINES 
     There are numerous applications for which the parameters of a synchronous generator need to be measured 

or estimated.  For example, transient stability studies are routinely done within reliability areas in order to study the 
consequences of line switching and unit outages.  In many cases, ‘post mortem’ studies are done to determine why the 
system responded the way it did – perhaps during a fault, unit outage, or component failure.  For these studies, accurate 
models are needed.  In most cases, manufacturers data are used to satisfy the parameter needs of synchronous generator 
models.  However, saturation, nonlinearities, and machine aging may result in inaccuracies when manufacturers’ data 
are used.  In addition, there is an increasing need to use parameter identification to determine either incipient or existent 
failures:  for example, a turn-to-turn short in a field winding of a large generator may be determined through the use of 
an on-line parameter estimator. When values of field resistance and inductance, and mutual inductances relating to the 
field winding are estimated as ‘out of range’, an alarm may be issued to indicate the failure.  

 
Traditional methods of obtaining synchronous machine parameters are specified in IEEE and ICE standards 

and other national electric standards from many countries. A major drawback of these methods is that they are often 
conducted under off-line conditions. The parameters obtained by these methods may not truly characterize the synchro-
nous machine under various loading conditions. Owing to this, on-line estimation of synchronous machines has arisen 
in recent years. On-line methods are most attractive due to minimal site/system impact and principally because they do 
not involve service interruption. However this ‘nice’ feature is obtained at the expenses of having to estimate the pa-
rameter under more constrained scenarios.  

Any experimental design must take account of the constraints on the allowable experimental conditions. Typi-
cal constraints that might be met in practice are: 

 
• amplitude on inputs and outputs or internal variables 
• power constraints on inputs, outputs or internal variables 
• total time available for the experiment 



 

 

• total number of samples that can be take or analyzed 
• maximum sampling rate 
• availability of transducers and filters; and 
• availability of hardware and software for analysis 

 
Which of the above mentioned constraints are important in a particular experiment will depend upon the situa-

tion. On-line experiments designed for parameters of large utility synchronous generator, for instance, must be con-
ducted bearing in mind that the impact on the power quality delivered must be minimized. In particular industrial loads 
allow only small percents voltage sags during few cycles. However, in most cases this constraint also reduces the in-
formation provided by the experiment because small disturbances will excite only some modes of the synchronous ma-
chine making impossible to observe estates and parameters related to modes that have not been excited by the particular 
inputs in case. Availability of the transducers is also an important restriction in parameter estimation of electric ma-
chines in general since there are not methods for measuring damping currents or field measurements are not easily in-
strumented. Based on all this concepts a three stage identification procedure is proposed for the linear machine model 
identification 
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by faults and other large transients caused by other than experimental design for identification purposes. The stages are 
illustrated in Figure (2). 

4. THE FREQUENCY DOMAIN ESTIMATOR FORMULA 
      Consider a deterministic time-invariant single-input single-output (SISO) system with zero initial condi-

tions of the type 
)()()()( tuBtyA nn ρρ =                                                                                                   (5) 
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The problem is to determine (compute or estimate) the 2n parameters a0 , a1, … , an-1, b0,  b1,…,  bn-1 by using a 
record of input-output measurements {u(t),y(t)} over an interval T.  Without loss of generality, assume that 

 
                                                     T={t;  0 ≤ t ≤ 1}. 
If 
                                                    T={t;  0≤ t ≤ tf} 
the time interval is normalized by σ=t / tf to obtain the normalized interval , 
                                                    T= {σ;  0 ≤ σ  ≤  tf}. 
At this point, the synchronous machine model (Park’s equations) is introduced in form by referring to one of 

many references, e.g., [21], 
•

−−= ZBAZFF . 
To solve the problem of parameter identification, the differential which involves the derivatives of the avail-

able input output data must first be converted to an algebraic model.  Functions y(t) and u(t) are expanded in a Hartley 
series and the operational matrix of differentiation  is successively employed to yield, 
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In these expressions, Y and U are the Hartley series coefficients of y(t) and u(t) respectively, i.e., 
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Using Equations (5)- (7), the machine model becomes, 
 )()()()( tUTDBtYTDA nn = .                                                                                          (9) 
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yields a model appropriate for the pseudoinverse solution, 
 
                                                        [ ] YDUUDUDYYDYD nTnnnn =−−− LL 121θ . 
 
Or in compact form, 

θQ = q.                                                                                                                      (10) 
Finally, solving for the parameters,  



 

 

 += qQθ                                                                                                                     (11) 
where the ‘+’ superscript means the pseudoinverse.  Similar equations may be derived using the operational 

matrix of integration and the basic formula can be readily extended to account for multiple input multiple output 
(MIMO) systems as well as for accounting for noise effects without knowing its stochastic nature [23] 

. 
5. ESTIMATION OF ARMATURE CIRCUIT PARAMETERS 

     To illustrate the identification approach a one machine infinite bus is simulated for a specific steady state 
operating point.  The constants in Park’s state voltage equation [21-22] are obtained directly (or by simple calculation) 
from the manufacturers’ stability study data sheet and  saturation curves.  The detailed derivation of these constants for 
the example shown here can be found in [22].  Table (1) lists the final per unit quantities that are used in exemplar stud-
ies to follow. 

 
Table (1) Example machine parameters 

Pa-
rameter 

V
alue (per 

unit) 

Description 

rr ba =
 

0
.0027 

Stator phase re-
sistance 

Rn 1
00 

Equivalent neu-
tral resistance 

qL =
 

1
.72 

Equivalent 
quadrature axis inductance 

QM =
 

1
.27 

Mutual induc-
tance between phase and 
damper winding Q 

d xL =
 

1
.80 

Equivalent di-
rect axis inductance 

MF 1
.339 

Mutual induc-
tance between phase 
winding and field winding 

MD 1
.339 

Mutual induc-
tance between phase 
winding and damper 
winding D 

Fr  9
.722·10-4 

Field resistance 

Dr  0
.01254 

Direct axis resis-
tance 

Qr  0
.01632 

Quadrature axis 
resistance 

L0 = 
x0 

0
.150 

Zero sequence 
inductance of stator 

Ln 1
00 

Neutral induc-
tance 

F lL =
 

0
.1353 

Field inductance 

MR = 
LAD 

1
.64 

Mutual induc-
tance between field wind-
ings and damper winding 
D 

LD = 
lD 

0
.1321 

Rotor direct axis 
inductance 

LQ = 
lQ 

0
.03059 

Rotor quadra-
ture axis inductance 

 



 

 

     The estimation of the armature parameters employs the Moore-Penrose pseudoinverse.  This method is 
identical to the least squares estimation for linear systems. 

     After the one-machine infinite bus system is simulated and steady state measurable states and inputs are col-
lected for estimation, Park’s state voltage equation are written in the compact form 

•
−−= IBAIV                                                                                                               (12) 

where V  refers to the forcing functions (dq0 and field voltages),  I  is the state vector and A and B are the ma-
trices of machine parameters.  Since the armature parameters are estimated from steady state data the following model 
can be established in terms of dq axis variables taking into account that in this operating point damper winding currents 
and the rate of change of stator flux linkages are zero, 
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that for estimation purposes should be rewritten as 
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Having collected measurable variables vd, id, vq, iq, vF, iF and the Hartley coefficients of each variable Equation 
(14) in the frequency domain becomes 
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where Vd , Id , Vq , Iq, are the vectors containing the Hartley coefficients of variables vd ,id, vq, iq.  Parameters are 
obtained from solution of Equation (11). 

     In order to obtain parameters from Equation (15), the one machine infinite bus system was simulated  for vfd 
disturbances within 2% and steady state data before and after the disturbances are utilzed for estimation. The estimation 
results obtained from this experiment are outlined in Table (2).  At this point the algorithm was also tested for noise 
corruption that often appears in real time measurements. The algorithm is tested for different values of SNR (signal / 
noise ratio).  It can be seen that in absence of noise the algorithm is able to recover armature parameters without error. 

 
Table (2) Estimates of armature parameters (per unit, steady state components used in estimation process) 

Case R
a F  d 

L
q 

NR ctual 
Values 

0
.0027 .64 .80 

1
.72 

stimate 
0

.0027 .64 .8 
1

.72 

rror 
0 0

stimate 
0

.0027 .64 .80 
1

.72 
05 

 Error 
0 0

stimate 
0

.00273 .6401 .8002 
1

.7199 
03 

 Error 
1

.133 .006 .0125 
0

.0017 

stimate 
0

.002638 .6403 .8004 
1

.72005 
00 

  Error 
2

.26 .0183 .026 
0

.003 

stimate 
.

00271639 .6402 .80034 
1

.720007 
00 

 Error 
0

.607 .0125 .0212 
0



 

 

stimate .6426 .8030 
1

.72144 
00 

 Error .1576 .183 
0

.0877 

stimate .63075 .7893 
1

.7144 
0 

 Error 

 

.567 .6551 
0

.339 
 

     It can be also seen from Table (2) that performance is very good even for cases for high levels of noise cor-
ruption.  Parameters were recovered with an error of 1% for SNR levels up to 200:1.  For larger levels of noise the pa-
rameter with the smallest value is impossible to recover.  However, the remainder of the parameters can be recovered 
within remarkably low error even for considerable levels of noise such as SNR 10:1.  In this case, the largest detected 
error was 1.2%.  

 
6. DATA TRANSFORMATION 

     The measurements provided include vab, vbc, vca, ias, ibs, ics, vfd, and ifd.   Since the machine is connected to a 
large power system with almost balanced conditions, the electric frequency, ω, varies little from the rated line fre-
quency. This facilitates the transformation since instead of using Park’s transformation matrix at each time step, the 
following equations can be used. to converted abc quantities to dq0 axis equivalents  
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Data transformed from abc axis to a dq0 quantities is noisy due to sensor noise, electromagnetic interference 

and especially due to the AC to DC rectification process at the excitation system. Typical levels of noise are shown in 
Figure (3). Figure (3) shows steady state operating variables in dq0 quantities corresponding to a real operating point 
recorded at at terminals of a large utility company. 
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Figure (3) Steady state measurements in dq0 quantities 
 
 Additional to the transformation, some authors [5] proceed to filter measurements before parameter estimation 

is carried out. In the method proposed in this paper this filtering stage was mot required because the truncation of the 
orthogonal series is playing the role of a low pass filter. 

 
7. ESTIMATION OF ARMATURE CIRCUIT PARAMETERS FROM OPERATING DATA 

In order to validate our approach two DFR data set with similar steady state operating conditions were used to 
estimate the armature parameters. The main variables describing the two steady state operating conditions are shown in 
Table (3). 

 
Table (3) Operating point 
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It was impossible to recover r from the limited sets of data available but considering that the sensitivity of the 
parameters Mf, Ld and Lq is negligible for changes in r, this value was set constant at the manufacturer’s value. 

Table (4) summarizes the estimated parameters for the machine cited earlier.  The manufacturer’s data are 
shown for comparison only:  there may be disagreement between estimated and manufacturer’s data due to estimation 
error and parameter variation with operating point, saturation, and age. 

 
Table (3) Estimated values for an actual synchronous machine (note:  ‘a’ is the field / stator turns ratio) 

Pa-
rameter 

Estimate (mH) 
Manufacturer’s value (mH) 

ALa

d 
61.3 

Ld 8.0 
Lq 5.0 

 
The accuracy of the parameters is shown by simulating outputs using model in Equation () and the estimated 

parameters. Figure (4) shows both real and simulated response for one of the data sets. Similar results were obtained for 
the other data set. 
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Figure (4). Real and simulated operating data 
 

8. ESTIMATION OF FIELD RESISTANCE DEGRADATION 
     The parameter estimation algorithm was developed originally to detect field turns shorts for the synchro-

nous generator under study. The basic approach was to use the algorithm for estimating the field winding parameters, 
mainly field winding resistance, for different time windows so that incipient changes of this parameter could be identi-
fied and accordingly corrective action taken.  

     A field winding failure occurred and reported to authors while this research was undertaken.  Two different 
data sets recorded before (data set 1) and after (data set 2) the field winding failure were used for the parameter identifi-
cation as listed in Table (4).  As can be seen from Table (4), the estimated value of rf has changed by 4.7 % from its 
estimated value during the field failure. In identifying parameter variation, the operating point of the machine needs to 
be taken into consideration.  This generally includes temperature of the windings as well as electrical parameters.  How-
ever, for simplified purposes of this paper, the change in rf illustrated in Table (4) demonstrates the potential use of the 
Hartley estimation algorithm for the determination of turn-to-turn winding faults. 

 
Table (4) Operating points for the data sets recorded for field winding failure detection 
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9. CONCLUSIONS 

     The main conclusion of the study is that the Hartley series is useful for the estimation of synchronous ma-
chine parameters, including on-line estimation.  The accuracy of typical synthetic data tests indicates that discrepancies 
in parameters (estimate vs. given) in the order of 1% or less are attainable through SNR 50:1.  The algorithm was also 
evaluated using steady state operating data. The parameters obtained are in the range of the values saturated values of 
the machine.  One potential application of the estimator is in the detection of turn-to-turn shorts in the field winding of 
synchronous generators. 
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APPENDIX A 

THE HARTLEY SERIES AND THEIR OPERATIONAL PROPERTIES 
     In this section a brief review of the Hartley series is given.  It can be stated that the kernal function of the 

familiar Fourier transform and Fourier series is the complex exponential, e-jωt.  The Hartley transform and series utilizes 
a similar frequency based kernal, the function cos(ωt) + sin(ωt), also known as the cosine-and-sine function or cas(ωt).  
Thus Hartley technology does not employ complex numbers.  Reference [24] is a definitive work on the subject. 

     The Hartley series basis function T(t) is denoted as (note that the prime notation indicates transposition), 
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Thus a periodic function of period Tp can be approximated by a 2n+1 term Hartley series as 
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Each coefficient of vector F,  Fn is calculated using Equation (A1), 
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Similar to other orthogonal series expansions, the Hartley series possesses operational properties, namely an 
operational matrix of integration and differentiation. These can be defined as follows:  consider the integral, 
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Use of the Hartley series for approximating Equations (A2) and (A3) yields, 
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These integral expressions imply that the integral of a basis function can be also expanded in a Hartley series.  
Accordingly the following integral may be defined 
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Following a similar procedure to that described in previous section, an operational matrix for differentiation 
may be found,  

0
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In Equation (A5), the notation ν is used to denote frequency, equivalent to ω in radians per second.  The ν nota-

tion is used to distinguish the Hartley from the Fourier domain.  If n frequencies are considered, the following expres-
sion holds 
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or in matrix form 
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where D is the operational matrix of differentiation which has the following form 
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