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Abstract

This paper reports on the development of a comprehensive framework for the analysis and formulation of bids
in competitive electricity markets. Competing entities submit offers of power and energy to meet the next day’s
load. We use the England and Wales Power Pool as the basis for the development of a very general competitive
power pool (CPP) framework. The framework provides the basis for solving the CPP dispatcher problem and for
specifying the optimal bidding strategies. The CPP dispatcher selects the winning bids for the right to serve load
each period of the scheduling horizon. The dispatcher must commit sufficient generation to meet the forecasted
load and reserve requirements throughout the scheduling horizon. All the unique constraints under which electrical
generators operate including start-up and shut-down time restrictions, reserve requirements and unit output limits
must be taken into account. We develop an analytical formulation of the problem faced by a bidder in the CPP by
specifying a strategy that maximizes his profits. The optimal bidding strategy is solved analytically for the case
of perfect competition. The study in this work takes into account the principal sources of uncertainty—the load
forecast and the actions of the other competitors. The formulation and solution methodology effectively exploit
a Lagrangian relaxation based approach. We have conducted a wide range of numerical studies; a sample of
numerical results are presented to illustrate the robustness and superiority of the analytically developed bidding
strategies.

Keywords: uniform price auction, competitive power pool, Lagrangian relaxation, unit commitment, generator
optimal bidding policy

1. Introduction

The privatization of the electric supply industry in England and Wales marks a significant
development in the restructuring of the electricity business around the world. The most
striking feature of the new system is the England and Wales Power Pool (EWPP) which
plays a key role in enabling competition in electricity markets. The Pool is a centralized
entity that controls the scheduling and dispatch of generation to meet load around the clock
and operates the electricity spot market. Virtually all power is transacted through the Pool
and the multiple buyers and sellers have set up what has become the largest competitive
electricity market in the world. It is this pool-based competitive market for power that
provides the basis for the work in this paper. Our focus is on the position of a seller in

∗Research performed under sponsorship of the Grainger Foundation.
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such a structure. In particular, we consider the task such a seller faces in constructing
the offer to sell power, or bid, to take best advantage of the sealed bid auction given the
generating resources, costs and constraints. We refer to this as theoptimal bidding strategy
problem. To formulate and attack this problem, we develop a mathematical framework of
the operation of a competitive power pool. Our work explicitly considers the competitive
bidding mechanism in electricity and takes into account the unique features and problems
associated with the generation of electrical power.

We provide a brief review of the EWPP operation (White et al., 1990). The Pool dispatcher
is charged with determining on a daily basis the schedule for the so-called availability
declaration period (ADP), a 39-hour period running from 9:00 p.m. onday 0, the bid
submittal day, to 12:00 noon onday 2. The generation schedule for the period known as
theschedule day, running from 5:00 a.m. onday1 to 5:00 a.m. onday2, is then accepted
as the actual schedule for the next day. By 10:00 a.m. each day, the dispatcher produces
a forecast of national demand for every half hour of the ADP. Also by 10:00 a.m., each
bidder must submit anoffer file for each of hisgensets. A genset is a unit or a group of
units which are considered together for the purposes of the dispatch. The offer file contains
information on theavailability [maximum capacity] of the genset for each of the 78 ADP half
hours; theoffer priceof the genset; the gensetstart-up prices; and, the genset operational
characteristics. The prices charged from the Pool for operation and start up need not have
any relation to actual costs. There is no obligation on a bidder to reveal its genset’s true costs.
The genset offer price is specified as a piece-wise linear function known as the Willans line
(Littlechild, 1991 ). A maximum of three segments can be submitted per genset. Figure 1
shows an example.

The Willans line is completely specified by at most 8 parameters: the no-load price
bo

i , three incremental pricesη1
i , η

2
i , η

3
i , two elbow pointsε1

i , ε
2
i , and the minimum and

maximum power output of the gensetpmin
i and pmax

i .
Using the information submitted by the generators, the dispatcher determines the schedule

of generation to meet the forecasted demand at minimum cost to the Pool. This problem is
essentially the unit commitment. The Pool Rules specify the use of a scheduling algorithm
known asSettlement Goal, which uses heuristics to perform this task (Executive Committee

Figure 1. Example of a Willans line.
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Figure 2. Determination of the system marginal price.

for the Pooling System in England and Wales, 1993). Basically, the dispatcher arranges the
bidding genset blocks in order of increasing price to form amerit order listfor each ADP
half hour.

The price of the most expensive genset dispatched in any half hourt is designated as the
System Marginal Price (SMPt ) (Executive Committee for the Pooling System in England
and Wales, 1993), for that half hour, as is shown in figure 2. Each genset that operates during
half hourt receives a payment that includes SMPt for each MWh of energy generated during
that time. Hence every genset is paid more than or equal to the price specified in the offer
file. Generators also receive the submitted start-up price each time the unit is started up.

The generation schedule that results is known as the unconstrained schedule since trans-
mission systems constraints are ignored. Once the unconstrained schedule is determined,
the operating schedule for each genset is provided by the Pool dispatcher.

The bidder, thus, submits a bid for theright to serve load. Under competitive conditions,
the bidder prices must be sufficiently low for the Pool dispatcher to select the unit to be
included in the commitment list. Since the bidder receives a payment which is greater
or equal to its bid price the challenge is to formulate a bid that permits the bidder to
maximize profits. Given the large-scale and nonlinear nature of the problem, the auction
theory literature (Vickrey, 1961; Milgrom, 1981; Wilson, 1977) has limited application.
The approach developed here is new and exploits well the structural characteristics of the
analytical CPP framework. The optimal strategy under conditions of perfect competition
constructed with the analytical approach results in bidding at cost and offering capacity
for dispatch to the maximum extent. This result is well known in microeconomics for a
general commodity without the complex constraints such as are present in power system
operations. The remarkable contribution of this work lies in the explicit representation of the
various constraints and considerations under which power systems operate. The analytical
development not only allows the optimal bidding strategy formulation but also is useful in
providing estimates of bidder profit volatility and analytical expressions for the evaluation
of the returns on investments aimed at improving the performance of generating units. We
have conducted a wide range of numerical studies; a sample of numerical results are given
to illustrate the robustness and superiority of the analytically developed optimal bidding
strategies.
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The paper has four additional sections. In Section 2 we develop the general framework
of a Competitive Power Pool (CPP) in which generators compete to serve load. This very
general model includes the EWPP as a special case. In Section 3, we use the mathematical
CPP framework to formulate the general optimal bidding strategy problem. We solve this
for the case of perfect competition. Section 4 presents the numerical results, which illustrate
and elucidate the analytical results. The final section summarizes the key results and presents
some directions of future research.

2. The Competitive Power Pool Framework

We develop a generalcompetitive power pool(CPP) framework which we use to formulate
and analyze optimal bids. The commitment and dispatch of units in the CPP are based on
a competitive auction procedure. The market sellers, typically generators, submit a sealed
bid stating the price at which they are willing to sell power. The CPP dispatcher, the entity
responsible for coordinating all energy transactions with the CPP, selects the set of least
expensive units to meet the forecasted demand. The CPP structure incorporates the salient
features of the EWPP.

We formulate the CPP dispatcher problems by considering the bids received from the set
of M bidders. Each bidβi has three components:r The bid variable price bfi (·): describes the per hour cost to the CPP as a function

of MW provided. We assume that the bid variable price is a piecewise linear function
mappingL[ pmin

i , pmax
i ] intoR, the set of real numbers wherepmin

i (pmax
i ) is the minimum

(maximum) output of bidderi ’s unit.r The bid start-up price bsi (·): describes the cost incurred by the CPP whenever uniti is
started up. We assume that the start-up price is a function of the down time of the unit
with bs

i : [0,∞)→ R.r The bid offered capacity ai = [ai,1,ai,2, . . . ,ai,T ]T: a vector whoset th componentai,t is
the maximum capacity offered by bidderi to the CPP dispatcher for use in time periodt .

We assume that the bidder submits the correct operational data for the unit. These consist
of pmin

i , pmax
i , r max

i , the maximum spinning reserve capability of uniti andτ u
i andτ d

i the
unit i minimum up and down times, respectively. The generator isnot obliged to reveal
any information concerning true costs. However, since a bidder must fulfill any schedule
requested by the CPP dispatcher, the operational data must appropriately reflect actual
operational information lest a schedule be imposed which is physically infeasible. The unit
operational data isnot a decision variable for bidderi . On the other hand, the bid variable
price, bid start-up price and bid offered capacity arestrategicdecision variables that the
bidder selects to maximize profits.

We define a bid of bidderi to be the tripleβi ={b f
i (·), bs

i (·),ai }. A bidβi is admissible if
b f

i (·) ∈ L[ pmin
i , pmax

i ], bs
i (·) ∈ C[0,∞) andai ≥ 0 ∈ RT , whereC[a, b](L[a, b]) denotes

the set of continuous (piece-wise linear) functions on the interval [a, b].
The CPP dispatcher must commit sufficient capacity to supply the forecasted load plus the

reserve requirements. Security and reliability considerations impose reserve requirements
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to allow the system to respond to any contingencies that may occur due to uncertainty
in forecasted operating conditions. Examples are load forecast errors, sudden surges of
demand and forced outages of equipment. The reserve requirements are typically specified
as a deterministic quantity and are a function of the system load and the capacity of the
largest unit committed. Contributors to reserve are synchronized units not operating at
full capacity, fast start units, such as gas turbines, and interruptible loads. Thet-minute
generating unit reserve is the amount of additional load with respect to its current operating
point, which the unit is capable of picking up int-minutes. Thet-minute system reserve
is the sum of allt-minute generating unit reserves of the committed units. The reserve
requirements may be specified as spinning reserves, usually defined as the 5-minute system
reserve, or as operating reserves, usually defined as the 10-minute or the 30-minute system
reserve. Each unit may offer a reserve capacity that does not exceed its physical capability
given its operating level.

A key consideration in the commitment of units is the limitations due to the thermal
characteristics of generating plants. The minimum up time (down time) is the limit con-
straining a unit to require it to operate (remain shut) once it is committed (shut down).
These limits are imposed to provide time for temperature equalization within the turbine so
as to maintain thermal stresses due to temperature differentials within limits of safety. The
limits are a function of unit size and type.

We state the CPP dispatcher problem using the notation of Table 1 and the defini-
tion of the T-dimensional vectorsD= [D1, D2, . . . , DT ]T ,R= [R1, R2, . . . , RT ]T ,ui =
[ui,1, ui,2, . . . ,ui,T ]T , p

i
= [ pi,1, pi,2, . . . , pi,T ]T and r i = [ri,1, ri,2, . . . , ri,T ]T and the

MT-dimensional vectorsu= [uT
1 ,u

T
2 , . . . ,u

T
M ]T , p= [ pT

1
, pT

2
, . . . , pT

M
]T , andr = [rT

1 , r
T
2 ,

. . . , rT
M ]T . The CPP dispatcher problem determines the most economic dispatch that satis-

fies the forecasted demands and required reserves without violating physical and operating
constraints. This is denoted by

P(D,R) = min
u,p,r

{
M∑

i=1

T∑
t=1

[
b f

i (pi,t )ui,t + bs
i (τi,t−1)(1− ui,t−1)ui,t

]}
(1)

subject to
Dt −

∑M
i=1 pi,t ui,t = 0

Rt −
∑M

i=1 ri,t ui,t ≤ 0

}
∀t = 1, 2, . . . , T (2)

pmin
i ≤ pi,t ≤ pmax

i

0≤ pi,t ≤ ai,t

0≤ ri,t ≤ min
{
r max

i , pmax
i − pi,t

}
ui,t ∈ {0, 1}
τi,t satisfies theτ d

i andτ u
i constraints

τi,0 is given



∀i = 1,
2, . . . ,M

t = 1,
2, . . . , T

(3)

We refer to Eqs. (1)–(3) as theprimal form of the CPP dispatcher problem. The triple∑
i ={ui , p

i
, ri }, is called anoperating schedule for unit iand

∑ ={u, p, r} is a system
schedule. The CPP dispatcher problem is the determination of the optimum system schedule
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Table 1. Notation.

Time parameters T is the number of time periods in the scheduling horizon

t = 1, 2, . . . , T , is the time period index

System parameters Dt is the system demand in time periodt

Rt is the system reserve requirement in time periodt

Bidder data M is the number of bidders participating in the CPP

i = 1, 2, . . . ,M is the bidder index

Unit variables ui,t =
{

1 if the unit is in operation

0 if the unit is shut down
is thestatusof unit i in time periodt

pi,t is the real power output of uniti in time periodt

r i,t is the reserve provided by uniti in time periodt

τi,t is the downtime of uniti at the end of time periodt

∑opt ={uopt, popt, ropt} that minimizes total cost to the CPP. We denote by

Äi (ai )
1=
{∑

i

:
∑

i

={ui , p
i
, r i } satisfies Eq. (3)

}
(4)

the set of feasible operating schedules for uniti .
The objective function in Eq. (1) is the sum of the variable and the start-up prices. For

each uniti , the cost incurred by the CPP when uniti serves demandpi,t in periodt is given
by b f

i (pi,t )ui,t . Start-up costs are incurred by the CPP if uniti is shut down in time period
t −1 and is operating in periodt , i.e., if ui,t−1= 0 andui,t = 1. The downtime when started
up is the downtime of uniti at the end of periodt − 1, τi,t−1. Note that with1T as the
length of the time period we expressτi,t recursively in terms ofui,t , t = 1, . . . , T andτi,0:

τi,t = (τi,t−1+1T )(1− ui,t ) ∀t = 1, 2, . . . , T

τi,o is given.
(5)

The objective function is nonconvex. The state space admits complex minimum up and
down time constraints and is discrete inui , which introduces nonconvexity into the set of
feasible schedules. Considering that the time frame in the EWPP is 78 half hour periods and
the number of units can exceed 200, this is a large scale and complex nonlinear optimization
problem.

The use of Lagrangian relaxation (Shaw et al., 1985; Luenberger, 1969) in the solution
of the CPP dispatcher problem may be effectively exploited. This approach leads to the
decomposition of the problem in terms of each bidder and results in the economic interpre-
tation of the Lagrange multipliers as prices. The Lagrangian relaxation technique involves
the construction and solution of a modified problem in which the system-wide constraints
on demand and reserve constraints, which couple all bidders, are used to augment the pri-
mal objective function with their associated Lagrange multipliers. The new problem does
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not enforce the demand and reserve constraints and is therefore “relaxed”. All bidder
constraints, however, are enforced.

We define theT-dimensional vectorsλ= [λ1, λ2, . . . , λT ]T andµ= [µ1, µ2, . . . , µT ]T .
Hereλt andµt ≥ 0 are the Lagrange multipliers, which are non-negative for inequality
constraints (Luenberger, 1969), for the demand and reserve constraints in time periodt ,
respectively. TheLagrangian relaxationof the CPP dispatcher problem is

min
u,p,r

{
M∑

i=1

T∑
t=1

[
b f

i (pi,t )+ bs
i (τi,t−1)(1− ui,t−1)

]
ui,t

+
T∑

t=1

λt

(
Dt −

M∑
i=1

pi,t ui,t

)
+

T∑
t=1

µt

(
Rt −

M∑
i=1

ri,t ui,t

)}
(6)

subject to {ui , p
i
, r i } ∈ Äi (ai ) ∀i = 1, 2, . . . ,M

We can rewrite the Lagrangian relaxation as

min
u,p,r

{
M∑

i=1

T∑
t=1

[
b f

i (pi,t )+ bs
i (τi,t − 1)(1− ui,t − 1)− λt pi,t −µt r i,t

]
ui,t

}
+ λT D+µT R (7)

subject to {ui , p
i
, r i } ∈ Äi (ai ) ∀i = 1, 2, . . . ,M.

we removed the constant termsλT D andµT R from the minimand. The Lagrangian function

φ(λ,µ;D,R)
1= min

u,p,r

{
M∑

i=1

T∑
t=1

[
b f

i (pi,t )+ bs
i (τi,t−1)(1− ui,t−1)− λt pi,t −µt r i,t

]
ui,t

+ λT D+µT R: {ui , p
i
, r i } ∈ Äi (ai ), i = 1, 2, . . . ,M

}
(8)

is separable in terms of bidders as there is no inter-unit coupling in the constraints. This
allows us to decompose the problem intoM subproblems. The subproblem for bidder
i = 1, 2, . . . ,M is

φi (λ,µ) = min
ui ,pi

,r i

{
T∑

t = 1

[
b f

i (pi,t )+ bs
i (τi,t − 1)(1− ui,t − 1)− λt pi,t −µt r i,t

]
ui,t

: {ui , p
i
, r i } ∈ Äi (ai )

}
(9)

For givenλ andµ, theM subproblems can be independently solved in an efficient manner.
Hence the Lagrangian relaxation of the CPP dispatcher problem can be solved efficiently
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for particular values ofλ andµ, giving the valueφ(λ,µ;D,R). It can be shown that the
Lagrangian functionφ(λ,µ;D,R) provides a lower bound forP(D,R) (Finlay, 1995) i.e.,

P(D,R) ≥ φ(λ,µ;D,R) (10)

In particular, if(λ∗,µ∗) is the optimal Lagrange multipliers that maximizeφ, i.e.,

φ(λ∗,µ∗;D,R) = max{φ(λ,µ;D,R) :λ,µ ≥ 0} (11)

then,

L(D,R)
1= φ(λ∗,µ∗;D,R) (12)

provides a tighter lower bound on the optimal costP(D,R) of the primal problem

P(D,R) ≥ L(D,R) (13)

As a by-product of the process of maximizingφ(λ,µ;D,R), we obtain the optimal Lagrange
multipliersλ∗ andµ∗ and a system schedule

∑∗ = {u∗, p∗, r∗} resulting from the solution
to the Lagrangian relaxation forλ=λ∗ andµ=µ∗. The schedule

∑∗ = {u∗, p∗, r∗} must
satisfy the bidder constraints given in Eq. (3), i.e.,

∑∗
i ={u∗i , p∗

i
, r∗i } ∈ Äi (ai ) for all

i = 1, . . . ,M . In certain cases,
∑∗ does satisfy the demand and reserve constraints making

it feasible for the primal problem. If, in addition,
∑∗ satisfies the complementary slackness

condition,
∑∗ is, in fact, the optimal schedule to the primal problem, i.e.,

∑∗ = ∑opt

(Luenberger, 1969). Practical approaches for computing anear-optimalschedule have
been developed (Merlin and Sandrin, 1983; Shaw et al., 1985). For all practical purposes
the difference between

∑opt and the near optimal schedule
∑∗ is assumed to be negligible.

Moreover, we also assume that the optimal Lagrange multiplierλ∗(µ∗) associated with
demand (reserve) in time periodt , differs negligibly from the marginal price (reserve price)
in the same period.

3. Bidding Strategy Formulation

We use the CPP framework constructed in Section 2 to solve the bidder’s problem: formu-
lation of a bidding strategy to earn maximum return. We consider the problem of bidderi
who submits bidβi . For bidderi , the bidsβ j , j = 1, 2 . . . , i −1, i +1, . . . ,M of the other
bidders arefixed but unknown. The CPP dispatcher determines the optimal system price
pair (λ∗,µ∗), the optimal system schedule

∑∗ = {u∗, p∗, r∗} and from this the operating
schedule

∑∗
i ={u∗i , p∗

i
, r∗i } for unit i . The prices depend on the bids of all generators in

the CPP,β j , j = 1, . . . ,M . However, bidderi exerts control only overβi ; hence, we can
write λ∗ =λ∗(βi ) andµ∗ =µ∗(βi ). The dependence of

∑∗
i on the bidβi is suppressed

for notational simplicity;
∑∗

i ={u∗i , p∗
i
, r∗i } satisfies the subproblem associated with uniti
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from the Lagrangian relaxation of the CPP dispatcher’s problem

min
ui ,pi

,r i

{
T∑

t=1

[
b f

i (pi,t )+ bs
i (τi,t )(1− ui,t − 1)− λ∗t (βi )pi,t −µ∗t (βi )ri,t

]
ui,t

: {ui , p
i
, r i } ∈ Äi (ai )

}
(14)

where, the setÄi (ai ) is as defined in Eq. (4). The bidderi generation costs incurred in
each time periodt is the sum of the variable costs and start-up costsc f

i (p
∗
i,t )u

∗
i,t +cs

i (τ
∗
i,t−1)

(1− u∗i,t−1)u
∗
i,t . We usec f

i (·)[cs
i (·)] to denote the fuel and variable operations and main-

tenance costs [start-up costs] of uniti . We assume both functions to be continuous. The
total costs of uniti are

∑T
t=1[c f

i (p
∗
i,t ) + cs

i (τ
∗
i,t−1)(1 − u∗i,t−1)]u

∗
i,t and the amount paid

to generatori in each time period isλ∗t (βi ) per MWh of energy andµ∗t (βi ) per MW of
reserve served. It follows that the profits5i (βi , λ

∗(βi ),µ
∗(βi )) of bidderi are equal to the

revenues less the costs incurred. Thus,

5 i (βi ; λ∗(βi ),µ
∗(βi ))=

T∑
t=1

[
λ∗t (βi )p

∗
i,t +µ∗t (βi )r

∗
i,t

− c f
i (p
∗
i,t )− cs

i (τ
∗
i,t )(1− u∗i,t − 1)

]
u∗i,t (15)

The optimal bidding strategy calls for the maximization of5i (βi , λ
∗(βi ),µ

∗(βi )) over the
set of admissible bids, i.e.,

max
b f

i (·),bs
i (·),ai

{
−
[

T∑
t=1

[
c f

i (p
∗
i,t )+ cs

i (τ
∗
i,t−1)(1− u∗i,t−1)− λ∗t (βi )p

∗
i,t −µ∗t (βi )r

∗
i,t

]
u∗i,t

]

: b f
i ∈ L

[
pmin

i , pmax
i

]
, bs

i ∈ C[0,∞),ai ≥ 0

}
(16)

{u∗i , p∗
i
, r∗i } minimizes the problem

min
ui ,pi

,r i

{
T∑

t=1

[
b f

i (pi,t )+ bs
i (τi,t−1)(1− ui,t−1)− λ∗t (βi )pi,t −µ∗t (βi )ri,t

]
ui,t

: {ui , p
i
, r i } ∈ Äi (ai )

}
(17)

with Äi (ai ) as defined in Eq. (4).
We next introduce the assumption ofperfect competitionin the CPP. Under such a

condition, no single bidder may affect prices and is consequently a price taker. In other
words, any change in the bid submitted by bidderi will have a small effect on the prices
determined by the CPP dispatcher. Formally, we state the
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Perfect Competition Assumption.The bid of any bidder has a negligible effect on the system
marginal and reserve prices.

This assumption holds when no single bidder controls a significant portion of the total CPP
generation and capacity.1 The market price is determined by the bids of the set of competing
bidders. From the viewpoint of bidderi , the market clearing prices are independent ofβi

so that

λ∗(βi ) = λo and µ∗(βi ) = µo (18)

It is convenient to define the loss function3i
1= −5i and replace the maximization in

Eq. (16) by the minimization of3i . We restate the problem as

min
b f

i (·),bs
i (·),ai

{
T∑

t=1

[
c f

i (p
∗
i ,t )+ cs

i (τ
∗
i ,t )(1− u∗i ,t−1)− λo

t p∗i ,t −µo
t r
∗
i ,t

]
u∗i ,t

: b f
i ∈L

[
pmin

i ,pmax
i

]
, bs

i ∈ C[0,∞),ai ≥ 0

}
(19)

where,{u∗i , p∗
i
, r∗i } minimizes the problem

min
ui ,pi

,r i

{
T∑

t=1

[
b f

i (pi,t )+ bs
i (τi,t−1)(1− ui,t−1)− λo

t pi,t − µo
t r i,t

]
ui,t

: (ui , p
i
, r i )∈Äi , (ai )

}
(20)

Given the structural similarity between the minimizations in Eqs. (19) and (20) we have the
following

Fundamental Theorem. A global optimal solution to the problem in(19) and (20) is the
bid βopt

i ={b f
i , b

s
i ,ai }, where

b f
i (p) = c f

i (p) ∀p ∈ [pmin
i , pmax

i

]
bs

i (τ ) = cs
i (τ ) ∀τ ≥ 0

ai,t = pmax
i ∀t = 1, 2, . . . , T

(21)

The proof of this theorem is an application of the lemma in the Appendix (Finlay, 1995).
β

opt
i ={c f

i , c
s
i , pmax

i } is a globally optimal bidding strategy. No other bidding strategy can
result in a greater profit to the bidder. This does not preclude some other bid from also
achieving the same profit. We also note that the global optimality is independent of the
system price pair(λo,µo). Regardless of the prices that may be realized during the schedule
horizon, the bid is optimal if it equalsβopt

i .
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A bidder whose unit has a long minimum up time may feel it is to his advantage to
underbid his cost to compensate for the fact that the constraints on the unit will hinder its
ability to get scheduled. Such a strategy abandons a known global optimum for one which
may not necessarily be so. In a complementary situation, a generator with a short minimum
up time may be inclined to overbid, believing that he can cash in on the unit’s higher level of
dispatchability. Again, the Fundamental Theorem shows this to be an ineffective strategy.
Numerical results presented in the next section demonstrate these analytic results.

A salient feature of this optimal bidding strategy is that it reveals the true cost of operation
of the unit to the CPP dispatcher. This highly desirable outcome is due to the construction of
this auction for the right to serve load in the CPP. We can refer to the optimal bid asbidding
at costor thetruth-revealing bid. Note that while the Fundamental Theorem was derived
for the case of each bidder having a single unit in his possession, the result extends to cases
in which a generator owns multiple units. The reason for this is simple. The bid of any
one unit does not affect the system marginal and reserve prices by the Perfect Competition
Assumption. The problem stated in (19)–(20) is simply applied independently to each of
the bidder’s units. Hence, the global strategy for each unit in such cases is to bid at cost.

The expression for the profit realized by bidderi under the optimal bidding at cost strategy
is thus

5∗i
(
λ,µ

1= 5i
(
β

opt
i , λ,µ

))
=5i

({
c f

i (·), cs
i (·)pmax

i

};λ,µ)
= max

µ
i
,p

i
,r i

{
T∑

t=1

[
λt pi,t ,+µt r i,t − c f

i (pi,t )− cs
i (τi,t−1)(1− ui,t−1)

]
ui,t

: {ui , pi , r i } ∈ Äi (ai )

}
(22)

Here,pmax
i

is theT vector with each component equal topmax
i . This expression for the op-

timal profit5∗i (λ,µ) allows the identification of several key properties including convexity
and nonnegativity (Finlay, 1995). These are useful in developing sensitivity information and
in quantifying the effects of volatility in the prices(λ,µ) on the optimal profit of bidderi .
Moreover, these properties can be used in evaluating the impacts on profits of a change in
the costs of the bidder to assess the return on possible investments aimed at improving the
performance of the unit (Finlay, 1995).

4. Numerical Results

We illustrate the formulation of optimal bidding strategies in the CPP under the assumption
that the system prices are independent of the bid of any one generator. Given the system
price (λ,µ) we simulate the profit5i (βi ;λ,µ). For the numerical studies reported here,
corresponding to the bidβi the bid variable priceb f

i is submitted as a piecewise linear
function of unit power (Willans line) as is the case in the EWPP. We examine the variation
of the profit of bids with respect to various parameter values and compare that to the optimal
strategy bid. We ignore the reserve price in these numerical studies so as not to detract
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Figure 3. System marginal price data.

from the focus on the system marginal price. There is no conceptual difficulty in including
reserve price in the numerical simulations.

We use system marginal price data derived from the EWPP to be thedriving functionfor
the commitment and dispatch of a unit. A set of half hourly values ofλ∗t for a week was
constructed using data in Littlechild (1993). The time plot of the week in units of£/MWh
is shown in figure 3. Hour 0 corresponds to Sunday midnight.

To evaluate a bid, we calculate the profit corresponding to the bid for the week of system
marginal price data. Given the generator’s bid and the assumed system marginal price data,
we can determine the unit’s schedule for the week and consequently its profits. The variable
costs of the bidding unit are represented by a piecewise linear function of the unit output
power, with three segments. The parameters that describe this function are no-load cost,co,
the twoelbowor break points, e1, ande2 and the slopes of the linear segments,m1,m2,m3.
A plot of the variable cost function for the unit is shown in figure 4.

Figure 4. Variable cost in£/h for the bidding unit.
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Table 2. Cost and operational parameters for the bidding unit.

Parameter pmin
i pmax

i τd τu c0 e1 e2 m1 m2 m3 cs(0) cs(∞) τ c

Value 100 600 4 3 5,000 300 500 10.04 20.68 33.52 2,000 3,000 2

Units MW MW h h £/h MW MW £/MWh £/MWh £/MWh £ £ h

The start-up costs of the unit are assumed to be an exponential function of cooling time

cs(τ ) = cs(0)+ (cs(∞)− cs(0))[1− exp(−τ/τ c)]

τ c is thecooling time constantfor the unit. The selection ofcs(0), cs(∞) andτ c completely
specifies this function. We refer to the set of values of{c0, e1, e2,m1,m2,m3, cs(0), cs(∞),
τ c, cs

i (0), c
s
i (∞), τ c

i }, which specify the variable and start-up cost functions as thecost
parametersof the unit. The cost parameters, the minimum up and down times and the
minimum and maximum outputs of the bidding unit are presented in Table 2.

We consider for the bidding unit the effect on profits of the submission of bids different
from bidding at cost. To this end we examine the change in profits as the bid is changed
by varying the bid parameters. It is assumed that the unit is made fully available for every
hour of the week. We restrict the bid variations to one parameter at a time while each of the
other bid parameters is kept constant at the values of the corresponding cost parameters.
The parameters that describe the bid variable price function are the bid no-load priceb0 the
bid elbow pointsε1 andε2, and the bid slopes of the linear segmentsη1, η2, η3 in the same
way the variable cost function of the unit is specified by the parametersc0, e1, e2,m1,m2

andm3. The bid start-up price function is specified by the parametersbs(0), bs(∞) andτ b.
We refer to the set of values{b0, ε1, ε2, η1, η2, η3, bs(0), bs(∞), τ b} as the bid parameters
of the unit. The profits made by the submission of the bidβ are denoted by5(β;λ). In
figure 5, a plot of5(β;λ) against variations inε2 is given.

Figure 5. Plot of5(β;λ) versusε2.
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Figure 6. Plot of5(β;λ) versusη2.

In figure 6 a plot is given of5(β;λ) against variations inη2. Once again, it is seen that
maximum profit occurs when the bid parameter is equal to its corresponding cost parameter.
The “flatness” of the profit with respect to variations inη2 deserves comment. Units that
submit a piecewise linear bid variable price function are dispatched at the elbow pointsε1

or ε2 or the maximum power point,pmax. Clearly, small variations inη2 do not result in
the CPP dispatcher redispatching the unit to other elbow points; hence, the profit remains
unchanged. Similar results are observed for changes inη1.

5. Conclusions

This paper has reported the development of a competitive power pool (CPP) framework
which incorporates the salient features of the England and Wales Power Pool (EWPP). We
have applied the framework to formulate and determine the optimal bidding strategies of a
bidder in the CPP under conditions of perfect competition. This paper’s results are note-
worthy for the explicit inclusion and detailed representation of the various considerations
and constraints associated with the generation for electrical power. We have developed a
globally optimal bidding strategy: regardless of generation resources, costs and constraints,
a generator maximizes profits by bidding to supply generation at cost and at maximum ca-
pacity. The increasing interest in the POOLCO concept (Budhraja and Woolf, 1994) makes
this work highly topical.

This paper has focused only on one aspect of CPP—the optimal bidding strategy prob-
lem for generators. The recent introduction of demand side bidding into the EWPP has
introduced a problem which can be effectively solved using the CPP framework. There are
several facets of the CPP that require additional work. For example, the optimal bidding
strategy problem for buyers from the CPP may be formulated as a bid to optimize profits
given resources, constraints and costs. The oligopoly situation in the EWPP generation
markets (Green and Newbery, 1989) has thus far been resistant to analytic approaches. The
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construction of optimal bids by the method of this paper may provide little insight into the
formulation of optimal bids under nonperfect competitive conditions. Approaches based
on other concepts such as game theoretic notions need to be explored. Another exten-
sion of this work is the study of the integration of financial instruments such as contracts
and futures into the CPP. An area which requires considerable work is the incorporation
of transmission constraints and pricing (Wu et al., 1994) into the CPP framework. There
are some fundamental difficulties in the development of appropriate schemes for the eco-
nomically efficient pricing of transmission services. Research into this area is currently
underway.

Appendix: Lemma for Fundamental Theorem

Let C(I f ) andC(I s) be the spaces of continuous functions on the intervalsI f ⊆R and
I s⊆R respectively, whereC(I j )

1= { f (·), I j →R : f (·) is continuous}. Let J be a func-
tional J : C(I f )× C(I s)×Rn→ R, a mapping from the vector spaceC(I f )× (I s)×Rn

to the real line (Luenberger, 1969). Suppose for eacha ≥ 0, a∈Rm, Ä(a) is a com-
pact nonempty set. We assume the existence of anâ such that:Ä(a) ⊆ Ä(â) for all
a∈Rm. AssumeJ(b f , bs, x) is a continuous function ofx (∀b f ∈ C(I f ), ∀bs∈ C(Is).
Then,

inf
b f ,bs,a

{J(c f , cs, x∗(b f , bs,a) : b f ∈ C(I f ), bs∈ C(I s), a∈Rm,a≥ 0}

where,

x∗(b f , bs,a)= arg min{J(b f , bs, x ) : x ∈Ä(a)},

has a global minimum given by

b f (·) = c f (·)
bs(·) = cs(·)

a = â

The proof of this lemma as well as its application to the proof of the Fundamental Theorem
is found in Finlay (1995). In words, the Lemma states that of all possible choices of
b f ∈ C(I f ) andbs ∈ C(I s), the optimal ones areb f (·)= c f (·) andbs(·)= cs(·), and the
optimal choice ofa is â, which specifies the largestÄ(a).

Note

1. In effect we assume no collaboration among bidders, i.e., generators behave noncooperatively and there is no
cartel of generators who act together to set prices.
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