
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Analysis of Electric Power System Disturbance Data 
 
 

Jie Chen           James S. Thorp            Manu Parashar 
School of ECE   School of ECE   School of ECE 

Cornell University  Cornell University  Cornell University 
Ithaca, NY, 14853  Ithaca, NY, 14853   Ithaca, NY, 14853 
jc227@cornell.edu   jst6@cornell.edu   mp28@cornell.edu 

 
 

Abstract 
In this paper, NERC (North American Reliability Council) 
records of power system disturbances for the year 1984 
through 1999 are explored. The disturbance sizes show a 
power law distribution which confirms the early results 
[2]. Further, we find that the probability density of time 
intervals between disturbances can be given an 
exponential fit. Based on this observation, the suitability 
of applying SWV analysis to power system disturbances 
data is questioned. An artificial time series is constructed 
to support our idea. A fuse model using DC load flow and 
fuse protection is presented to simulating the cascading 
events in power transmission networks. Some initial 
simulation results are shown to be consistent with NERC 
data. Besides SOC and HOT, this model gives another 
way to investigate power law behavior in power system 
disturbances.   
 
 

1. Introduction 
 

Electric power transmission networks are complex 
systems which undergo non-periodic major cascading 
disruptions [1]. People tended to focus on individual 
causes of these disturbances and thought the probability of 
occurrence of blackouts decays exponentially with the 
event size. This is in contrast to the recently found power 
law “tail” of blackouts by Carreras et al. [2]. 

In this paper, after Carreras et al., we extend their 
analysis of NERC disturbance records for the years 1994 
through 1998 to data from 1984 to 1999, which are the 
longest records we have found for disturbances in the 
North American power transmission system.  We confirm 
their results of power law “tail” in blackout data, while 
challenge the correctness of applying SWV (scaled 
windowed variance) method to detect long term memory 
in blackout time series.  

Many distributions of observed quantities in a wide 
variety of complex systems, such as earthquakes, sand-
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piles, and even biological evolution, exhibit power law 
form in their tails, sometimes called “heavy tail 
distribution”.  During the last decades, books, conference 
proceedings and papers have appeared concerning such 
power law scaling behavior. Several different power-law-
producing mechanisms have been proposed, among which 
the theory of self-organized criticality (SOC) [4,8] is the 
most accepted and investigated. Recently, another idea, 
highly optimized tolerance (HOT) [9], was added to this 
toolkit helping explain power law behavior in designed 
systems. Here, we present a power-transmission-network 
oriented hidden failure model, DC fuse model, which can 
also produce power law distribution, and hope to capture 
the features of cascading events in power systems.  

 

2. Analysis of NERC disturbances records  
 

2.1. Description of NERC disturbances data 
 

The disturbances data (NERC data) comes from the 
Disturbance Analysis Working Group (DAWG) Database 
which summarizes the disturbances that have occurred on 
the bulk electric systems of the electric utilities in North 
America [1]. It is the best-recorded source of blackouts in 
the North American power transmission system. 

Here, we explore NERC disturbances data between the 
year 1984 and 1999, from which we construct blackout 
time series signals. The constructed time series is always 
zero except at those instances when blackouts occur, in 
which case the signal is equal to the size of the blackout 
happened at that time. The “event size”, i.e., blackout size, 
is measured by three different quantities, the amount of 
power loss (MW), the number of customers affected and 
the restoration time (Minute). The time series is 
constructed with the resolution of a day according to these 
three measures. Also note that there are three electrically 
strongly interconnected areas: the entire eastern United 
States (Eastern US), Texas (ERCOT) and the western 
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states (WSCC). A time series is constructed for each 
interconnection. Because ERCOT has too few records 
(only three in 16 years) to be analyzed, only six time 
series are constructed, i.e., three different measures within 
two interconnected areas (WSCC and Eastern US). 

 

2.2. Power law “tail” in disturbance time series 
 
Power law distribution has been found in many 

complex systems, so we are quite interested in whether or 
not it also exists in power systems. Since we only have 
limited data, using relative frequency distribution tends to 
have big fluctuations and hence it is difficult to identify 
the Probability Distribution Function (PDF) of the 
blackout data. Here, we turn to Cumulative Distribution 
Function (CDF), which is much nicer to deal with and 
tends to smooth out the fluctuations.  

Suppose a random variable X has power law PDF f(x):  
α−xxf ~)(                                                                (1) 

Its CDF, then, will be  

∫ −−−− −−
x

xxdttxF
1

)1( 1~1~~)( βαα                       (2) 

 where • = •-1 
For convenience, we consider following function P(x), 

β−−=≤−=>= xxFXXPxXPxP ~)(1)(1)()( (3) 

Taking logarithms to both sides, we get 
xxP log~)(log β−                                                    (4) 

Therefore, if we draw the log-log plot of P(x) versus x 
(event size), we will find out if we can obtain a good 
linear fit, which means power law distribution.   
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Figure 1.  Power law “tail” of blackout power 
loss time series in Eastern US 

 
Fig.1 shows such a plot of power loss data in the 

Eastern U. S. Obviously, its “tail” part can be fitted very 
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well with a straight line. By drawing log-log plots of the 
remaining five time series data, we also can easily find a 
linear fit for each of them, respectively. Table 1 shows the 
fitted exponents • and • for each of the six data sets and 
the results confirm those found in [2].     

As is known, if the exponent • of the power law 
distribution is smaller than 3, then no second moment will 
exist, and the standard deviation is infinite in the limit of 
infinite system size. Also, if • is smaller than 2, the mean 
will be unbounded. It is clear that based on the size 
measures we defined and disturbances data we used, the 
variance and mean of the blackout sizes are both 
unbounded for each of the two interconnected areas 
(WSCC and Eastern U.S), implying whole system size 
blackout could be possible. 

 
2.3. Hurst exponent in disturbance time series 

 
The Hurst exponent, often termed the self-similarity 

exponent or scaling exponent, is a measure developed to 
characterize the “dependence”, or correlation, between 
distant samples in a time series. Carreras et al. [2] studied 
NERC data between the year 1994 and 1997 and found 
power system blackout time series had a Hurst exponent 
near 0.7. In this paper, we extend their analysis to data 
from 1984 to 1999.  

First, we use the Scaled Windowed Variance (SWV) 
method, after Carreras et al. [2], to estimate the Hurst 
exponents for the six constructed time series. Three SWV 
methods, namely standard, linear detrended (LD) and 
bridge detrended (BD) [3], are applied. The results in 
Fig.2 and Fig.3 show that, within certain range of time 
lags, there is a clear linear fit, whose slope is the 
estimated Hurst exponent, for the averaged standard 
deviation versus window size for each time series. 
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Figure 2. SWV analysis of time series for Eastern 
US blackouts. 
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Figure 3. SWV analysis of time series for WSCC 
blackouts 

Table 2 gives the Hurst exponents obtained for these 
six time series. Note that it was reported that standard 
SWV has negatively biased while LD SWV and BD SWV 
has positively biased estimates [3], the three Hurst 
exponents obtained by three SWV methods are averaged 
and we regard the averaged ones as the final estimates. 
Clearly, they are all around 0.8, greater than 0.5, which 
indicates a clear existence of long-range dependence. This 
result quite agrees with the one in [2]. However, based on 
our studies, which will be shown later in section 2.5, the 
results obtained above are suspect. The reason is that 
SWV methods probably are not appropriate for power 
system blackouts data and hence the conclusion from the 
analysis is not safe.  

  
2.4. Distribution of time intervals between 
blackouts  
 

In this section, we explore the distribution of time 
intervals between blackouts.   

Assume there is no correlation between individual 
triggers of disturbances [2], then the disturbances will 
occur randomly at an average rate λ, as in a Poisson 
process. In this case, the PDF of the waiting times 
between events is exponential,  

 xexf λλ −=)(                                                             (5) 

Further, as defined in section 2.2,  
xexP λ−=)(                                                                (6) 

Taking logarithms to both sides, we get 
xxP λ−=)(log                                                          (7) 

So, if it is exponential distribution, by a semi-log plot 
of P(x) versus x (time intervals), we will give a linear fit 
for the data with a slope of  λ. 
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To testify our assumption, we plot the semi-log 
diagrams of blackouts data. Fig.4 and Fig.5 show the 
result for WSCC data and Eastern US respectively. For 
both plots, if we ignore the biggest time interval, we can 
get a good straight line fit for each. 
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Figure 4.  Distribution of time interval between 
events in WSCC region 
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Figure 5.  Distribution of time interval between 
events in Eastern US region 

We also studied the distribution of time intervals, 
)(0 xfP , between events larger than a given size P0. By 

setting different threshold sizes, we can get different sets 
of time-interval data.  When applying semi-log plots 
mentioned above to these data, we get quite good linear 
fits. Fig.6 and Fig.7 give the time-interval data and their 
linear fits for selected threshold sizes of power loss time 
series. Table 3 shows the fitted slopes λ and their 
corresponding threshold P0. Note that we only give the 
fitted number up to threshold size 900MW, because for 
even larger P0, the number of data will become too small 
to lead to meaningful conclusions. 
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Figure 6.   Distribution of time interval between 
events bigger than P0 in Eastern U.S region 

 

Figure 7.  Distribution of time interval between 
events bigger than P0 in WSCC region 

It should be noted that the small number of recorded 
blackouts (only several hundred), and correspondingly 
small number of time intervals are reflected in Fig.6 and  
Fig.7. Nonetheless, an exponential distribution fit for time 
intervals is not surprising, and could be understood from 
the variety of random causes for the disturbances.  

  

2.5. Hurst exponent of artificial time series 
 

Since exponential distribution of waiting time between 
events implies a  “memoryless” process [11], what is the 
origin of the long-term dependence (Hurst exponent 
around 0.8) in the time series? In this section, we show 
some results that can be obtained by applying SWV 
methods to a constructed time series analysis.  

In [3], it says “the scaled windowed variance methods 
are only appropriate for use on signals whose differences 
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form a stationary signal” and “if a signal does not exhibit 

scaling of SD  versus window size n over more than two 
orders of magnitude, the conclusions that can be drawn 

from the estimate, H
)

, will be limited”.  In our case, first, 
it is quite difficult to detect the stationarity from the 
limited blackouts data, hence we can not make sure 
whether or not SWV analysis is appropriate. Besides, the 
results in Fig.2 and Fig.3 tell us that no one time series 
exhibits scaling more than two decades (only customer 
data exhibit scaling about two decades). According to the 
statement in [3], therefore, we can not safely conclude that 
long-range dependence is present in blackouts time series 
even if the estimated Hurst exponent is around 0.8.  

To further support our idea, we applied SWV to 
estimate the Hurst exponent of a constructed artificial time 
series, which is “power-loss like” but obviously 
uncorrelated.   This time series has similar features to the 
blackout time series. Its waiting time between events is 
exponentially distributed, ensuring that it has “no 
memory”, and at each time when an event “occurs”, we 
use a random power law distribution to generate the 
“event size”. From how it is constructed, this time series 
should have no correlations.  

The random exponential and power-law samples used 
are generated from uniform distribution by the inversion 
method. In brief, given that we wish to generate random 
variables with a PDF )(⋅Xf , and CDF )(⋅XF , variable X 

generated from Equ.(8) has the required distribution [7]:  

)(1 RFX X
−=                                                               (8) 

where R ~ U(0,1) is uniform distribution. 
So, for exponential distribution:  

)0()( ≥= − xexf x
X

λλ                                                 (9) 

The computer-generated random sample is  

))1ln(
1

)(1 RRFX X −−== −

λ
                                   (10) 

Since R is identically distributed to (1-R), 

RX ln
1

λ
−=                                                            (11) 

Similarly, for power law distribution: 

)1()( >= − ααkxxf X                                                (12) 

The random sample will be  

1

1

1

1

)
1

( −
−

−
−

⋅=−= ααα
RKR

k
X                                 (13) 

In our experiment, we set λ = 0.02, K = 1, and α = 2 
for the artificial time series.  Fig.8 shows the constructed 
time series, and its estimated Hurst exponent is 0.72 by 
SWV analysis. To test the significance of the result, we 
run the experiment another ten times, and got the 
following Hurst exponents: 

0.71, 0.87, 0.86, 0.72, 0.84, 0.67, 0.76, 0.82, 0.92, 0.65 
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Clearly, they are all well above 0.5, and should 
indicate long time dependence in each of these time series. 
However, this is in contrast to the way we construct the 
time series, which should be uncorrelated. Hence, 
although we can not, by doing this experiment, conclude 
that there is no correlation in the power system 
disturbances time series, we could doubt the suitability of 
applying the SWV method to such time series, which has 
a huge number of zeros and only a tiny fraction of 
nonzeros. Therefore, the value of 0.8 obtained in section 
2.2 is not convincing, which renders the correlation-
detection task inconclusive. In this case, longer, more 
detailed disturbances records, or more refined analysis 
methods are expected.  
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Figure 8.   Artificial time series with exponentially 

distributed waiting time and power-law 
distributed event size 

 

3. DC fuse model generates power law 
distribution 
 

The power law “tail” of blackouts data, which was 
taken as evidence of SOC by Carreras et al. [2], is not 
necessarily an indication of dynamical self-organization 
into a critical stationary state. For example, Carlson and 
Doyle proposed another theory --- Highly Optimized 
Tolerance (HOT) [9] --- to explain power law distribution 
in power system blackouts. Here, we present another way 
of power law generation based on the detailed behavior of 
the power system protection system.  Notice that either 
SOC or HOT tends to explain a variety of complex 
systems, while our model only focuses on power 
transmission networks. 

 
3.1.  Description of DC fuse model 
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Our presented model is a hidden failure model [5,10] 
with DC load flow and fuse protection. Fig.9 shows a 
diagram of the model.  

The mesh represents the network of power 
transmission systems, and can be an artificial or real 
network structure. The nodes of the mesh represent the 
buses of the power network, and can be chosen as 
generations or loads. Branches act as transmission lines. 
For simplicity, they only have resistances and allow DC 
load flow. In every branch, there is a fuse acting as the 
relay system in a real system. Each line has a different 
load dependent probability of tripping incorrectly. A 
simple model is shown in Fig.10 where the probability of 
an exposed line tripping incorrectly is modeled as a 
function of line load flow seen by the line fuse.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The fuse model of simplified power 
network 

 
Figure 10.   Probability  of an exposed line 

tripping incorrectly 
 

Ioutput Iinput 
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To calculate the “power loss” in cascading simulation 
events, a linear programming (LP) technique is used to 
find the DC load flow after each tripping. The LP 
problem formulation is: 

  0                         

                         

       that     such

 )(           max       

max

maxmin

=+
<=

<=<=
= ∑

outputinput

output

II

JJ

III

IIf

                           (14) 

where I is the input and output (generation and load), J 
is line load flow and Jmax is line constraint, Imin and Imax 

are lower and upper bounds of I. (upper and lower limits 
of generator inputs and load outputs) 

The brief analogy between the fuse model and the real 
network is shown in Table 4. 

Table 4. Analogy between real power network 
and fuse model 

Fuse Model Real power network 

Node Bus 

Iinput Generation 

Ioutput Load 

Branch Transmission Line 

DC load flow AC load flow 

Fuse in branches Relay system 

There are two time scales in this model. The slow one 
has unit time intervals referred to as “days”. In each 
“day”, a blackout-triggering event will occur randomly. 
The other is the duration of individual cascading event, 
which is much faster than “day” and can be referred to as 
“minute”. Hence, it is reasonable to assume no matter how 
long the cascading outage lasts, it will definitely end in a 
“day”. Based on our analysis shown in section 2, 
exponentially distributed waiting time between outage-
triggering events, which belongs to the slow time scale, 
has been applied.  The growth in system load is also 
incorporated into the simulation model. For simplicity, 
linear growth is adopted. 

 
3.2. Simulation algorithm 
 

Before the simulation starts, we need to choose a 
network structure, determine generation and load pattern, 
initial DC load flow, and line constraints. Then the 
simulation is carried out on two time scales respectively. 
For the main loop, i.e., “day” time scale, below steps are 
followed: 
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1. Check if it is the “date” to increase the system 
load.  Do as defined. 

2. Decide whether or not a disturbance will occur, 
which is determined by exponential distribution 
of waiting time. If it will have a disturbance, enter 
sub loop; otherwise, record DC power loss as 
zero and start new main loop iteration. 

For the sub loop, i.e., “minute” time scale, detailed 
simulation steps are listed as follows: 

1. Randomly select a line as the initial tripping line 
leading to a possible cascading event. 

2. Trip the selected line and compute the DC load 
flow using normal circuit equations. 

3. Check for violations in line flow constraints and 
trip the line upon violation.  

4. If there is no violation, determine exposed lines, 
which are all lines connected to the last tripped 
line and find the probability of tripping for each 
exposed line according to Fig.10. Note that the 
spread of disturbances is one-dimensional in 
power systems, hence, the case of more than one 
line trip at the same time rarely happens. In the 
simulation, we let one and only one line trip at 
one time. In specific, if more than one line might 
trip, the one with higher tripping probability is 
selected to be the next tripping line. 

5. Shed load, if necessary, to keep the system stable, 
which requires all line flows less than their limits. 
LP technique defined as Equ.(14) is used to help 
out load shedding.   

6. If no lines will be tripped, record the DC load lost 
and return to main loop starting a new iteration.  
Otherwise, go back to step 2. 

 
3.3. Simulation result 
 

In our initial simulation, the structure and parameters 
of transmission lines in WSCC 179-bus equivalent system 
[5] are used. We chose this particular system rather than a 
fake one for the sole purpose of testing if the simple 
model can generate results similar to those of a real 
system.  

We run the simulation for 6000 “days”, as if the system 
has been evolving during about 16 years. The system load 
is set to be increased 0.2% every other “month”, which 
means 60 “days”. Fig.11 and Fig.12 show the simulation 
results of DC power loss time series and relative 
cumulative frequency versus DC power loss. The power 
law “tail” of the simulated cascading events is obvious 
and the fitted exponent is 1.2, which is quite close to 1.07 
for WSCC real blackout data.  

With the evolving model, i.e., the load increases with 
time, we get quite similar result with real systems. Then 
0.00 (c) 2001 IEEE 6
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what will happen if without the growth of load? It is a 
question of interest and can help us identify the role of 
load growth in producing power law distribution. The 
simulation result of the modified model with constant 
system load is shown in Fig.13, which indicates a power 
law distribution within the range of 3 ~ 20% loss of total 
system load. The power law exponent obtained in this 
case is 1.37, also a close result. This result could suggest 
that “load growth” may not play an important role in 
generating power law “tails”. 
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Figure 11.  Simulated DC power loss time series 

in growing-load model  
 

 
Figure 12.  Power law “tail” of simulated DC 

power loss time series in growing-load model 
 

Although our model includes basic components, such 
as load flow solving (circuit equations used), protective 
actions (line tripping and load shedding), we are still not 
quite sure about how much it can capture in simulating 
cascading events of real power systems. What we present 
here is a “power system like” model, which seems neither 
SOC nor HOT, but also can produce power law 
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distribution of cascading events. That is, before further 
evidence is found to support SOC or HOT or whatever, 
we want to provide another way to look for the possible 
mechanism of generating power law behavior in power 
system disturbances. 

 
Figure 13.  Power law “tail” of simulated DC 

power loss time series in constant-load model 
 

4. Conclusion 
 

Six time series of the NERC blackout data between the 
year 1984 and 1999 were constructed according to 
different measures of blackout size and different regions.  

By analyzing these time series, we confirm the power 
law distribution of power system blackout size [2], and 
find the distribution of time intervals between events 
bigger than a given threshold is always exponential.  

By the test of applying the SWV method to analyze an 
artificially constructed uncorrelated time series, we cast 
doubt on the suitability of detecting long time correlation 
among power system blackout data by using SWV 
analysis. 

The DC fuse model is presented to explore the features 
of cascading events in power system. The initial 
simulation result shows power law distribution and is 
consistent with the result of real system. Different from 
either SOC or HOT, this model gives us another tool to 
investigate power law behavior in power system.  
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s of blackout time series

tomers affected Restoration time 

C Eastern U.S WSCC Eastern U.S 

 0.71 0.94 0.83 

 1.71 1.94 1.83 

f blackout time series

tomers affected Restoration time 

C Eastern U.S WSCC Eastern U.S 
1 0.754 0.754 0.786 

LD 0.853 0.831 0.868 0.888 0.905 0.930 

BD 0.850 0.830 0.874 0.880 0.910 0.939 

Averaged H 0.810 0.795 0.834 0.841 0.856 0.885 

 
 

Table 3.  Fitted exponents λ versus threshold value P0  

P0(MW) 0 100 200 300 400 500 600 700 800 900 

Eastern U.S 0.0218 0.0189 0.0172 0.0145 0.0101 0.0095 0.0074 0.0073 0.0063 0.0068 

WSCC 0.0175 0.0137 0.0100 0.0092 0.0076 0.0070 0.0063 0.0052 0.0043 0.0043 
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