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Abstract

Earlier research has shown that the behavior of spot prices in the new auction markets for
electricity can be described by a stochastic regime-switching model.  This model captures
the observed price spikes that occur in these markets, particularly during the summer
months when levels of load are high.  The first part of the paper shows how the
exploitation of market power can lead to offers to sell power that are consistent with price
spikes.  An important feature of the model is that some suppliers are indifferent to having
marginal units dispatched when they have sufficient market power.  Given this analytical
framework, the second part of the paper extends the regime switching model of prices by
making key parameters functions of forecasted load.  The first application shows how the
structure of the PJM market changed when market-based offers were allowed, resulting
in higher price spikes.  The second application compares price behavior in PJM, New
England and California.  The transition probabilities in the three markets have similar
relationships to load.  The main differences among markets are the levels of the means in
the high-price regime, and in this respect, PJM is quite different from the other two
markets.  Efforts to associate price spikes with errors in the forecasts of load or changes
of actual load were not successful.  The conclusion is that more research is needed to
understand the motivation of suppliers submitting offers into an auction market.
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1.  Introduction

The institutional designs of restructured markets for electricity in the USA vary in

fundamental ways.  In particular, markets in the East, such as New England, New York

and Pennsylvania, New Jersey and Maryland (PJM), place the responsibility for unit

commitment and for dispatching generators on an Independent System Operator (ISO).

In contrast, the system on the West Coast is much less centralized, and suppliers and

regional coordinators can specify their own dispatching schedules based, in many cases,

on bilateral trading.  The ISO is responsible for making incremental changes to the

planned dispatching pattern in order to, for example, avoid violating constraints on the

capacity of the transmission network.

In spite of these differences in the structures of the markets in the USA, they share

one important feature.  Spot prices for electricity have been very volatile with dramatic

price spikes occurring at certain times (see Figure 1, and Section 5 for a comparison of

prices in three markets for summer 1999).  While the degree of volatility has been more

severe in some markets (e.g. PJM) than others (e.g. California), it is still true that prices

reach levels that are much higher than the typical values of marginal costs (system

lambda) under regulation.  The primary objective of this paper is to provide new insight

into the behavior of spot prices for electricity, and in particular, to model the type of

volatility shown in Figure 1.  For electricity, volatility is associated with price spikes, and

higher volatility implies higher average prices as well.  This is bad news for customers

and good news for suppliers.
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Figure 1

Simple regulatory “solutions” to price spikes may be counter productive.  For

example, putting a low cap on prices is one way to reduce those prices.  However, this

mechanism also eliminates the legitimate role of high prices by sending a signal that

additional supply is needed, in response to a forced outage, for example.  The real

problem for customers occurs when suppliers are able to produce high prices artificially.

The most obvious way to get high prices is by exploiting market power.  This situation

has proved to be a chronic problem in the UK market, which is still dominated by two

suppliers.  The blatant use of market power in the UK market has led to a radical

restructuring from a centralized ISO to a design that is much more like the market in

California.  In contrast to the UK experience, the market in Australia was designed in

such a way that market power is not a major problem (each power plant in Victoria was

sold to a different company).  The lesson is that it is naive to assume that reliable and
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efficient markets can be designed when the actual motivation of suppliers is poorly

understood.  In contrast to Australia, the restructuring process in the USA showed little

concern about the consequences of market power when incumbent utilities sold power

plants in groups to individual buyers.

The actual problems with restructured markets for electricity are even more

serious than the volatility of the spot prices for energy.  Energy represents just one of the

markets for supplying electricity to customers. The analytical and public policy problem

is that there is more scope for gaming in complicated markets.  The UK market provides

an excellent example of how interdependencies among markets can be exploited (see

Newbery, and Wolak and Patrick).  The overall performance of restructured markets in

the USA has not been a great success to date.  As a result, substantial changes will be

made this year in the designs of the markets in PJM, New England, and California.

Although the focus of this research is on energy only, it is fair to say that an economically

efficient and reliable market for energy is necessary if the overall market is to perform in

a satisfactory way.  Furthermore, the type of behavior exhibited by suppliers in the

energy market is likely to be repeated in the markets for ancillary services. The specific

objectives of this paper are to present 1) a theoretical model of how market power affects

optimum offers to sell energy, and 2) a statistical model of price behavior that is used a)

to evaluate the increasing price volatility in the PJM market (see Figure 1), and b) to

compare the performance of the markets in PJM, New England, and California.
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2. Market Power and Optimum Offers to Sell Power

If it is assumed that suppliers follow the standard economic principle of

maximizing profits, it is possible to derive optimum offers for selling power in a uniform

price auction.  The implications of this type of behavior are explained by Mount (2000)

when suppliers face uncertainty about the actual load that will determine the market

clearing price.  The analysis compares the behavior of a “large” supplier controlling 20%

of the expected load with a “small” supplier controlling only 4%.  Both suppliers are

assumed to have the same structure of costs for their own generating capacity and face

the same competitive market as other suppliers (i.e. other suppliers submit cost-based

offers into the auction).

The actual marginal costs and the optimum offers are shown in Figure 2 for the

two suppliers.  (To make comparisons easier, the horizontal scale is the percentage of

owned capacity.)  The large supplier owns 5000 MW and the small supplier owns 1000

MW).  The two important conclusions from Figure 2 are 1) that the offers for the large

supplier are substantially above the offers for the small supplier even though the structure

of costs is identical, and 2) the difference between an offer and the true marginal cost is

greater for the unit with the highest cost for both suppliers.  The overall implication is

that it is rational for a supplier with market power to speculate with a marginal unit by

setting the corresponding offer at a high level.  This is essentially what happened in the

PJM market last summer.  Nevertheless, the optimum offers shown in Figure 2 are still

much lower than the actual offers that set prices in the PJM market during summer 1999.
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Optimum Offer Curves for Two Individual Suppliers
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Figure 2

An explanation for why actual offers for marginal units were so high can be

determined from Figure 3, which shows the expected excess profits per hour above the

competitive level (i.e. the effect of submitting offers for the most expensive unit above

the true marginal cost).  The maximum expected profit for the large supplier ($3700/hour

at Offer = $54/MWh) is over 100 times higher than the maximum for the small supplier

($30/hour at Offer = $33/MWh) even though the large supplier only controls five times

the capacity of the small supplier.  For the small supplier, the maximum at 33 is obvious

in Figure 3, but for the large supplier, the maximum at 54 is almost identical to the levels

of excess profit for any Offer > 54.  The reason is that setting Offer = 54 is virtually

equivalent to withdrawing the unit from the market because the probability of having the
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Figure 3

unit dispatched is close to zero.  Consequently, the penalty from submitting high offers,

in terms of lower expected profit, is trivially small for the large supplier.  This is not the

case for the small supplier.  For Offer > 37, the expected excess profit is negative and the

possible loss of up to $116/hour is much larger than the potential gain of $30/hour.  For

all practical purposes, the large supplier is completely indifferent between the optimum

offer and any higher value of the offer.  If there is a small probability that all available

capacity will be needed to meet load, then it is rational for the large supplier to put in an
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offer for the marginal unit at the maximum allowed level.  (In the model underlying

Figure 3, it is assumed that other sources of generation are always available, and the

demand curve faced by an individual suppler is never completely inelastic).

Table 1. Probabilities for a Marginal Unit
Dispatch Status A B C
1. Small suppliers (MC = 30, Offer = 33)

Competitive
Optimum Offer

0.50
0.33

0.02
0.02

0.48
0.65

2. Large supplier (MC = 30, Offer = 54)
Competitive
Optimum Offer

0.50
<0.01

0.10
<0.01

0.40
>0.99

3. Large Supplier (MC = 10, Offer = 29)
Competitive
Optimum Offer

>0.99
0.55

<0.01
0.10

<0.01
0.35

A Probability {Unit is fully dispatched} (i.e. Market Price > Offer)
B Probability {Unit sets price} (i.e. Market Price  = Offer)
C Probability {Unit is not dispatched} (i.e. Market Price < Offer)

The best explanation for why price spikes occur is that some suppliers are

indifferent to whether or not marginal units are dispatched.  Once an offer is high enough

to make it almost certain that the corresponding unit will not be dispatched, it does not

make any difference to the expected profit if an even higher offer is submitted.  These

conclusions are illustrated by an example in Table 1 which summarizes the probabilities

of a marginal unit 1) being fully dispatched, 2) setting the market price, and 3) not being

dispatched for three different cases.  In each case, the probabilities for the competitive

solution and the optimum offer are computed, and the probability of not being dispatched

(column C) is always higher using the optimum offer.  For the small supplier (Case 1),

there is a penalty for submitting an offer that is too high.  This is also true for a large

supplier if the marginal cost of the most expensive unit is well below the competitive
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price (Case 3).  In both Case 1 and 3, expected profit can be much lower than the

competitive solution if the offer is increased above the optimum level.

Case 2 in Table 1 is the exception, and there is almost no penalty on the expected

profit if a higher offer is submitted because the unit will not be dispatched anyway (see

Figure 3).  The implication that Case 2 is potentially a problem supports the conclusion of

Wolak and Patrick that a uniform-price auction is more vulnerable to market power if

large suppliers control both base-load and peaking units.  For suppliers owning units like

Case 2, substantial excess profits can be earned even though there is less than a 1%

chance of having the unit dispatched.  It is equivalent to a reward for idleness.  For all

practical purposes, the offer could be $54/MWh or $5000/MWh without affecting

expected profits.  There is simply no incentive for the supplier to operate the unit.  In the

next section, a statistical model of price behavior is presented which reflects the structure

of observed offer curves by using stochastic switching between a high-price and a low-

price regime.

3.  A Stochastic Model of Price Behavior

Recently, data for the actual offers submitted into the PJM market have been

released for the spring and summer of 1999.  The offer curves (actual supply) and the

forecasted loads (demand) for three typical days (the first Tuesday of each month) are

shown in Figure 4.  The offer curves cover the transition from cost-based offers (prior to

4/1/99) to market-based offers.  All three offer curves exhibit a distinct kink after which

offers rise almost vertically.  The actual load (demand) on July 6 resulted in a substantial

price spike with some hourly prices reaching the maximum permitted level of $999/MWh
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(see Figure 1).  The general shape of the offer curves provides direct evidence that market

prices are set in one of two possible regimes.  Whenever the forecasted load is close to

the kink in the offer curve, price spikes are likely to occur if actual load is higher than the

forecasted level.  It is interesting, and somewhat ominous, that the kink for April, when

load is low, occurs at a much higher level of capacity than the kink for July, when load is

high.

The kinked shape of the offer curves in Figure 4 is extreme, and it probably

reflects more than the simple exploitation of market power described in Section 2.

Suppliers in PJM were permitted to sell capacity in the PJM capacity market and to sell

non-firm energy from the same units in another region.  (This is also the case in the

current New York market, which started in November 1999.)  Units accepted in the

capacity market are subject to recall if capacity is needed to meet load in PJM.  Under

these circumstances, any contracts for the non-firm energy would be broken.  However,

recall could only occur when all units offered into the PJM energy market have been

dispatched.  Hence, offering a marginal unit into the PJM energy market at $999/MWh

acts as an attractive hedge against having capacity recalled.

The behavior of prices in Figure 1 implies that the standard stochastic model of

geometric brownian motion (i.e. the logarithm of price is a random walk) used in

financial analyses is not appropriate.  Mean reversion is a better choice for electricity spot

prices as noted in Pilipovic, Tseng & Barz, Deng, Johnson, & Sogomonian, and Ethier.

This model incorporates information about a long-run mean value and has a bounded

long-run variance.
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Ethier and Mount show that Hamilton’s (1989) Markov regime switching model

is well suited for capturing the behavior of electricity spot prices.  Adding Markov

regime switching to the model allows for stochastic price jumps.  Each regime is a mean

Figure 4

reverting AR(1) process.  One regime represents the relatively flat part of the offer curve

(the low-price regime), and the other regime represents the steeply sloped part (the high-

price regime).  In their analysis, a model with constant parameters is estimated separately

for each season.  The regimes show that the estimated parameters have distinct seasonal

patterns and conclude that a model with varying coefficients would be more appropriate.

Furthermore, Diebold, Lee and Weinbach have argued that treating transition
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probabilities as fixed parameters is restrictive.  Consequently, a model with time varying

coefficients was developed for this paper.

In Hamilton’s original model, the current mean of yt (the logarithm of price) is a

function of both the current regime and the lagged regime.  The regression relationship

for yt can be written as follows:

( ) ts1tst 1tt
yy ε+µ−φ=µ−

−−           (1)

where St = 1 or 2 identifies the regime

tsµ is the mean for regime St

0 ≤ φ < 1 is the AR coefficient

εt is an unobserved residual that is ),0(N 2
st

σ .

Specifying that the current price is a function of both the current and lagged mean

creates computational complexity for estimation (particularly when more then two states

are included in the model).  Hamilton (1994) and Gray propose a computationally more

tractable model in which the current price is a function of the lagged price, but not the

lagged mean (i.e. it is not a function of the lagged state St-1).  It turns out that this model

has a higher likelihood value and a lower mean-squared error using data for PJM

(summer 1999) compared with the original model.

The additional feature of the new model is that the key parameters are functions

of time, and specifically of forecasted load.  A general specification for the model can be

written as follows:

Conditional Distributions

yt is ),(N 2
1t1 σµ   if St = 1
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yt is ),(N 2
2t2 σµ   if St = 2

where yt is the logarithm of price

µit is the conditional mean for regime St = i

2
iσ  is the variance for regime St = i

In regression form, the model for yt is mean reverting and a function of an additional

regressor:

Regression Form

itti1tiiititt xyy ε+γ+φ+α=ε+µ= −        (2)

where αi, φi and γi are parameters for regime St = i

xt is the forecasted load

The implication is that the conditional mean of yt ( [ ] ittttt isyxyE µ==− ,,,| 1 ) varies with

time because forecasts of load change as well as varying from the dynamic properties of

an AR(1) model.  The use of forecasted load rather then the actual load was chosen to

make the conditional means follow a relatively smooth time path.

The final component of the model specifies the transition probabilities for regime

switching as logistic functions:

Transition Probabilities

t21tt

t21tt

t11tt

t11tt

P1]2S|1SPr[
P]2S|2SPr[

P1]1S|2SPr[
P]1S|1SPr[

−===
===

−===
===

−

−

−

−

       (3)

and
)xdcexp(1

)xdcexp(P
tii

tii
it ++

+=    for i = 1.2
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Hence, the transition probabilities are also affected by the forecasted load.  Looking at the

data for PJM in Figure 1, the expectation is that the probability of switching from the low

to the high price regime will be close to zero in the spring and fall when the load is low,

and much higher in summer when load is high.  An important policy question is whether

the high spikes observed in the summer 1999 are due to the high load or to changes in

price behavior or both.

One restrictive feature of the specification in (2) is that the variances for each

regime are constant, even though Hamilton’s standard model allows for ARCH residuals.

There are some underlying reasons for specifying constant variances.  The first is that the

empirical evidence for ARCH behavior in Figure 1, for example, is quite limited

compared to price behavior for other forms of energy (see Duffie and Gray).  A second

reason is that there are distinct analytical advantages from having constant variances

when evaluating financial derivatives, such as the price of an option to sell.  It should also

be noted that the variance of yt does vary over time, because the probabilities of being in

one or the other regime and the conditional means for each regime do vary with time.

The variance of yt can be written as follows:

2
t2tt1t

2
2

2
t2t

2
1

2
t1t

2
ttt

2
ttt

))p1(p())(p1()(p

]|y[E]|y[E]|y[Var

µ−+µ−σ+µ−+σ+µ=

Φ−Φ=Φ
       (4)

where ]x,...,x,x,y,...,y,y[ t211t21t −=Φ  represents the information needed to make

a one-step ahead forecast of yt in each state, and ]|1SPr[p ttt Φ==  is the conditional

probability of yt being in State 1.  If State 1 represents the high-price regime with

t2t1 µ>µ  and 2
2

2
1 σ>σ , then both the mean and the variance of yt will be larger when pt is

larger.
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Smoothed values of pt, as well as estimates of the parameters in (2) and (3), are

standard outputs from the model, conditional on the full sample.  The model is estimated

by maximum likelihood using non-linear optimization routines in the computer package

GAUSS.  A full description of the algorithms used for estimation will be available in a

future publication.  The following two sections present results from estimating the regime

switching model for the spot prices of electrical energy.

4.  Structural Changes in the PJM Market

Prior to April, 1999 offers to sell electricity in the PJM auction were cost-based.

After 4/1/99, suppliers were allowed to submit market-based offers.  Hence, it is

interesting to determine whether this change was responsible for the high price spikes

shown in Figure 1.  An alternative explanation is that the higher loads in the summer,

1999 were responsible.

The regime switching model described in Section 3 includes forecasted load as

one of the explanatory variables.  For the following analysis, a simple time-series model

with two Sine/Cosine cycles was fitted to the daily peak load for PJM to capture the

seasonal pattern of load (weekends were dropped from the data).  The corresponding

price data are the average daily on-peak prices for weekdays (6 a.m. to 10 p.m.).

Parameters were estimated using prices for 4/1/97 to 3/31/99 (Pre-market based

offers) and for 4/1/99 to 1/31/2000 (Post-market based offers).  The estimated

coefficients are shown in Table 2.  Since State 1 is chosen to be the high-regime,

representing the price spikes, the corresponding mean is positively related to the load

( )01 >γ , particularly after market based offers are allowed in 1999.  The equivalent
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effects for the low-regime are small and negative.  At the same time, the probabilities of

switching to the high-price regime (1-P2t in (3)) and staying in the high-price regime (Pt

in (3)) are both positively related to load because d2 < 0.  The effects of load on the

probabilities of staying the high regime are relatively small.  The variances of the high-

regime are larger than the variances of the low-regimes (σ1 > σ2), even though yt is in

logarithms.  Finally, the adjustment coefficients (φi) have similar positive values ranging

from 0.31 to 0.57.

The magnitudes of the parameters in Table 2 are relatively difficult to interpret.

Consequently, the derived mean prices and ergodic probabilities (unconditional

probability of being in the high-price regime) are shown in Table 3 and Figure 5.  In

Table 3, each characteristic is computed for the maximum, average, and minimum levels

of load observed for the market.  The main difference between the pre- and post-market

based offers is that the mean in the high regime is much higher when market-based offers

are allowed.  In contrast, the probabilities (1-P2t) and P1t are similar between the two

models for PJM.  In Figure 5, the projected means and probabilities are shown for the

post-market period using the estimated model for the pre-market period.  The

probabilities of switching to the high-regime are slightly lower in the post-market period

than the projected values, but the mean price in the post-market period is much higher

than the projected mean.  Consequently, the weighted averages of the two conditional

mean prices (using the ergodic probabilities) are substantially higher during the post-

market period than during the projected values.
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Table 2. Parameter Estimates for Regime Switching Models

Parameters PJM
Pre-Market

PJM
Post-Market New England California

α1 -9.4127
(9.2576)

-31.1497
(32.5712)

13.5714
(37.6429)

-9.8112
(4.8505)

α2 3.2386
(0.2985)

3.1756
(2.1597)

0.5036
(1.5062)

0.4193
(1.9629)

φ1 0.4182
(0.1477)

0.5771
(0.1858)

0.0000
(0.1619)

0.7207
(0.0488)

φ2 0.4687
(0.0465)

0.3142
(0.0385)

0.6419
(0.0547)

0.6599
(0.0488)

γ1 1.1068
(0.8206)

3.1441
(3.1047)

-0.9589
(3.8106)

1.0346
(0.4711)

γ2 -0.1540
(0.1237)

-0.0926
(0.2090)

0.0740
(0.1548)

0.0695
(0.1883)

σ1 0.5000
(0.0513)

0.7431
(0.1048)

0.7503
(0.1059)

0.6123
(0.0373)

σ 2 0.2041
(0.0094)

0.2400
(0.0134)

0.1313
(0.0116)

0.1825
(0.0147)

c1 19.9710
(61.1410

-3.3616
(28.0010)

87.1788
(138.1942)

25.1198
(71.3156)

c2 154.3434
(47.2509)

183.4200
(74.0406)

183.8625
(112.2602)

105.4641
(70.0729)

d1 -1.8083
(5.7980)

0.4104
(2.6359)

-8.7953
(14.0536)

-2.1612
(6.8510)

d2 -14.4380
(4.4901)

-17.1136
(6.9854)

-18.4643
(11.4020)

-9.8774
(6.7301)

Log likelihood 458.4724 137.6429 218.0255 317.7057

The overall conclusion from the comparisons in Table 3 and Figure 5 between the

pre and post-market periods is that the change from cost-based to market based offers is

the primary cause of the high price spikes in the PJM market during the summer 1999.

The effect of the higher load was relatively small.  The analysis in the next section

compares the price behavior in three different markets for June to September 1999.
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Derived Characteristics for PJM
Probability (Price stays in or switches to high regime)
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Table 3. Derived Characteristics

Load PJM
Pre-Market

PJM
Post-Market New England California

Max 64.96 365.48 80.40 63.46
Average 44.89 108.01 87.76 32.96

High mean price
$/MWh

Min 30.22 28.48 101.57 17.43
Max 20.78 25.00 31.64 30.16
Average 21.99 25.56 31.05 29.09

Low mean price
$/MWh

Min 23.35 26.18 30.09 28.08
Max 42.24 200.91 45.81 53.98
Average 24.12 32.10 38.52 30.77

Weighted average
price  $/MWh

Min 23.40 26.19 32.15 26.25

26.75 46.74 39.68 35.73
Observed average
price $/MWh

Pr[high regime] Max 0.49 0.52 0.29 0.72
Average 0.09 0.08 0.13 0.43
Min 0.01 0.01 0.03 0.17

5.  A Comparison of Three Markets

The regime switching model, estimated in the previous section for the PJM

market, was also applied to price data in the New England and California markets.  The

prices for summer 1999 in the three markets are shown in Figure 6.  Price spikes in PJM

are the highest and the price spikes in California are the lowest among the markets.  The

estimated parameters and derived characteristics are summarized in Tables 2 and 3.  The

data used for estimation are for average on-peak weekday prices from 5/1/99 to 1/31/00

for New England and 4/1/98 to 3/31/00 for California.
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 Figure 6

Average Daily Prices (May - September 1999)
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The estimated parameters for the three markets (using the model of post-market

based offers for PJM) differ in both signs and magnitudes.  Nevertheless, there are some

consistencies across markets.  The variances in the high-price regimes are the largest (σ1

> σ2).  More importantly, the probabilities of switching to the high-price regime (1 – P2t

in (3)) have strong positive relationships to the forecasted load (the probability of staying

in the high-price regime (P1t in (3)) has a weak positive relationship in PJM and negative

relationships in New England and California).  When the logistic functions of load are

plotted, the probabilities of switching to the high-price regime (see Figure 7) are

remarkably similar relative to the minimum and maximum loads observed in the data

sets.  This suggests that the switching characteristics of the price are related to common

features of the supply system and not to market power.  One might have expected that

market power would increase the number of price spikes, but this appears not to be the

case.  In fact, the probability of being in the high regime is largest for California, because

price spikes are retained longer there, even though the magnitudes of the price spikes are

relatively small.  Note however, that the forecasted maximum loads used to estimate the

regime switching parameters, are much lower than  the observed maximum loads.  Hence

price spikes are not as predictable as the results in Figure 7 suggest.

The characteristics of the mean prices in the two regimes are very different across

markets.  The mean prices for the high and low regimes and the weighted average (using

the unconditional probability of being in one regime or the other) are shown in Figure 8.

The means for the low regime are all relatively flat (i.e. not sensitive to load).  The main

distinguishing feature of each market is the behavior of the mean in the high regime.  The

high mean increases dramatically with load in PJM, but the high means are relatively
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Probability (Price Switches to High Regime)
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Mean Prices in Three Markets, Summer 1999 ($/MWh)
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insensitive to load in the other two markets.  The overall implication is that the

characteristics of the PJM market in the high-price regime are unusual, and probably due

to specific institutional characteristics of the market.  Allowing suppliers to sell capacity

in PJM and non-firm energy from the same unit in another market is one possible

characteristic.  Under these rules, a high offer submitted to the PJM market acts as

compensation for the possibility of having capacity forcibly withdrawn from another

market by the PJM ISO.  The objective of the next section is to determine whether price

spikes can be predicted or explained further.

6.  Are Price Spikes Predictable?

The regime switching model provides a useful representation of the stochastic

properties of prices that can be used to conduct financial analyses.  However, the model

does not provide much information about whether a price spike will occur tomorrow, for

example, beyond the predicted probability of switching to the high regime (i.e. (1-P2t) in

(3)).  Since this probability is positively related to the forecasted load, it increases at the

beginning of a summer or winter season and then decreases.  Figures 9-11 show that the

probability of switching to the high regime reaches a maximum of 0.2 to 0.3 in the three

markets.  Since these probabilities are so low, they are not very helpful for predicting

when price spikes will occur.  A high expected load is a useful indicator of the possibility

of a price spike, but most of the time price spikes will not occur even when the load is

high.  Other characteristics associated with price spikes are needed.
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PJM East (Summer 1999)
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New England (Summer 1999)
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California (Summer 1999)
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Figures 9-11 show the observed average on-peak prices for June to September,

1999, and the estimated probabilities of being in the high regime, conditional on all

observed prices (i.e. smoothing values).  These probabilities represent ex-post predictions

of how often the markets were in a high price regime.  It is interesting to note how

different California is compared to the other two markets.  Since the probability of

staying in the high regime is relatively high in California, the high regime is persistent,

and jumps to the low regime are the unusual feature.  For PJM and New England, the

relationships between the probabilities and the observed price spikes are much more

obvious.  An additional feature of California is that the mean price for the high regime is

slightly lower than the mean price for the low regime when the forecasted load is very

low.  As a result, the high probabilities of being in the high regime during periods of low

load (i.e. the spring and fall) are not associated with price spikes.  Since the price

behavior in California is so different, most of the following analysis of price spikes

focuses on prices in PJM and New England.

Given the characteristics of the offer curves submitted to the PJM auction (see

Figure 4), it is sensible to consider whether high prices occur when actual load is higher

than expected.  In other words, do large positive forecasting errors (observed > predicted)

result in the market price being set by the steeply sloped part of the offer curve?  In this

situation, better forecasts might help to reduce the number of price spikes.  An alternative

argument is that the price spikes occur when load increases above an already high level.

In this situation, if load shifts to the right more than the offer curve shifts, price spikes

could occur.
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As a first step, the hourly prices for the summer, 1999 are plotted against the

corresponding loads for the three markets in Figure 12.  It is clear that high prices occur

more often when the load is high, but the relationships between high prices and high

loads are not particularly strong.  Once again, the relationship for California is not as

clear as it is for the other two markets.  The results in Figure 12 are used to provide a

rough division between low loads and high loads for the following analysis of prices in

PJM and New England.  The cutoff values are 45 and 20 thousand MW for PJM and

New England, respectively.

Since daily forecasts of load in the PJM and New England markets are not saved

in public archives, it is not possible to evaluate the performance of the actual forecasts

used by the ISOs.  Consequently, a time-series model was fitted to hourly load data to

capture all seasonal, weekly and daily cycles.  Sine and Cosine variables were used to

capture seasonal and daily cycles, and arctangents were used for weekends and special

holidays.  The weather related departures of load from normal levels were captured by

ARMA processes.  A full discussion of these models will be presented in another

publication, but it should be noted that both models fitted the data very well with R2 >

0.99.

The good fit of the time-series models of load illustrates the ability of the ARMA

processes to model deviations from normal weather patterns.  In other words, it is

relatively easy to predict load one hour ahead, conditionally on the current load.  To

approximate the forecasts of load made by an ISO, however, the models are used to

forecast 30 hours ahead.  This is equivalent to assuming that the ISO forecasts the pattern

of load for the following day at 6 p.m. each day.  The observed maximum load for each
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Hourly Price and Load (Summer 1999)

Figure 12
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day is compared to the maximum forecasted load (the time periods need not coincide) to

compute the forecasting error.  Typical errors are about 5% compared to the hour-ahead

errors of about 1%.

Figures 13 and 14 show 1) the actual peak loads and forecasting errors (the

shaded segments correspond to Probability(in a high price regime) > 0.8), 2) prices

plotted against forecast errors and 3) prices plotted against the changes in actual peak

load.  (The diamonds correspond to low load days and the circles to high load days.)

Solid circles correspond to being in a high price regime, and S is the first day of a high

price regime (NS is the first day of a high price regime when the load is low).  Inspection

of Figures 13 and 14 show that there are no strong positive relationships between high

prices and forecasting errors or changes of load.  For PJM, the first days of the price

spikes are evenly split between positive and negative forecasting errors (four with

positive errors and three with negative errors).  In contrast, all but one of the first days are

associated with positive changes of load.  For New England, most first days are

associated with both positive forecasting errors and with positive changes of load, and the

latter shows a relatively strong positive relationship.

The overall conclusion is that there is no convincing evidence that price spikes are

caused by the load being unexpectedly high (i.e. when forecasting errors are positive).  If

load is high, price spikes are more likely to occur when load increases further.  In this

sense, price spikes are predictable, and therefore it is reasonable to expect that the

vulnerability of a market to price spikes can be reduced by modifying the rules that

govern the market.  However, the solutions are unlikely to be simple quick fixes due to

the complicated designs chosen for electricity auctions in the USA, compared, for
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Price, Maximum Load, and Forecasting Errors
New England (Summer 1999)

Figure 14
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example, to Australia.  It is safe to say that there is a lot of room for improvement over

the current solution of suspending the operation of a market when the regulators or the

incumbent utilities do not like the prices.

7.  Conclusions

The main objective of this paper is to provide a better understanding of why spot

markets for electricity are so volatile.  The paper shows that a supplier with some market

power may be completely indifferent about having marginal units dispatched (Section 2).

Under these circumstances, there is no penalty to the supplier of setting offers for

marginal units at very high levels.  As a result, relatively minor institutional

characteristics of a market may have large effects on suppliers’ offers.  For example, the

reason that price spikes in PJM are so high may be because suppliers with contracts in the

capacity market are creating hedges against being recalled from contracts to sell energy

in other markets.

A regime switching model of price behavior is specified to allow for time-varying

parameters.  The mean prices and the transition probabilities are all functions of

forecasted load in this model (Section 3).  Applying this model to prices in PJM, using

data pre and post the introduction of market-based offers on 4/1/99, shows that structural

changes did occur (Section 4).  In particular, the mean in the high regime is much higher

and more sensitive to load after market-based offers were allowed.  The probability of

switching to the high regime, however, was not affected very much.  Hence, it appears

that market power enabled suppliers to set higher price spikes, but not to get price spikes

to occur more often.
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Comparing the price behavior in PJM (post market-based offer) with the New

England and California markets shows that the sensitivity of the transition probabilities to

load are similar in the three markets (Section 5).  The high mean in the high regime is the

main feature that distinguishes PJM from the other two markets.  The low price spikes in

California are not surprising given the importance of bilateral trading in this market.

Bilateral trades have properties similar to discriminatory auctions, in which suppliers are

paid actual offers rather than a uniform price set by the last accepted offer.  Mount (1999)

has argued that a discriminatory auction would be an effective way to reduce price

volatility associated with market power.  A key question for research is why are price

spikes in PJM so much higher than they are in New England, even though the auction

designs are quite similar?

The final analysis attempts to identify whether price spikes in the PJM and New

England markets are associated with errors in forecasting load or with increases in load

from one day to the next (Section 6).  Given the kinked shape of the offer curves

submitted into the PJM market, under-forecasting or unexpected increases of load could

result in prices being set on the steeply sloped section of an offer curve.  However, there

appear to be no systematic relationships between high prices and forecasting errors.

Positive changes of load when the current load is already high are related to price spikes.

Hence, it would be an interesting question for further research to determine whether the

regime switching model for prices can be modified to use day-ahead forecasts of load

rather than seasonal forecasts.  Our initial assumption was that the parameters of the

model should not change erratically from day to day (initial efforts to estimate such a

model were not successful).  It is possible, however, that the probability of switching to a
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high regime is sensitive to current load, and in this situation, the probabilities would be

much higher and more informative at certain times that the values shown in Figures 9-11.

While modifying the regime switching model would be a useful step forward, the

most important information for an ISO is contained in the actual offer curves submitted to

a market because they determine the effective reserve margin for a given level of

expected load.  In this respect, announcing a forecast of a future spot price, and allowing

suppliers to submit new offers, is likely to be a more effective way to deal with price

spikes than setting prices in a day-ahead market.  If market power becomes a chronic

problem, it may be preferable to abandon uniform price auctions in favor of

discriminatinatory auctions.  However, getting more players into the market is still the

best way to deal with market power.
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