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Is Strong Modal Resonance a Precursor to Power
System Oscillations?

Ian Dobson, Senior Member, IEEE, Jianfeng Zhang, Scott Greene, Member, IEEE, Henrik Engdahl, and
Peter W. Sauer, Fellow, IEEE

Abstract—We suggest a new mechanism for interarea electric
power system oscillations in which two oscillatory modes interact
near a strong resonance to cause one of the modes to subsequently
become unstable. The possibility of this mechanism for oscillations
is shown by theory and computational examples. Theory suggests
that passing near strong resonance can be expected in general
power systemmodels. The mechanism for oscillations is illustrated
in 3- and 9-bus examples with detailed generator models.

Index Terms—Electric power systems, Hopf bifurcation, oscilla-
tions, resonance, sensitivity, stability.

I. INTRODUCTION

POWER transactions are increasing in volume and variety
in restructured electric power systems because of the large

amounts of money to be made in exploiting geographic differ-
ences in power prices. Restructured power systems are expected
to be operated at a greater variety of operating points and closer
to their operating constraints. One operational constraint which
already limits transactions under some conditions is the onset of
low frequency interarea oscillations [4], [10], [11], [16].
We consider how changes in power system parameters could

cause low frequency oscillations. For example, parameter
changes such as bulk power transactions or generator redis-
patch change the power system equilibrium, and hence change
the system modes and possibly cause oscillations. The main
contribution of the paper is to suggest, analyze, and illustrate
a mathematical mechanism for low frequency oscillations.
Describing mechanisms which cause oscillations is an essential
step in developing sound methods of operating the power
system up to but not at the onset of oscillations.
The power system linearization and its modes vary as power

system parameters change. Damped oscillatory modes can
move close together and interact in such a way that one of the
modes subsequently becomes unstable. An ideal version of
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this phenomenon occurs when two damped oscillatory modes
coincide exactly. That is, the power system linearization has
two conjugate complex pairs of eigenvalues that coincide in
both frequency and damping. This coincidence is called a
resonance, or, especially in the context of Hamiltonian systems,
a 1 : 1 resonance. If the linearization is not diagonalizable
at the resonance, the resonance is called a strong resonance
[18]. Otherwise, if the linearization is diagonalizable at the
resonance, the resonance is called a weak resonance. Here, we
are most interested in strong resonance. At a strong resonance,
the modes typically become extremely sensitive to parameter
variations and the direction of movement of the eigenvalues
turns through a right angle. For example, an eigenvalue that
changes in frequency before the resonance can change in
damping after the resonance and become oscillatory unstable
as the damping changes through zero. The strong resonance is a
precursor to the oscillatory instability in the sense that the res-
onance causes the eigenvalues to change the size and direction
of their movement in such a way as to produce instability.
In practice, the power system will not experience an exact

strong resonance, but will pass close to such a resonance and
the qualitative effects will be similar: the eigenvalues will move
quickly and change direction as they interact and this can lead
to oscillatory instability. Note, that we are describing how a lin-
earization of the power system model changes as a generator
redispatch changes the equilibrium at which the linearization is
evaluated.
Section II reviews previous work. Section III illustrates os-

cillatory instability caused by strong resonance with parameter-
ized matrices. Computational results showing oscillatory insta-
bility caused by strong resonance in 3- and 9-bus power system
models are presented in Section IV. Section V describes the gen-
eral structure of strong resonance and relates this to what can
be expected to be observed in general power system models.
A method to predict eigenvalue movement near strong reso-
nance is presented in Section VI and the paper concludes in
Section VII. This paper is an improved version of the confer-
ence paper [7].

II. REVIEW OF PREVIOUS WORK

Kwatny [14], [15] studies the flutter instability in power
system models with Hamiltonian structure. A stable equilib-
rium of a Hamiltonian power system model necessarily has
all eigenvalues on the imaginary axis. One generic way for
stability to be lost as a parameter varies is the flutter instability,
or Hamiltonian Hopf bifurcation. In the flutter instability, two
modes move along the imaginary axis, coalesce in an exact
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strong resonance, and split at right angles to move into the
right and left halves of the complex plane. The Hamiltonian
power system model in [14] represents electromechanical
mode phenomena with simple swing models for the generators.
Kwatny [14] gives a 3-bus example of the flutter instability
and emphasizes that the flutter instability is generic in one
parameter Hamiltonian systems. It is also possible to add
uniform damping to the conservative model in order to shift
the Hamiltonian eigenvalue locus a fixed amount leftwards in
the complex plane [15]. Then, two eigenvalues (necessarily of
the same damping) approach each other in frequency, coalesce
in an exact strong resonance and then split apart in damping.
One of these eigenvalues can then cross the imaginary axis
in a Hopf bifurcation to cause an oscillation. This is clearly
a special case of strong resonance causing an oscillation. The
Hamiltonian plus uniform damping model structure constrains
the eigenvalues to move either vertically along the line of
constant damping or horizontally and causes the resonance to
be exact.
Van Ness [23] analyzes a 1976 incident of 1 Hz oscillations

at Powerton station with a 60-machine model of the midwestern
American power system with nine machines represented in de-
tail. The paper seems successful in reproducing the essential fea-
tures of the incident by eigenanalysis of the model. Reference
[23, Fig.7] examines the effect of a variation of power and ex-
citation at Powerton unit 6. The eigenvector associated with a
dominant eigenvalue shows significant changes near the insta-
bility that are attributed to a resonant interaction with another
nearby mode. Movement in the real part of close eigenvalues
when the excitation is lowered “seems to be due to a coupling
effect which has been observed in the model.” Unfortunately,
the data are sparse. Only one change in each power or excitation
is presented, and firm conclusions about the nature of the reso-
nant interaction cannot be made. However, the features shared
between the account of the eigenanalysis of [23] and strong res-
onance are suggestive.
Klein and Rogers et al. at Ontario Hydro [13] analyze local

modes and an interarea mode in a symmetric power system
model with two areas and four machines. The symmetry is bilat-
eral: each of the two areas has the same machines and transmis-
sion lines. However, the base case is a stressed case with Area
1 exporting power to Area 2 over a single weak tie line. The
two local modes have eigenvalues that are practically equal, and
each of the computed local modes has substantial components
across the entire system. A small decrease in the machine in-
ertias in Area 2 causes the local modes to change substantially
to have significant components only in their respective areas.
Klein and Rogers attribute these results to the nonuniqueness of
eigenvectors associated with a weak resonance. Although sim-
ilar eigenvector changes could be found near a strong resonance,
one might argue that a weak resonance could be expected here
because of the high degree of system symmetry. (A perfect bi-
lateral symmetry would cause a weak resonance and exclude
strong resonance between symmetric modes.) We do not ex-
pect perfect bilateral symmetry in a practical power system. A
perfect bilateral symmetry in a power system may require sym-
metry of both the network and the operating point: The 4-bus
computational example in the thesis of Jones [12] shows a strong

resonance in a power system with bilateral symmetry in the net-
work but an asymmetric operating condition.
Hamdan [9] studies the conditioning of the eigenvalue and

eigenvectors of a system very similar to that of [13]. The eigen-
vectors become ill conditioned near resonance and singular
value measurements of the proximity to a weak resonance
(“sep” function) suggest that the system does pass near a weak
resonance.
Klein and Rogers et al. [13] also discuss the modes near 0.7

Hz of the western North American power system. The Kemano
generating unit in British Columbia can have high participa-
tion not only in a local mode of 0.77 Hz but also in modes in-
volving the southwest United States of 0.74 and 0.76 Hz. Klein
and Rogers regard this modal interaction as unusual, distinguish
it from the phenomenon observed in their symmetric power
system model and conclude that “Oscillations in one part of the
system can excite units in another part of the system due to reso-
nance.”Mansour [21] shows large oscillations at Kemano due to
disturbances in the southwestern United States. It would be in-
teresting to determine if this modal interaction can be explained
by a nearby strong resonance.
Trudnowski, Johnson, and Hauer [20] use a strong resonance

assumption to improve Prony analysis identification of transfer
functions from noisy ringdown data. Closely spaced poles with
large residues of nearly opposite sign are replaced by two poles
in an exact strong resonance at the average of the previous pole
positions. Trudnowski, Johnson, and Hauer show that this im-
proves the estimates of the pole positions in a 27-bus, 17-gener-
ator example which captures some features of the western North
American power system. This result is supportive of the occur-
rence of strong resonance in power systems.
DeMarco [5] describes how increased loading of tie lines can

cause a low frequency mode to decrease in frequency until the
complex conjugate eigenvalues coalesce at the real axis and then
split along the real axis so that one eigenvalue passes through
the origin and steady-state stability is lost in a collapse. This
strong resonance of two real eigenvalues is sometimes called
a node-focus point or a critical damping of the two modes.
DeMarco demonstrates the phenomenon in a 14-bus system.
Ajjarapu [1] also describes this phenomena and demonstrates
it in a 3-bus system. The phenomenon is strong resonance of
real eigenvalues as a precursor to steady-state instability and
is clearly analogous to strong resonance in the complex plane
causing oscillatory loss of stability.
There is a large amount of very useful previous work ad-

dressing the tuning of control system gains to avoid oscillations
which we do not attempt to review here.
The strong resonance and its implications for stability is

known in mechanics. Seyranian [18] gives a perturbation
analysis of eigenvalue movement caused by parameter changes
near both strong and weak resonance. Of particular interest is
the analysis showing how passage through a weak resonance
can be perturbed to obtain strong resonances. Seyranian [19]
considers strong resonance of a parameterized linear oscillatory
system. The eigenvalue movements near resonance are shown
to be hyperbolas to first order and a procedure for calculating
the hyperbolas from the eigenstructure is given. The role
of the resonance as a precursor to instability and in altering
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Fig. 1. Two modes of matrix� encountering strong resonance.

which mode goes unstable is described and two applications in
mechanics are presented.
Recent work in the thesis of Jones [12], building on the con-

ference version of this paper [7], advances the computational
examples of strong resonance. Jones shows strong resonance
near 0.7 Hz of two well damped electromechanical modes of
a 19-machine dynamic model of the western North American
power system. Since both modes are well damped, no oscilla-
tory loss of stability is caused. The results confirm the approxi-
mate coincidence of mode shapes near the strong resonance and
the predicted effects of perturbing the resonance.

III. ILLUSTRATION OF STRONG RESONANCE

This tutorial section illustrates strong resonance and near res-
onance in complex eigenvalues of parameterized matrices.
Consider the matrix parameterized by the real number

is a complex matrix, but it is structured to be similar to the
real matrix

(note that the submatrices of are complex conjugate).
At , the eigenvalues of are and

. As varies from to , two of the eigen-
values of vary as shown in Fig. 1 (these eigenvalues are

). Each eigenvalue shown in Fig. 1 has
a complex conjugate which moves correspondingly below the
real axis. At , the eigenvalues coincide at the strong res-
onance at . is not diagonalizable at the resonance.
As increases through zero, the eigenvalues change direction
by a right angle. The eigenvalue movement is fast near the res-
onance. Indeed, exactly at the resonance, the eigenvalues are
infinitely sensitive to parameter variation. Note how one of the
eigenvalues becomes unstable after the resonance.
Fig. 1 is not typical because an exact strong resonance is en-

countered. It is more typical to come close to strong resonance

Fig. 2. Two modes of matrices� and� moving near strong resonance.

Fig. 3. 3-bus power system.

as the parameter is varied. Consider a matrix which is a per-
turbation of matrix

(1)

The eigenvalues of vary as shown in Fig. 2(a) as varies
from to 2. Note how the eigenvalues come close together
and quickly turn approximately through a right angle. There is
a marked effect of coming close to the resonance.
A different way to perturb is the matrix

(2)

The eigenvalues of vary as shown in Fig. 2(b) as varies
from to 2. Both the eigenvalue movements in Fig. 2 are close
to the eigenvalue movement in Fig. 1, but a different eigenvalue
becomes unstable in Fig. 2(a) and (b).

IV. POWER SYSTEM COMPUTATIONAL RESULTS

This section shows examples of 3-bus and 9-bus power
system models passing near strong resonance as generator
power is redispatched. In both cases, the modal interaction
near strong resonance leads to oscillatory instability. The 3-bus
results first appeared in [8].

A. 3-bus System
The 3-bus system shown in Fig. 3 consists of generators at bus

1 and bus 3 and a constant power load at bus 2. The generator
models are tenth order and the system parameters are reported in
Appendix B. As the generator dispatch is varied to increase the
power supplied by bus 3, two damped complex eigenvalues vary
as shown in Fig. 4(a). The eigenvalues are initially at
and and are stable. As the power supplied by bus
3 increases, the two eigenvalues approach one another, interact,
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Fig. 4. 3-bus eigenvalues as dispatch varies.

and then one of the eigenvalues crosses the imaginary axis and
becomes unstable.
The case shown in Fig. 4(a) is adjusted to show the eigen-

values coming close together and has , where
is the voltage reference set point of the generators at buses 1 and
3. Rerunning the case for decreased and increased is shown
in Fig. 4(b) and (c). Fig. 4(b) and (c) show typical perturbations
of the strong resonance. Observe that if one attempts to stabi-
lize the unstable eigenvalue of Fig. 4(b) by increasing , then
this eigenvalue is indeed stabilized, but the other eigenvalue be-
comes unstable as shown in Fig. 4(c). This shows the importance
of examining both modes when trying to stabilize the system
near strong resonance.

B. 9-bus System

The form of the 9-bus system is based on the western North
American power system from the text of Sauer and Pai [17].
There are 3 generators with 2 axis models and IEEE Type I
exciters.More details may be found inAppendix B. Fig. 5 shows
the eigenvalue movement when real power generation at bus 2
is varied from 1.5 pu to 2.10 pu in steps of 0.05. Real power
generation at bus 3 is fixed at 1.5 pu.
The eigenvalues pass near resonance and then one of the

eigenvalues becomes oscillatory unstable. Note that the eigen-
values initially move together by a change mostly in frequency.
It is the strong resonance which transforms this movement into
a change in damping and hence instability. The eigenvalues
move quickly near the resonance.

Fig. 5. 9-bus eigenvalues as dispatch varies.

V. STRUCTURE NEAR RESONANCE AND GENERICITY

This section describes in general how two oscillatory modes
of the Jacobian matrix vary when they are near a strong or
weak resonance and the genericity of these resonances. The de-
tailed mathematics to support all these results is presented in
Appendix A.

A. Strong Resonance
Near strong resonance the Jacobian is similar to a matrix

which includes a submatrix describing the following
modes of interest:

(3)

Here, and are complex numbers which are functions of the
power system parameters. The eigenvalues of are the same
as the eigenvalues of the Jacobian corresponding to the two os-
cillatory modes of interest.
The behavior of is governed by the submatrix

(4)

The eigenvalues of are

and (5)

Therefore, the eigenvalues of are

and

and these are the eigenvalues of the Jacobian corresponding to
the modes of interest. The idea is to study these modes by ex-
amining the eigenvalues and eigenvectors of .
The eigenvalues of coincide at when and this

is the condition for strong resonance. is nondiagonaliz-
able at resonance (alternative terms for “nondiagonalizable” are
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“nonsemisimple” and “nondefective”). The sensitivity of these
eigenvalues to the real or imaginary part of is ,
which tends to infinity as tends to zero. As moves in the
complex plane on a smooth curve through 0 with nonzero speed,
the argument of jumps by 90 so that the direction of the
eigenvalue movement changes by 90 .
The right and left eigenvectors of are

and

At the strong resonance at , the eigenvectors are infinitely
sensitive to changes in , the right and left eigenvectors are or-
thogonal, and there is a single right eigenvector together with a
generalized right eigenvector. As tends to zero and the reso-
nance is approached, the two right eigenvectors become aligned
and tend to the right eigenvector at . Thus, the system
modes approach each other as tends to zero. The dependence
of this approach on shows that this approach is initially slow
and then very quick near .
If the system is near strong resonance, then the following are

typical:
• The eigenvalues and eigenvectors are very sensitive to pa-
rameter variations.

• A general parameter variation causes the direction of
eigenvalue movement in the complex plane to turn quickly
through approximately a right angle.

• The right and left eigenvectors are nearly orthogonal.
• The right eigenvectors of the two modes are nearly
aligned. This implies that the pattern of oscillation of the
two modes is similar.

B. Mode Coupling at Strong Resonance
We examine the time and frequency domain solutions at

strong resonance when . Assume that
with . The time domain solutions to the linear differ-
ential equations with matrix (3) are linear combinations of

, , and . Some
perturbations mainly excite the and
solutions and these perturbations will cause oscillations that
grow before exponentially decaying to zero. Fig. 6 shows the
frequency domain description in block diagram form.
Observe the input–output combination passing vertically

down the page in Fig. 6 in which the output of the first damped
oscillator feeds the second damped oscillator. This one-way
mode coupling has interesting consequences for the power
system behavior.
Consider twomodes which initially are local to separate areas

of the power system. The modes are initially decoupled so that
disturbances in one area will only affect the mode in that area.
Now, suppose that parameters change so that the two modes in-
teract by encountering a strong resonance. As the strong reso-
nance is approached, the mode eigenvectors will converge so
that the modes are no longer confined to their respective areas.
Moreover, at the strong resonance, a disturbance along the gen-
eralized eigenvector can excite the eigenvector mode (but not
vice versa). We expect that qualitatively similar mode coupling
effects can occur for systems that pass near strong resonance.

Fig. 6. Modes at strong resonance.

C. Genericity of Strong Resonance
The rarity of strong resonance can be examined using its codi-

mension [24], which is, roughly speaking, the number of inde-
pendent parameters that need to be varied to typically encounter
the resonance. The coincidence of two pairs of complex eigen-
values of a matrix at typically happens with Jordan
canonical form

(6)

A strong resonance of the form (6) without regard to the value
of occurs in the matrix (3) when the complex parameter
. Since this requires both the real and imaginary part of to
be zero, this is a codimension 2 event. [On the other hand, the
occurrence of a strong resonance of the form (6) for a particular
value of requires both and and is a
codimension 4 event.]
Thus strong resonance is a codimension 2 event and it can

be typically encountered when varying two parameters. Strong
resonance will not be typically encountered when varying one
parameter, but it is still possible to pass near to strong resonance
when varying one parameter.

D. Weak Resonance
At a weak resonance of two complex modes, the Jacobian is

similar to a matrix which includes a submatrix

(7)

Weak resonance is a codimension 6 event. Thus, we do not ex-
pect weak resonance to occur in a generic set of equations such
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as those that might be expected when modeling a power system
with no special structure, even if two parameters were varied.
However, weak resonance can occur with some special struc-
ture: For example, consider two power systems which are de-
coupled from each other. The eigenvalues of the entire system
belong to either one power system or the other. If parameters
vary so that an eigenvalue of one power system coincides with
an eigenvalue of the other power system, then these two eigen-
values will not interact as parameters vary and this is weak res-
onance. Another example of special structure which can yield
weak resonance is when a power system study is done with a
bilaterally symmetric power system model.
At weak resonance, there is ambiguity in associating eigen-

vectors with one of the modes that is resonating because
any nontrivial combination of the eigenvectors is also an
eigenvector. Moreover, the eigenvectors and eigenvalues are
ill conditioned in that some parameter changes cause sudden
changes in the eigenvectors and eigenvalues. In particular, there
are strong resonances arbitrarily close to a weak resonance
[18].
Suppose that two modes which are local to separate areas of

the power system and thus decoupled encounter a weak reso-
nance. Then, the modes remain decoupled at the weak reso-
nance. For example, a disturbance confined to one area will only
excite the local mode of that area.

E. Typical Resonance in Power System Models

The analysis of genericity in Sections V-C and V-D raises
the question of the extent to which practical power system
models are nongeneric or have “special structure.” It seems
clear that special structure such as bilateral symmetry or perfect
decoupling due to the power system areas being completely
disconnected is not expected in practical power systems
models. Moreover, a sensible initial working assumption is that
practical power systemmodels are generic. However, it is a pos-
sibility that in some cases there could be sufficient decoupling
between power system areas to make the areas approximately
decoupled. In these cases the power system could pass near to
a weak resonance. This would also imply passing near a strong
resonance, since there are strong resonances arbitrarily close
to a weak resonance. However, not all perturbations of the
weak resonance involve the strong resonance and, moreover,
it is possible that the strong resonance could be observed
only in a detailed analysis whereas the weak resonance would
determine the approximate overall behavior. More work is
needed to clarify whether a weak resonance is likely to occur
in a practical power system model and what would be expected
to be observed near a weak resonance.
Another consideration is the genericity of the parameter

changes being considered. Parameter changes such as power
redispatch strongly affect the equilibrium and are expected to
generically change the power system linearization. On the other
hand, it is not clear whether changing a control system gain
corresponds to a generic parameter change. Control systems
are designed to affect particular modes and changes in control
gains often have little or no effect on the equilibrium.

Fig. 7. Variation in � and � near strong resonance; � � �,� � �.

VI. PREDICTING EIGENVALUE MOVEMENT NEAR STRONG
RESONANCE

Let be a lightly damped system eigenvalue. Formulas to
compute the first order eigenvalue sensitivity with re-
spect to changes in any parameter are very useful in deter-
mining the robustness of and in detecting whether is a
critical mode that can readily become unstable as parameters
change [6], [22]. (For parameters such as generator redispatch,
the effect of the equilibrium movement must be accounted for
by Hessian terms in the formulas computing these sensitivities.)
Now suppose that eigenvalues and are close to a strong

resonance. Then, the nonlinear and rapidly changing movement
of the eigenvalues near the resonance will make and

yield very poor estimates of the eigenvalue movements
for any sizable changes in . This section shows how to ob-
tain better estimates by exploiting the structure near strong res-
onance.
An important general observation is that and of (4) can

be calculated from numerical eigenvalue results. Inversion of (5)
yields

(8)

(9)

is the average eigenvalue and describes the detuning from
exact strong resonance.
Fig. 7 shows how and computed from (9) vary for the

9-bus case shown in Fig. 5. The approximately linear variation
of and in Fig. 7 motivates the following method of esti-
mating eigenvalue movement. The sensitivity of and with
respect to can be calculated from the sensitivities of and
:

(10)

(11)

First order estimates of the changes in and are made using
(10) and (11) and then estimates of the eigenvalue movements
are obtained using (5). Fig. 8 shows a good match between the
estimated and actual eigenvalue movements.
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Fig. 8. Predicting eigenvalue movement near resonance: � �predicted
eigenvalues, � �actual eigenvalues.

VII. DISCUSSION AND CONCLUSION

This paper demonstrates strong resonance as a precursor to
oscillatory instability in 3- and 9-bus power systems as power
dispatch is varied. Mathematical analysis confirms the observed
qualitative features of the eigenvalue and eigenvector movement
near strong resonance. Near strong resonance, eigenvaluesmove
quickly and turn through approximately 90 . Thus, if the eigen-
values are initially approaching each other in frequency, they
will quickly separate in damping after the resonance. One of
these eigenvalues can cross the imaginary axis and cause an os-
cillation. This new mechanism for power–system oscillations
can be seen as a generalization of Kwatny’s flutter instability of
Hamiltonian power systemmodels [14], [15] to a general power
system model.
The new mechanism for power system oscillations requires

some change of perspective: instead of only examining the
damping of a single mode, one must also consider the possi-
bility that two modes interact near a strong resonance to cause
the oscillations. If two modes do interact in this way, then
attempting to explain and predict the eigenvalue movement
or attempting to damp the oscillation by only examining the
mode that crosses the imaginary axis can easily fail. The new
mechanism does not preclude the possibility of a single isolated
mode changing in damping as a cause of oscillations; rather,
the new mechanism points out an alternative way in which the
interaction of two modes causes one of the modes to reduce its
damping and become unstable.
With the notable exceptions of the Hamiltonian work of

Kwatny [14], [15], the transfer function identification work by
Trudnowski et al. [20], and the recent work by Jones [12], the
possibility of strong resonance of oscillatory modes seems to
have been neglected in electric power systems analysis. How-
ever, theory suggests that a typical power system model can
pass close to strong resonance as a parameter is varied and that
encountering strong resonance is more likely than encountering
a weak resonance. More work is needed to determine whether
practical power systems have any special structure that could
make approximate weak resonance more likely. Nevertheless,
we do suggest that effects due to nearby strong resonance do
occur in practical power systems. Artificially symmetric power
system models may fail to give resonance results representative
of practical power systems.
As two eigenvalues approach strong resonance, the corre-

sponding eigenvectors also converge. This is one way to explain

how power system modes which are initially associated with
different power system areas become coupled. It will be inter-
esting to try to verify these explanations in power system exam-
ples such as the 0.7 Hz western North American power system
modes in which some sort of resonance has long been suspected
of causing “anomalous” results.
Is strong modal resonance a precursor to power systems os-

cillations? The theoretical and simulation evidence in this paper
strongly suggests that a strong resonance can be a precursor to
oscillations and that nearby strong resonance is a possible ex-
planation whenever electric power systems have closely spaced
modes interacting.

APPENDIX A
GENERIC STRUCTURE NEAR RESONANCE

This appendix describes the generic structure of twomodes of
a general power system model near resonance using the matrix
deformation theory explained in Wiggins [24] and Arnold [2].
We begin with a general dynamic power system model and

obtain a parameterized Jacobian . Assume that the power
system ismodeled by parameterized differential-algebraic equa-
tions which are analytic in the state and the parameters .
Further, suppose that the derivative of the algebraic equations
with respect to the algebraic variables is nonsingular at the equi-
librium. Then, we can locally solve the algebraic equations for
the algebraic variables via the implicit function theorem and
obtain analytic differential equations in a neighborhood of the
equilibrium. Suppose that the Jacobian of the differential equa-
tions at the equilibrium is nonsingular. Then the equilibrium is
an analytic function of the parameters and evaluating the Jaco-
bian at the equilibrium yields a real parameterized matrix .
The Jacobian is an analytic function of the parameters
in some open set .
Suppose that at , exactly two complex

eigenvalues coincide at , where .
It follows that the complex conjugates of these eigenvalues
also coincide at . We are interested in the
eigenstructure of for near to . Since the eigenvalues
of are continuous functions of , by shrinking the
neighborhood as necessary, the eigenvalues can be expressed
as functions for with

. Here, is shrunk so that and
lie inside a disk centered on for and that there

are, counting algebraic multiplicity, exactly two eigenvalues in
the disk for .
Now, we reduce the Jacobian to a matrix which

has the eigenstructure corresponding to the four eigenvalues of
interest. The projection onto the four dimensional right
eigenspace spanned by the generalized right eigenvectors cor-
responding to is an analytic func-
tion of [3]. Also, the projection onto the corresponding
four dimensional left eigenspace is an analytic function of .
Define . is an analytic matrix valued
function of the parameters for . has ex-
actly the eigenstructure corresponding to the four eigenvalues of

of interest. In particular, has two complex eigen-
values coinciding at .
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There are now two cases depending on whether is di-
agonalizable or not. In the diagonalizable, weak resonance case

is similar to the matrix diag in Jordan
canonical form. Arnold [2], section 6.30E shows that weak res-
onance is codimension 6 in real parameter space.

A. Strong Resonance
In the strong resonance case is similar to the matrix

in real Jordan canonical form

A miniversal deformation of is given by

(12)

This key result can be deduced from [24], [2]. The consequence
of the miniversal deformation is that there exist real analytic
functions written, with some abuse of notation, as , ,

, and a real matrix valued coordinate trans-
formation analytic in such that

for in some neighborhood of . That is, a matrix
similar to can be analytically parameterized via the four
parameters , , , and . Also , ,

, and so that, in particular

(13)

The eigenvalues of are
. It is convenient to shrink if necessary to ensure

that the eigenvalues of for
are never real. Then it follows, for , that the

eigenvalues of coincide iff
.

It is convenient to also express this result in terms of a
complex matrix describing the two eigenvalues with positive
frequency. Permuting the second and third basis elements yields
a matrix similar to

Applying a complex coordinate change to gives a
complex matrix

where

and

The complex matrix is called the com-
plexification of . The two eigenvalues of are the two
eigenvalues of with positive frequency. Note that, setting

, is in Jordan canonical form and that for
and , is the Jordan canonical form of .
In terms of , the consequence of the miniversal de-

formation is that there exist complex analytic functions written,
with some abuse of notation, as , , and a com-
plex matrix valued coordinate transformation analytic in
such that

for in some neighborhood of . Also
and .
Thus, study of the eigenstructure of reduces to study

of the eigenstructure of . In particular, the
eigenvalues of are the eigenvalues of
with positive frequency and a (generalized) right eigenvector
of corresponds to a (generalized) right

eigenvector of ,
which is similar to .

B. Structure of Matrices near
The miniversal deformation result above can be applied to

determine the structure of all real matrices near by a
choice of the parameterization . Let be the entries of a
real matrix. That is, we parameterize matrices by their
own entries. Then, may be regarded
as an analytic map where . Since
can be computed from the matrix eigenvalues [see (9)] and the
eigenvalues of are

and

which implies, using (13), that is regular near . There-
fore is an analytic codimension 2 submanifold
of the real matrices near . is the set of real
matrices near which are similar to for
some values of and .
Every matrix in is similar to

and the eigenvalues of and
are

. Since is assumed to be shrunk so
that these eigenvalues are never real, has coincident
eigenvalues iff . Hence is the set of
matrices in which have a coincident complex conjugate
pair eigenvalues away from the real axis. Moreover, each
matrix in is not diagonalizable. Thus is the matrices in
with strong resonance and is a submanifold of codimension
2. A generic two parameter system of differential equations
will have Jacobians which are diagonalizable except at isolated
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points at which strong resonance occurs (see the first corollary
in Arnold [2, chapter 6, section 30E]).

APPENDIX B
POWER SYSTEM MODELS

A. 3-bus System
The dynamic model for both generators consists of a

fourth-order synchronous machine (angle, speed, field flux,
one damper winding) with an IEEE type I excitation system
(third order), and a first-order model each for the turbines,
boilers, and governors. The machine equations are in [17,
(6.110–6.116), (4.98), (4.99), (6.118) and (6.121)]. The limits
on exciter voltage and the steam valve are neglected.
All data is in per unit except that time constants are in seconds.

3-bus power system data
Generator Exciter Gov/Turbine

rad/s

Load Line 1–2 Line 2–3

The generator dispatch is controlled by a parameter which
specifies the proportion of power specified at the governors at
buses 1 and 3 so that and .
( is determined when the equilibrium equations are
solved.) The base case has and the results are produced
by decreasing to 0.1 in steps of .

B. 9-bus System
The overall form of the 9-bus model is that of the western

North American power system shown in [17, Fig. 7.4], except
that PQ loads are added at buses 1 and 2. The generators are
round rotor with IEEE type 1 exciters. The generator dynamic
equations are consistent with [17, (6.173) to (6.181)]. The
generator algebraic equations are consistent with [17, (6.186),
(6.187) and (6.188)]. The saturation function relations are
consistent with [17, (6.189) to (6.193)], with

if
if

if
if

The network data are given in [17, Table 7.2]. Other param-
eters are as follows. All data are in per unit except that time
constants are in seconds.

Machine Data
Parameter bus1 bus2 bus3

Exciter Data for buses

Load Data
Parameters bus1 bus2 bus5 bus6 bus8

bus 1 has a constant power load. buses 2, 5, 6, 8 have real power
loads of 40% constant current and 60% constant admittance and
reactive power loads of 50% constant current and 50% constant
admittance. Base MVA is 100 and the system frequency is 60
Hz. bus voltage settings are
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