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What is Available Transfer 

Capability (ATC)?

• Some of you may be familiar with the terms

– Total Transfer Capability (TTC)

– Capacity Benefit Margin (CBM)

– Transmission Reliability Margin (TRM)

– “Existing Transmission Commitments”

– Etc…

• Then ATC is defined as

– ATC = TTC – CBM – TRM – “Existing TC”

• This talk will not cover these terms.

– We will really be covering the calculation of “TTC”, 
but let’s not get caught up with the nomenclature.
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Available Transfer Capability

• In broad terms, let’s define ATC as

– The maximum amount of additional MW transfer 
possible between two parts of a power system

• Additional means that existing transfers are considered part of 
the “base case” and are not included in the ATC number

• Typically these two parts are control areas

– Can really be any group of power injections.

• What does Maximum mean?

– No overloads should occur in the system as the transfer 
is increased

– No overloads should occur in the system during 
contingencies as the transfer is increased.
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Computational Problem?

• Assume we want to calculate the ATC by 
incrementing the transfer, resolving the power 
flow, and iterating in this manner.

– Assume 10 is a reasonable guess for number of 
iterations that it will take to determine the ATC

• We must do this process under each contingency.

– Assume we have 600 contingencies.

• This means we have 10*600 power flows to solve.

• If it takes 30 seconds to solve each power flow (a 
reasonable estimate), then it will take 50 hours to 
complete the computation for ONE transfer 
direction!



5

Why is ATC Important?

• It’s the point where power system reliability 

meets electricity market efficiency.

• ATC can have a huge impact on market 

outcomes and system reliability, so the 

results of ATC are of great interest to all 

involved.
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Example: The Bonneville Power 

Administration (BPA)

• BPA operates a HUGE capacity of hydro-electric 

generating stations

– Example: The Grand Coulee Dam has a capacity of 

6,765 MW (it’s one dam!)

• Most of BPA’s capacity is along the Columbia 

River which starts in Canada

• As a result, how Canada utilizes its part of the 

Columbia River has a huge impact on the ability 

of BPA to utilize its Hydro Units along the river
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The Columbia River Basin

BPA

Canada

California

Columbia River
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Columbia River Basin

• The United States and Canada operate the 
Columbia River under a Treaty Agreement

• To state the Treaty in highly over-simplified terms

– Canada has built and operates Columbia River Dams to 
the benefit of the United States (i.e. BPA’s hydro units)

– BPA must make all attempts to give Canada access to 
markets in the US (i.e. California)

• This means BPA is always trying to ship power 
across its system between California and Canada.

• Huge amount of money is at stake

– During the first 3 months of 2000, BC Hydro sold over 
$1 billion in electricity to California!
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Linear Analysis Techniques in 

PowerWorld Simulator

An overview of the underlying 

mathematics of the power flow

Explanation of where the linearized 

analysis techniques come from
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AC Power Flow Equations

• Full AC Power Flow Equations

• Solution requires iteration of equations

• Note: the large matrix (J) is called the Jacobian
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Full AC Derivatives

• Real Power derivative equations are 

• Reactive Power derivative equations are
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Decoupled Power Flow Equations

• Make the following assumptions

• Derivates simplify to
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B’ and B’’ Matrices

• Define                   and 

• Now Iterate the “decoupled” equations

• What are B’ and B’’?  After a little thought, we 
can simply state that…

– B’ is the imaginary part of the Y-Bus with all the “shunt 
terms” removed

– B’’ is the imaginary part of the Y-Bus with all the 
“shunt terms” double counted
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“DC Power Flow”

• The “DC Power Flow” equations are simply 

the real part of the decoupled power flow 

equations

–Voltages and reactive power are ignored

–Only angles and real power are solved for by 

iterating

  PBδ 
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Bus Voltage and Angle Sensitivities 

to a Transfer

• Power flow was 

solved by iterating

• Model the transfer as a change in the injections P

– Buyer:

– Seller:

• Assume buyer consists of

– 85% from bus 3 and 15% from bus 5, then

• Assume seller consists of 

– 65% from bus 2 and 35% from bus 4, then
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Bus Voltage and Angle Sensitivities 

to a Transfer

• Then solve for the voltage and angle 
sensitivities by solving

• are the sensitivities of 
the Buyer and Seller “sending power to the 
slack bus”
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What about Losses?

• If we assume the total sensitivity to the transfer is 

the seller minus the buyer sensitivity, then

• Implicitly, this assumes that ALL the change in 

losses shows up at the slack bus.

• PowerWorld Simulator assigns the change to the 

BUYER instead by defining

• Then 
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Lossless DC Voltage and Angle 

Sensitivities

• Use the DC Power Flow Equations 

• Then determine angle sensitivities

• The DC Power Flow ignores losses, thus
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Lossless DC Sensitivities with 

Phase Shifters Included

• DC Power Flow equations

• Augmented to include an equation that 

describes the change in flow on a phase-

shifter controlled branch as being zero.

• Thus instead of DC power flow equations 

we use

• Otherwise process is the same.
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Why Include Phase Shifters?

• Phase Shifters are often on 
lower voltage paths (230 kV 
or less) with relatively small 
limits

• They are put there in order 
to manage the flow on a 
path that would otherwise 
commonly see overloads

• Without including them in 
the sensitivity calculation, 
they constantly show up as 
“overloaded” when using 
Linear ATC tools

230 kV Phase Shifter

115 kV Phase Shifter

115 kV Phase Shifter
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Canada

BPA

Weak Low

Voltage Tie

To Canada
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Power Transfer Distribution 

Factors (PTDFs)

• PTDF: measures the sensitivity of line MW 

flows to a MW transfer.  

–Line flows are simply a function of the voltages 

and angles at its terminal buses

–Using the Chain Rule, the PTDF is simply a 

function of these voltage and angle sensitivities.

• Pkm is the flow from bus k to bus m
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Pkm Derivative Calculations

• Full AC equations 

• Lossless DC Approximations yield
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Line Outage Distribution Factors 

(LODFs)

• LODFl,k: percent of the pre-outage flow on 

Line K will show up on Line L after the 

outage of Line K

• Linear impact of an outage is determined by 

modeling the outage as a “transfer” between 

the terminals of the line 
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Assume

Then the flow on the Switches is ZERO, thus

Opening Line K is equivalent to the “transfer”

Modeling an LODF as a Transfer
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Modeling an LODF as a Transfer

• Thus, setting up a transfer of          MW 

from Bus n to Bus m is linearly equivalent 

to outaging the transmission line

• Let’s assume we know what        is equal to, 

then we can calculate the values relevant to 

the LODF

–Calculate the relevant values by using PTDFs 

for a “transfer” from Bus n to Bus m.
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Calculation of LODF

• Estimate of post-outage flow on Line L

• Estimate of flow on Line K after transfer

• Thus we can write

• We have a simple function of PTDF values
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Line Closure Distribution Factors 

(LCDFs)

• LCDFl,k: percent of the post-closure flow on 

Line K will show up on Line L after the 

closure of Line K

• Linear impact of an closure is determined 

by modeling the closure as a “transfer” 

between the terminals of the line 
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Modeling the LCDF as a Transfer

 

Line k    n m 

Other Line l 

The Rest of System 
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Assume

Then the net flow to and from the rest of the system are  

both zero, thus closing line k is equivalent the “transfer”
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Modeling an LCDF as a Transfer

• Thus, setting up a transfer of          MW 
from Bus n to Bus m is linearly equivalent 
to outaging the transmission line

• Let’s assume we know what          is equal 
to, then we can calculate the values relevant 
to the LODF.

• Note: The negative sign is used so that the 
notation is consistent with the LODF 
“transfer” direction.
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Calculation of LCDF

• Estimate of post-closure flow on Line L

• Thus we can write

• Thus the LCDF, is exactly equal to the 

PTDF for a transfer between the terminals 

of the line
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Modeling Linear Impact of a 

Contingency

• Outage Transfer Distribution Factors (OTDFs)

–The percent of a transfer that will flow on a 

branch M after the contingency occurs

• Outage Flows (OMWs)

–The estimated flow on a branch M after the 

contingency occurs

 

1 2 nc . . . . . . M 

Contingent Lines 1 through nc    Monitored Line M 
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OTDFs and OMWs

• Single Line Outage

• Multiple Line Outage

• What are               and            ?
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Determining NetPTDFK

and NetMWK

• Each NetPTDFK is a function of all the other 

NetPTDFs because the change in status of a line 

effects all other lines (including other outages).

• Assume we know all NetPTDFs except for the 

first one, NetPTDF1.  Then we can write:

• In general for each Contingent Line N, write
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• Thus we have a set of nc equations and nc

unknowns (nc= number of contingent lines)

• Thus

• Same type of derivation shows

Determining NetPTDFK

and NetMWK
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Fast ATC Analysis Goal =

Avoid Power Flow Solutions

• When completely solving ATC, the number of power 
flow solutions required is equal to the product of

– The number of contingencies

– The number of iterations required to determine the ATC 
(this is normally smaller than the number of contingencies)

• We will look at three methods (2 are linearized)

– Single Linear Step (fully linearized)

• Perform a single power flow, then all linear (extremely fast)

– Iterated Linear Step (mostly linear, Contingencies Linear)

• Requires iterations of power flow to ramp out to the maximum 
transfer level, but no power flows for contingencies.

– (IL) then Full AC

• Requires iterations of power flow and full solution of contingencies
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Single Linear Step ATC

• For each line in the system determine a 

Transfer Limiter Value T

























0;

0;(infinite)  

0;

M

M

MM

M

M

M

MM

M

PTDF
PTDF

MWLimit

PTDF

PTDF
PTDF

MWLimit

T
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Single Linear Step ATC

• Then, for each line during each contingency 

determine another Transfer Limiter Value

























0;

0;(infinite)  

0;

,

,

,

,

,

,

,

,

CM

CM

CMM

CM

CM

CM

CMM

CM

OTDF
OTDF

OMWLimit

OTDF

OTDF
OTDF

OMWLimit

T
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Important Sources of Error in 

Linear ATC Numbers

• Linear estimates of OTDF and OMW are quite 
accurate (usually within 2 %)

• But, this can lead to big errors in ATC estimates
– Assume a line’s present flow is 47 MW and its limit is 100 MW.

– Assume OTDF = 0.5%;  Assume OMW = 95 MW

– Then ATC = (100 - 95) / 0.005 = 1000 MW

– Assume 2% error in OMW (1 MW out of 50 MW change estimate)

• Actual OMW is 96 MW 

– Assume 0% error in OTDF

– Actual ATC is then (100-96)/0.005 = 800 MW

• 2% error in OMW estimate results in a 25% over-
estimate of the ATC
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Single Linear Step ATC

• The transfer limit can then be calculated to be the 

minimum value of for all lines and 

contingencies.

• Simulator saves several values with each Transfer 

Limiters
• [Transfer Limit]

• Line being monitored [Limiting Element]

• Contingency [Limiting Contingency]

• OTDF or PTDF value [%PTDF_OTDF]

• OMW or MW value [Pre-Transfer Flow Estimate]

• Limit Used (negative Limit if PTDF_OTDF < 0)

• MW value initially [Initial Value]

CMM TT ,or   

CMM TT ,or   

Good for

filtering

out errors
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Pros and Cons of the 

Linear Step ATC

• Single Linear Step ATC is extremely fast

– Linearization is quite accurate in modeling the impact 
of contingencies and transfers 

• However, it only uses derivatives around the 
present operating point.  Thus,

– Control changes as you ramp out to the transfer limit 
are NOT modeled

• Exception: We made special arrangements for Phase Shifters

– The possibility of generators participating in the 
transfer hitting limits is NOT modeled

• The, Iterated Linear Step ATC takes into account 
these control changes.
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Iterated Linear (IL) Step ATC

• Performs the following

• Reasonably fast

– On the order of 10 times slower than Single Linear Step

• Takes into account all control changes because a 

full AC Power Flow is solved to ramp the transfer

1. Stepsize = ATC using Single Linear Step 

2. If [abs(stepsize) < Tolerance] then stop

3. Ramp transfer out an additional amount of Stepsize 

4. Resolve Power Flow (slow part, but takes into account all controls)

5. At new operating point, Stepsize = ATC using Single Linear Step

6. Go to step 2
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Including OPF constraints in (IL) 

to enforce Interface Flows

• When ramping out the transfer, Simulator can be 

set to enforce a specified flow on an interface.

• This introduces a radical change in control 

variables that is best modeled by completely 

resolving using the OPF

– The objective of the OPF is to minimize the total 

controller changes (sum of generator output changes)

• Why would you do this?

– Represent a normal operating guideline that is obeyed 

when transfers are changed.
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1000 MW

653 MW

199 MVR

653 MW

105 MVR105 MVR

Example: Bonneville Power 

Administration (BPA)

A Lot of

Generation

Seattle

Grande

Coulee

6800 MW

Interface

Flow Chief Jo

2000 MW

Operating procedures for BPA 

require them to maintain “interface” 

flows into Seattle in specific ranges 

(These are stability constraints!)
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(IL) then Full AC Method

• Performs the following

• Extremely slow.

– “Number of Contingencies” times slower than the 
iterated linear.  If you have 100 contingencies, then this 
is 100 times slower.  (1 hour becomes 4 days!)

1. Run Iterated Linear Step and ramp transfer out ATC Value found

2. StepSize = 10% of the initial Linear Step Size saved during the (IL) method, or 50 

MW whichever is larger.

3. Run Full Contingency Analysis on the ramped transfer state

4. If there are violations then change the sign of Stepsize

5. if [abs(stepsize) < Tolerance] then Stop

6. Ramp transfer out an additional amount of Stepsize and resolve Power Flow

7. At new operating point, Run Full Contingency Analysis

8. if  [ (Stepsize > 0) and (There are Violation)]     OR 

[ (Stepsize < 0) and (There are NO Violations)] THEN 

StepSize := -StepSize/2

9. Go to step 5
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Recommendations from 

PowerWorld’s Experience

• Single Linear Step 

– Use for all preliminary analysis, and most analysis in 
general.

• Iterated Linear Step

– Only use if you know that important controls change as 
you ramp out to the limit

• (IL) then Full AC

– Never use this method.  It’s just too slow.

– The marginal gain in accuracy compared to (IL) (less 
than 2%) doesn’t justify the time requirements

– Remember that ATC numbers probably aren’t any more 
than 2% accurate anyway! (what limits did you choose, 
what generation participates in the transfer, etc…)


