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Abstract 

 
This paper presents preliminary results on three 

new tools to quickly assess the impact of line outages 
and reclosure on generators.  The first deals with the 
estimation of the angle across the breaker of an 
opened line.  The second deals with the estimation of 
the immediate currents that arise in generators in 
response to a line outage.  The third deals with the 
estimation of the immediate currents that arise in 
generators in response to a line closure.  The first 
would be used to determine if a reclosing relay might 
block a reclosure.  The second would be used to 
determine if a line outage might damage a generator.  
The third would be used to determine if the override 
of a blocked reclosure might be allowable.  The 
concepts are illustrated on test cases. 
 
1. Introduction 
 

Linear methods for contingency analysis have 
been in use for many years [1-6].  They remain the 
primary tool for estimating the impact of an outage in 
many security analysis programs.  Despite their long 
history, their capabilities have not been fully 
exploited in several key applications. 

In most cases, these linear methods approximate 
the full nonlinear power-flow solution to produce the 
“long-term” steady-state conditions after an outage.  
They are used primarily to verify that thermal line 
limits are not exceeded after an outage.  This paper 
addresses several different issues associated with 
potential outages.  It focuses on the impact of a line 
outage (or reclosure) on generator currents.   

When a line is outaged, the currents throughout 
the network change virtually instantaneously to 
satisfy Kirchhoff’s current and voltage laws before 
any generator or load dynamics begin.  If these 
immediate current changes are too large, damage to 
the generator shafts can occur.  When these currents 
appear in each generator, they will create power 
mismatches that will either accelerate or decelerate 
the shafts.  If the system is stable, the dynamics 
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should settle to new conditions that are only slightly 
different from the pre-outage case.  Traditional 
power-flow methods (linear or nonlinear) will 
compute only this final system state – not the 
potentially dangerous instantaneous redistribution of 
current. 

In addition, certain line reclosing relays contain 
blocking signals that will not allow reclosure when 
the angle difference across the open breaker exceeds 
a specified value (perhaps 45 degrees).  The purpose 
of this blocking is to avoid possible damage to 
generator shafts as a result of large currents which 
may arise when reclosure is done when pre-closure 
angles are large. 

The paper begins with a review of the theory and 
formulation of traditional distribution factors.  These 
factors are then extended to include the estimation of 
line-outage angles as well as potential changes in 
generator currents due to line outages and reclosures. 
 
2. Power transfer distribution factors 

(PTDF) 
 

The basis for this analysis begins by considering 
linear circuits with voltage and current sources 
interconnected by impedances.  Consider an n-bus 
plus ground network modeled with the admittance 
matrix referenced to ground.  For an operating 
condition called case A, Kirchhoff's current law at 
each bus is: 
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with each bus injection current A
iI  coming from the 

ground through a path not included in Y.  The Y 
matrix may include any line, transformer, load 
admittance connected between any two buses or 
between a bus and ground. 

For a generator, this injection current is the 
generator current.  For a load (not included in Y), this 
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injection current is the negative of the load current.  
All quantities are in per unit. 

For this analysis, let bus 1 be an ideal voltage 
source with voltage fixed for all cases as: 
 

0
11 VV =          (2) 

 
Eliminating the bus 1 current from the network 
model gives, 
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Solving for the case A voltages gives 
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The line currents for case A are: 
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where ijz  is the primitive line ij impedance.  Now 
consider changes in injection currents from case A to 
case B.  The case B network equations (for 
unchanged impedances) are: 
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The line currents for case B are: 
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From equations (4)-(7) the change in voltages and 
line current ij between cases A and B are: 
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where 
 

A
k

B
kk III −=∆             (10) 

 
In cases where bus i or j equal 1, the entries of Z are 
defined to be zero. 

This change can be written as 
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where 
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is a “current” transfer distribution factor (CTDF).  In 
power flow studies, it is customary to convert these 
to “power” transfer distribution factors by neglecting 
resistance, and assuming voltages to be near unity 
and define the PTDF as:  
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with the change in line real power flow in response to 
real power injection changes approximated as: 
 

∑
=

∆≈∆
n

k
kkijij PPTDFP

2
,           (14) 

 
For the derivations presented in the following 
sections, the change from case A to case B will 
always be done with constant impedances and 
constant topology.  For example, the change due to a 
line outage is not the change from case A to case B.  
Fictitious changes in injections (i.e. from case A to 
case B) will be used to compute the impact of a line 
outage on flows and voltages.  These injection 
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changes are applied to networks either with the line 
“IN”, or the line “OUT”.  As such, the factors will be 
labeled to reflect this change.    
 
3. Line outage distribution factor 

(LODF) 
 

The current transfer distribution factors above 
can be used to approximate the effects of a line 
outage as follows.  Consider a change in the injection 
current at bus i equal to: 
 

IN
iij

IN
ij

i T
I

I
,

−=∆             (15) 

where IN
ijI  is the flow in line ij before the line 

outage, and IN
iijT ,  is the current transfer distribution 

factor before the line outage.  This injection will zero 
the flow in line ij, and cause the following change in 
all other lines. 
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With the line flow zeroed, the line ij may be opened 
without any resulting change in flows.  The new 
network equations with line ij  removed have new 
current transfer distribution factors denoted as OUT

iabT , .  
When the injection of (15) is removed (after the line 
is outaged) to restore all injections to their  original 
values, the total change in line flow is: 
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Neglecting resistance again and assuming voltages to 
be near unity, the LODF is defined as: 
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with the change in line real power flow in response to 
a line outage approximated as: 
 

IN
ijijabab PLODFP ,≈∆           (20) 

 
An equivalent derivation is given in [5] using “DC” 
load flow assumptions. 
 
4. Line closure distribution factor 

(LCDF) 
 

The current transfer distribution factors can also 
be used to approximate the effects of a line closure.  
For this case it is necessary to find an injection that 
makes the voltages equal at each end of the line 
which is to be closed.  From the above equations for 
voltage, the injection needed at bus i to make the 
voltages at bus i and bus j equal is: 
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where OUT

iiZ and OUT
jiZ are from the network with 

the line out (before closure). 
The change in line current abI  due to this initial 

injection change is found by multiplying the injection 
current change times the “line out” current 
distribution factor.  Since the voltages at each end of 
the line are now equal, the line may be closed without 
impacting the system.  Then the initial injection 
change must be removed.  The additional change in 

abI due to the removal of the original injection 
change is found by multiplying the injection current 
change times the negative of the “line in” current 
distribution factor giving: 
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or 
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Again neglecting resistance, the line closure 
distribution factor is defined as: 
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and can be used to approximate the change in real 
power line flow in response to a line closure as: 
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where  
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where * denotes complex conjugation.  
 
5. Line outage angle factor (LOAF) 
 

Looking at the change in bus voltage angles as a 
result of a line outage, we recall that the voltage 
changes at bus i and bus j in response to the injection 
current change of (15) are 
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When the injection change is removed in the outaged 
system, the total change in bus voltages is: 
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The change in voltage between buses i and j due to 
the outage of line ij is then: 
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Since the original network (with line ij  in service) 
had 
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the difference between voltages at buses i and j after 
line ij is removed is: 
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Using the approximations: 
 

cos iθ  ≈   1                 (33) 

cos jθ  ≈   1                        (34) 

sin iθ  ≈  iθ                 (35) 

sin jθ  ≈  jθ                 (36) 
IN
ijI ≈ IN

ijP                  (37) 
 
and neglecting resistance again, the angle difference 
across the opened line ij is approximately, 
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where the line outage angle factor is defined as: 
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6. Line outage generation factor (LOGF) 
 

For this analysis, we arbitrarily assume that 
buses numbered 1,…,m are generator terminal buses 
and m+1,…,n are load buses. 
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In the above LODF derivation, the assumption of 
constant current (power) at each generator reflects the 
new steady-state condition of constant scheduled 
output.  This will normally not be the case for the 
small time between when the line is opened and when 
the controls react to preserve initial set points.  
During this time, dangerous currents can exist in 
some of the system generators, causing undesirable 
shaft torques.  To compute these temporary, but 
potentially dangerous currents, the generators need to 
be modeled as constant voltages behind respective 
transient reactances.  When the line is outaged, the 
new currents immediately change to match the 
constraint of constant internal generator voltage 
(magnitude and angle). 

The above LODF derivation can be directly 
applied to this case where the objective is to predict 
generator currents.  The addition of the transient 
reactance at each generator bus creates a branch flow 
for which we wish to compute the current after any 
line outage.  To reflect the constraint of constant 
internal voltage, the analysis proceeds exactly as 
before with the exception that the CTDF’s and 
changes in generator currents are computed as 
follows: 
 

(a) Add 1/jXd’ (generator transient reactance) to 
the diagonal of the nxn YBUS (including bus 
1 – a generator). 

(b) Compute the CTDF’s using the full nxn 
ZBUS in (12). 

(c) The generator current changes are estimated 
using (18) with Zij = 0 for subscripts i.j = 
n+1,…,n+m. 

 
The subscripts n+1,…,n+m are the internal, constant-
voltage buses of the m generators.  Since these buses 
are constant voltage, they are not included in the 
YBUS (as was the case where bus 1 was not included 
in (3)). 
 
7. Line closure generation factor 

(LCGF) 
 

For the closure of a line, the immediate change 
in generator currents is computed in the same manner 
as in section 6. above, only using (23) to compute the 
change in currents. These currents will be the 
currents which appear in each generator immediately 
after the switch is closed (before generator control 
actions).  The currents are however “steady’state” 
currents that result from the switching action – not 
the transient currents. 
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8. Illustrations 
 

Preliminary results were obtained on the 3-
machine, 9-bus system of Figure 1, with data from 
[7]. 
 

 
 
        Figure 1.  Test System 
 
Figure 2. shows a comparison of the LOAF with a 
full power flow solution for the outage of six 
different lines.  In each case, the error in the linear 
angle factors does not exceed about 15%. 
 

 
      Figure 2.  LOAF Comparisons 
 
Figures 3-5 show the generator current predictions 
immediately following the outage of six lines using 
the LOGF.  Comparisons with exact values using a 
dynamic simulation have not yet been made.  In these 
cases, the load flow Ybus matrix was augmented to 
include the internal transient reactances X’

d  as given 
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in [7].  Additional analysis also needs to be 
performed to determine the importance of adding 
these reactances to the analysis.  It is possible that 
ordinary load-flow data may be sufficient for 
reasonable estimations of generator currents. 
 

 
      Figure 3.  Generator 1 currents 
 

 
      Figure 4.  Generator 2 currents 
 

 
      Figure 5.  Generator 3 currents 
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The linear factors indicate that there can be 
significant immediate changes in generator currents 
following a line outage.  These results need to be 
verified with full dynamic simulation.  Similar results 
need to be computed for the line closure factors. 
 
9. Conclusions 
 

The extension of linear factors for contingency 
analysis to predict opened-line angles and immediate 
generator currents was presented as a straightforward 
utilization of traditional linear load flow techniques.  
These additional factors show promise as new tools 
for rapid contingency analysis that includes 
consideration of line outage impact on generators.  
More extensive comparisons with exact nonlinear 
solutions is needed to fully evaluate the usefulness of 
these tools. 
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