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Abstract: Standard algorithms for state estimation may be

viewed as quasi-Newton's methods applied to the �rst order

optimality conditions of a least squares minimization prob-

lem. Previous work in the literature has documented the

(somewhat surprising) fact that when a full Newton's method

is applied to the same formulation, convergence properties are

far worse than the quasi-Newton's method, until the iterates

reach an EXTREMELY small neighborhood of the solution.

Motivated by these results, and by availability of e�cient al-

gorithms to compute higher order derivatives necessary in an

exact Newton formulation, the companion paper [2] proposes

several Newton's method variants to improve state estimator

convergence. In this paper Benchmarks for the IEEE 118 and

300 bus test systems are provided, with comparisons against

classical normal equations, Hatchel's method, and QR algo-

rithms. In these benchmark examples, the new algorithms

developed show more reliable convergence for ill-conditioned

cases, while making minimal sacri�ces in computational e�-

ciency for well-conditioned cases.

Keywords: Weighted Least-Squares(WLS) State Estima-

tion, Optimal Multiplier, Exact Newton's Method, Quasi-

Newton's Method

I. Introduction

Traditionally WLS power system state estimation prob-

lems are solved by normal equation methods as summarized

in the companion paper [2]. If the system is well-conditioned,

the normal equation method can converge very fast. But

given di�erent measurement set, the conditioning of the sys-

tem will change. Usually the ill-conditioning can be brought

on by zero injections, fewer measurements and less observ-

able measurement set. For the ill-conditioned state estimation

problems, normal equation method will often display numer-

ical instability, e.g. oscillation and divergence. Many ideas

have been proposed to solve the ill-conditioned estimation

problems. Among them are Peters-Wilkinson method [7], or-

thogonal factorization(QR) method [9], and Hachtel's aug-

mented matrix method [8][10]. The Hachtel's augmented ma-

trix technique usually is used to handle the ill-conditioning

produced by zero injection or constrained estimation prob-

lems. The QR method is claimed to improve properties of

numerical stability. But its slow speed limits its utilization

in utility state estimation computation. Some ideas, such as

fast Givens rotation method [12] has been proposed to speed

up orthogonal factorization. It remains rather slow compared

with the normal equation method.

In the companion paper [2] three new Newton algorithm

variants are proposed to solve WLS power system state esti-

mation problems. Algorithm 1 uses quasi-Newton's method

combined with the optimal multiplier method. Algorithm 2

uses exact Newton's method combined with optimal multi-

plier method. But during the �rst several iterates it applies

the quasi-Newton's method to drive the iterate to a very small

neighborhood of the solution; then it switches to exact New-

ton's method to achieve quadratic convergence. Algorithm 3

switches between quasi-Newton's method and exact Newton's

method by evaluating the two di�erent cost function values

produced by the di�erent iterate step sizes obtained by opti-

mal multiplier method. All the three algorithms try to inher-

itate the fast convergence speed from Newton's method and

overcome ill-conditioning by using optimal multiplier method

or exact gain matrix or both.

As for the test systems, IEEE 118 and 300 bus systems

are used to check the e�ectiveness of the new algorithms

with comparisons against classical normal equation method,

Hatchel's method, and QR method. The full sparse tech-

niques and e�cient vectorized MATLAB code are used to

improve all the test algorithms.

II. Some Key Derivation

In this section we will give the derivations in vectorized

MATLAB format, to compute branch power vector, bus in-

jection vector, branch power Jacobian, injection power Ja-

cobian and the corresponding higher order derivatives which

are the core in our MATLAB code implementation. We will

use MATLAB notation and the notations in Part I of the two

companion papers in our following formulation.

Notice that the voltage at both ends of a branch is A0
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where the superscript * denotes the conjugate, and the inter-

pretation of h(x) here is slightly di�erent from that in [2].

The �rst derivatives of the branch complex power function

w.r.t. the state variables are (note: here we keep the slack



bus voltage imaginary part as a variable)
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Given a constant vector w which matches the dimension of

branch power vector h, second order derivatives of the branch

power tensor Jacobian are given by:
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Similarly the �rst order derivatives of bus injection power

s = ~v:�i� = (e+jf):�
�
Y �

b � (e� jf)
�
w.r.t. the state variables

are
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Given a constant vector w which matches the dimension of

injection power vector s, the injection power tensor Jacobian

is given by:
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III. Simulation Results

In this section we will compare our proposed new algo-

rithms with the traditional polar form and rectangular form

normal equation methods, polar form orthogonal decompo-

sition method, and polar form Hachtel's augmented matrix

method. The computation examples are IEEE 118 and 300

bus systems. The �ctitious measurements including line 
ows,

bus injections and bus voltages are obtained from load 
ow

computation with Gaussian noise added. For the virtual mea-

surements the added noise should be zero. The standard

deviation for active line 
ow, reactive line 
ow, active bus

injection, reactive bus injection and bus voltage are 0.0125,

0.0143, 0.02, 0.025 and 0.01(base 100 MVA) respectively. The

standard deviation for virtual measurements are 0.00001. Be-

fore moving into the comparison we brie
y describe the QR

method [9] and Hachtel's method [8][10] as follows.

Orthogonal Decomposition Method:

Consider the following linear WLS problem at each iteration,

which seeks to minimize

J(�x) = [�ẑ �H�x]T R�1 [�ẑ �H�x]

=
�
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where �~z = R�1=2�ẑ, ~H = R�1=2H and k � k denotes the

Euclidean norm.

Let Q be an orthogonal matrix, such that
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where U is an upper triangular matrix.
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and Q1
~H = U, Q2

~H = 0

Then we have

J(�x) = k�~z � ~H�xk2 = kQ�~z �Q ~H�xk2 (25)



and the solution of the WLS problem is

U�x = Q1�~z (26)

Another hybrid approach of the QR method is proposed in

[9], to solve the following normal equation

U
T
U�x = H

T
R

�1
�z (27)

The advantage of QR method is its numerical stability. The

drawback is the very slow computation speed. Usually the

orthogonal decomposition is proceeded by Householder and

Givens transformations [12]. In this paper the sparse QR

factorization software package developed by Matstoms[11] is

used to solve the linear least squares problems. The multi-

frontal method is used to do the sparse QR factorization. Be-

fore orthogonal decomposition, a �ll-in minimizing column or-

dering is �rst computed. Compared with the standard MAT-

LAB QR factorization routine it is much faster.

Hachtel's Augmented Matrix Method[8][10]

If there are zero injections(virtual measurements) at some

load buses, the injection measurements for these buses be-

come constraints

c(x) = 0 (28)

To accommodate these constraints with the cost function J,

we form the following Lagrangian
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1
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where � is the Lagrange multiplier vector. C is the Jacobian

of the constraint function, i.e. C = @c=@x
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where � is a scalar parameter to be chosen. A special 2 � 2

pivoting is used to improve numerical stability[10]. In this

paper, for simplicity, we will not use this 2� 2 pivoting tech-

nique to implement Hachtel's method. Thus the performance

of Hachtel's method in our tests may be underestimated.

The computation was done on the SUN ULTRA 10 work-

station. We use the 
at voltage pro�le as our initial guess.

The tolerance 10�5 is used for each algorithm. The com-

putation results are shown in the following tables. In order

to ensure fair and consistent comparison, we convert all the

intermediate state variables in each algorithm into polar coor-

dinates. The stopping criterion is that the maximum compo-

nent of the di�erence between the two consecutive x vectors,

in this consistent coordinate system, is less than the toler-

ance. After the estimated result is obtained, the estimation

error is computed. Here the estimation error means the Eu-

clidean norm of the di�erence between the power 
ow solution

and the state variable vector obtained by the state estimator

algorithm.

A. Test 1: IEEE 118 bus test system

In this section we will use IEEE 118 bus system as the

example to compare our proposed new algorithms with po-

lar form NE(normal equation) method, rectangular form NE

method, polar form QR method and polar form Hachtel's

augmented matrix method. Since all the test cases are gen-

erated randomly, some cases may be well conditioned and

some cases may be very ill-conditioned. In order to get statis-

tics on the results, we test a large number of cases. Table 1

describes some test cases and Table 2 shows the algorithm

comparison of those cases in computation 
ops and estima-

tion error. From Table 1 and Table 2 we can see the three

optimal multiplier algorithms are generally better than the

other 4 algorithms. Among the three optimal multiplier algo-

rithms method 2 and method 3 are the best. If the system is

well-conditioned (usually the condition number of the initial

iteration gain matrix is not big small), the convergence char-

acteristics of all 7 algorithms are very close. But if the system

is very ill-conditioned (doesn't mean the condition number of

the initial iteration gain matrix must be big 1) generally the

optimal multiplier method 2 and method 3 have relatively

nice convergence characteristics. This is due to the contribu-

tion of the optimal multiplier and the exact gain matrix. We

have to mention the QR method and Hachtel's augmented

matrix method are claimed to have better convergence prop-

erties than NE method. However we didn't observe this. The

reason may be that the QR method software package still

needs to be improved and our implementation of Hachtel's

method is not e�cient enough.

B. Test 2: IEEE 300 bus test system

We now test our proposed three optimal multiplier meth-

ods against rectangular form NE method, polar form QR

method and polar form Hachtel's method on the bigger sys-

tem, IEEE 300 bus system. Since the performance of po-

lar form NE method and rectangular form NE method are

close, we ignore the polar form NE method here. In order

to compare the computation speed, the approximate number

of 
ops are given for each algorithm. The description of the

test cases and the algorithm comparison results are shown in

Table 3 and Table 4. For 300 bus system we still have similar

conclusions. The results in Table 4 clearly show that the op-

timal multiplier methods have better convergence. As for the

computation speed, when the system is well conditioned, the

optimal multiplier method 1 may be the best because its com-

putation 
ops in each iterate is close to NE method and its

convergence is better that NE method. If the system is very

ill-conditioned generally the optimal multiplier method 2 and

3 are the best. The 
ops of each iterate for optimal multiplier

method 2 is less than that for optimal multiplier 3. But the

overall convergence characteristics of method 3 seems better

than that of method 2. The four plots on the last three pages

1In the simulation we observe that in some cases although the

condition number of the initial gain matrix is not big, the conver-

gence characteristics for each algorithm is not good. So in this

paper the meaning of ill conditioned systems is not the same as big

condition number of initial gain matrix.



Table 1: Data for IEEE 118 bus test system

case Line 
ows Bus injections Zero injections Voltages Total Redundancy Condition*

active/reactive active/reactive active/reactive Number

1 297/297 54/64 10/11 59 792 3.37 1.6�108

2 223/223 54/53 9/8 47 617 2.63 3.2�108

3 186/148 64/53 5/5 47 508 2.16 1.0�109

4 223/223 21/10 5/5 47 534 2.27 5.0�108

5 223/223 75/74 10/11 35 651 2.77 2.4�108

6 186/186 75/74 10/11 35 577 2.46 3.0�108

7 223/223 54/53 9/8 59 629 2.68 2.5�1013

8 186/148 54/53 9/9 47 506 2.15 6.6�1012

9 111/111 91/90 9/9 35 456 1.94 7.7�108

10 111/111 75/85 10/9 35 436 1.86 8.8�109

11 111/111 54/53 10/11 47 397 1.69 6.2�1012

12 93/93 75/74 10/11 35 427 1.82 1.1�1023

13 186/148 64/64 5/5 59 531 2.26 3.7�1020

14 111/111 43/37 10/11 59 382 1.63 1.2�1011

15 186/186 32/32 10/11 59 516 2.20 4.0�1011

16 260/260 10/10 10/11 59 620 2.64 3.8�1041

17 297/297 0/0 10/11 59 674 2.87 6.0�1012

18 111/111 75/74 10/11 35 674 2.87 6.0�1012

19 111/111 64/64 10/11 35 406 1.73 5.3�1023

20 111/111 54/53 10/11 47 397 1.69 2.1�1016

21 111/111 54/53 10/11 47 397 1.69 2.7�1015

22 223/223 21/21 10/11 59 568 2.42 8.8�1024

* Condition number of initial gain matrix of rectangular form normal equation method

show the convergence characteristics for rectangular form NE

method, optimal multiplier method 2 and optimal multiplier

method 3. In these plots solid line stands for rectangular form

NE method, dash line stands for optimal multiplier method

2 and dash dot line stands for optimal multiplier method 3.
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Fig.1: Convergence characteristics of 300 bus system(Plot 1)

IV. Conclusion

In the companion paper [2] three new algorithms, opti-

mal multiplier method 1, 2 and 3 are proposed to solve WLS

state estimation problems. They are based on optimal multi-

plier method which was originally presented in [6] and exact

Newton's method which incorporates the second order deriva-

tive information of the measurement function with respect to
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Fig.2: Convergence characteristics of 300 bus system(Plot 2)

state variables. Among those, method 1 does not use the sec-

ond order derivative information of measurement function.

The detailed formulation in rectangular coordinates for the

above three algorithms are given. In order to check the e�ec-

tiveness of the proposed new algorithms IEEE 118 and 300

systems are used in this paper as the computation examples

to compare against the traditional polar form and rectan-

gular form normal equation methods, polar form orthogonal

transformation method and polar form Hachtel's augmented

matrix method. The simulation results show that by combin-

ing optimal multiplier method and exact Newton's method

the new algorithms have very nice convergence characteris-

tics. The power of the new algorithm lies in its ability to



Table 2: Algorithm comparison for IEEE 118 bus test system

case NE NE QR Hachtel Optimal 1 Optimal 2 Optimal 3

(polar) (Cartesian) (polar) (polar)

1 2.3E6/3.4153 * 2.0E6/3.4153 9.0E7/3.6252 4.1E6/3.9661 2.0E6/3.4153 2.1E6/3.4153 3.9E6/3.4153

2 2.2E6/2.9687 2.0E6/2.8956 1.0E8/2.9687 3.7E6/2.8264 2.1E6/2.8956 2.2E6/2.8956 3.8E6/2.8956

3 2.5E6/9.0895 2.2E6/8.7268 1.1E8/9.0895 4.4E6/9.2977 2.3E6/8.7268 2.5E6/8.7268 4.6E6/8.7268

4 2.2E6/3.0280 2.2E6/2.9409 9.5E7/3.0280 3.6E6/3.0170 2.1E6/2.9409 2.2E6/2.9409 4.1E6/2.9409

5 2.5E6/3.1941 1.8E6/3.3165 1.2E8/3.1941 4.2E6/3.4722 2.1E6/3.3165 2.1E6/3.3165 4.0E6/3.3165

6 2.8E6/6.6831 2.4E6/6.5065 1.4E8/6.6831 5.1E6/7.0418 2.7E6/6.5065 2.4E6/6.5065/ 4.2E6/6.5065

7 1.1E7/4.6075 6.2E6/4.5854 3.8E8/4.6075 diverge 5.9E6/4.5854 5.5E6/4.5855 8.0E6/4.5855

8 1.6E7/11.7449 1.3E7/12.0939 6.5E8/11.7449 oscillate 1.5E7/12.0939 5.7E6/12.0939 8.5E6/12.0939

9 3.1E7/2.6243 3.6E6/2.5431 1.1E9/2.6243 oscillate 3.6E6/2.5431 2.4E6/2.5431 4.6E6/2.5431

10 3.1E7/7.8755 4.1E6/7.8122 1.1E9/7.8755 oscillate 4.2E6/7.8122 2.5E6/7.8122 4.8E6/7.8122

11 8.3E6/5.9088 6.1E6/7.1427 3.6E8/5.9088 1.1E7/5.6770 4.0E6/7.1427 5.1E6/7.1427 8.4E6/7.1427

12 7.3E6/14.0990 5.9E6/13.7031 3.7E7/14.0990 8.0E6/14.5070 6.6E6/13.7031 4.3E6/13.7030 9.4E6/13.7030

13 diverge oscillate diverge diverge oscillate 1.8E7/3.9995 1.3E7/3.9995

14 oscillate oscillate oscillate oscillate oscillate 4.4E6/12.8743 8.3E6/12.8743

15 oscillate oscillate oscillate oscillate oscillate 4.2E6/7.7939 8.2E6/7.7939

16 diverge diverge diverge diverge slow convergence 8.0E6/5.0709 5.0709/8.3E6

17 oscillate oscillate oscillate oscillate oscillate 4.9E6/1.5521 9.7E6/1.5521

18 oscillate oscillate oscillate diverge oscillate 8.5E6/7.6785 1.2E7/7.6785

19 diverge oscillate diverge diverge diverge oscillate 1.3E7/4.5566

20 diverge oscillate diverge diverge oscillate 5.2E6/10.1508 1.2E7/80.6746

21 diverge oscillate diverge diverge oscillate oscillate 1.1E7/7.4338

22 diverge diverge diverge diverge 4.1E6/19.4506 oscillate 9.5E6/15.6902

* column entries: approximate computation 
ops/estimation error at solution, E means the power of 10.

Table 3: Data for IEEE 300 bus test system

case Line 
ows Bus injections Zero injections Voltages Total Redundancy Cond*

active/reactive active/reactive active/reactive Number

1 493/452 163/172 67/84 120 1551 2.59 1.3�1012

2 493/411 163/172 67/84 120 1510 2.52 1.1�1013

3 411/369 186/172 67/84 150 1439 2.40 4.4�1011

4 369/369 209/194 67/84 150 1442 2.41 7.1�1012

5 493/493 163/151 67/84 90 1541 2.57 3.2�1012

6 493/493 163/172 67/84 120 1592 2.66 1.6�1026

7 411/411 163/172 67/84 150 1458 2.43 8.0�1027

8 369/369 209/151 67/84 210 1459 2.44 5.5�1013

9 452/369 186/151 67/84 210 1519 2.54 3.5�1012

10 493/493 186/151 67/84 90 1564 2.61 1.0�1016

* Condition number of initial gain matrix of rectangular form normal equation method

solve the very ill-conditioned power system state estimation

problems. As we can see from the test results even if the

system is extremely ill-conditioned the algorithms can still

converge very fast. The drawback of the optimal multiplier

algorithm 2 is that it needs use of the quasi-Newton's method

for the �rst several step warming up iterates before switching

to exact Newton method. The drawback of optimal multiplier

algorithm 3 is its need for more computation in each itera-

tion. With the speed of the computers becoming faster and

faster, the convergence characteristics of the algorithm may

be viewed as more important.
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Table 4: Algorithm comparison for IEEE 300 bus test system

case NE QR Hachtel Optimal 1 Optimal 2 Optimal 3

(Cartesian) (polar) (polar)

1 7.9�107/6.92* 2.2�109/6.74 2.0�108/7.01 9.2�107/6.92 8.7�107/6.92 1.6�108/6.92

2 3.4�108/14.21 1.0�1010/12.56 9.5�108/12.81 4.0�108/14.21 1.9�108/14.21 4.1�108/14.21
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10 1.2�108/10.27 diverge diverge 1.4�108/10.27 1.5�108/10.27 2.4�108/10.27

* column entries: approximate computation 
ops/estimation error at solution
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