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Abstract: Standard algorithms for state estimation may be

viewed as quasi-Newton's methods applied to the �rst order

optimality conditions of a least squares minimization prob-

lem. Previous work in the literature has documented the

(somewhat surprising) fact that when a full Newton's method

is applied to the same formulation, convergence properties

are far worse than the quasi-Newton's method, until the it-

erates reach an EXTREMELY small neighborhood of the so-

lution. Motivated by these results, and by availability of ef-

�cient algorithms to compute higher order derivatives nec-

essary in an exact Newton formulation, this paper proposes

several Newton's method variants to improve state estimator

convergence. In the companion paper [3] benchmarks for the

IEEE 118 and 300 bus test systems are provided, with com-

parisons against classical normal equation method, Hatchel's

method, and QR algorithms. In these benchmark examples,

the new algorithms developed show more reliable convergence

for ill-conditioned cases, while making minimal sacri�ces in

computational e�ciency for well-conditioned cases.

Keywords: Weighted Least-Squares(WLS) State Estima-

tion, Optimal Multiplier, Exact Newton's Method, Quasi-

Newton's Method

I. Introduction

There exists a long standing literature on problems

of equilibrium state estimation in electric power systems.

While variants exist, many methods begin from an optimiza-

tion problem associated with minimizing a weighted sum of

squares measurement residuals, under the assumption that

the \ideal" measurement values are a known function of the

desired system state. This optimization problem is often aug-

mented with equality constraints for functions of state which

are assumed to be known exactly; e.g. network buses having

identically zero load. In typical formulations, the measure-

ment functions are smooth, and often in�nitely many times

continuously di�erentiable. Hence, without previous knowl-

edge of the long literature in the subject, a plausible ap-

proach to such a constrained optimization problem might be

to form the Kuhn-Tucker necessary conditions for optimality,

and apply a Newton's method to solution of the equations

thus formed. Starting from this premise, the classical ap-

proach in the state estimation literature may be interpreted

as a quasi-Newton, or \dishonest Newton", method, in which

a computational convenient approximation to the Jacobian

of the Kuhn-Tucker conditions is employed, rather than the

exact Jacobian. In the terminology of the state estimation

literature, the approximate Jacobian is the \gain" matrix for

the problem.

This observation is hardly novel. For the case in which

exact equality constraints are not appended to the problem,

the particular gain matrix employed is quite natural. In par-

ticular, the standard gain matrix yields an iteration step that

coincides with the minimization of the quadratic cost func-

tion formed by replacing the residual function by its �rst or-

der Taylor expansion about the previous iterate. However, it

is a natural question to consider what improvements in con-

vergence properties might be gained by employing informa-

tion from an exact Jacobian evaluation, and with it, an exact

Newton iteration. Standard results ensure that for a problem

with an isolated to the Kuhn-Tucker equations, one should

see quadratic convergence to this point from initial condi-

tions in a neighborhood of the point. In contrast, one would

typically expect the quasi-Newton's method to display only

linear convergence rates from a neighborhood of the solution,

and perhaps a smaller region of attraction to the solution.

The motivation for the paper here stems primarily from

the work of [1] and the Ph.D. thesis [11], which provide sur-

prising numerical results when examining the use of full New-

ton's methods in least squares state estimation. In particu-

lar, [1] and [11] describe a range of numerical experiments

in which use of the exact Newton's method, from typical

initial conditions (at start, or slight variants thereof), con-

sistently diverge, while the standard quasi-Newton's method

converges reliably. Moreover, [1] attempts to gain the advan-

tage of quadratic convergence rates from the exact Newton,

by beginning from quasi-Newton steps early in the iteration

process, and "switching" to an exact Newton latter in the pro-

cess. These experiments indicated that the iterates needed to

be within an extremely small neighborhood of the solution

in order for this bene�t to be realized. To the state estima-

tion neophyte, this would seem particularly surprising, given

the robust convergence properties that exact Newton methods

display for many (but certainly not all) power ow examples.

The work in [1] provides one interpretation of the di�cul-

ties of the exact Newton method, by examining the spectral

radius of the iteration mapping for exact versus quasi-Newton,

showing that the quasi-Newton had more desirable spectral

radius properties until the iterates moved very close to the

�nal accumulation point. However, in a sense, this is simply



a more quantitative indicator of the poor convergence prop-

erties already observed qualitatively. While we have wrestled

with the development of a structural explanation of the weak

performance of the exact Newton, we must honestly report

that we have no further insights beyond those of [1].

However, motivated by [1], this paper examines more

pragmatic issues of algorithm design, aimed at improving con-

vergence of least squares state estimators: (i) e�cient calcula-

tion of the exact Jacobian of the Kuhn-Tucker conditions, in

both polar and rectangular coordinate representations of the

residual function; (ii) improved means of alternating or inter-

polating between exact Newton and quasi-Newton steps; (iii)

use of optimal multipliers (computable at very low cost in a

rectangular coordinate formulation) to improve convergence

of steps in exact Newton or quasi-Newton directions. The

problem proves a challenging one, as our experience in a range

of randomly generated measurement sets for the IEEE 118

and 300 bus systems shows a high degree of variation in per-

formance between various methods, case by case. Moreover,

in the speci�c test cases we constructed, some highly regarded

existing methods for improving convergence (QR, Hatchel's

\sparse tableau" formulation) performed surprisingly poorly.

However, by combining the concepts (i) through (iii) above,

we will propose a Newton method variant that displays re-

liably improved convergence for a wide range ill-conditioned

cases, while sacri�cing relatively little in computational e�-

ciency in well conditioned cases.

II. Notation

A key element of this paper's development will be treat-

ment of the least squares estimation problem in both po-

lar and rectangular coordinates. This allows examination of

closed form optimal step size computations that are avail-

able in the rectangular form. It is therefore useful to de�ne

notation for both complex vector quantities, as well as dis-

tinct notation to separately represent corresponding real and

imaginary parts, and corresponding magnitude and phase.

To do so, let the study network be composed n buses, and

l branches. We assume a simply connected network, with a

single angle reference bus. The number of generator buses is

denoted ng. The number of measurements is denoted m.

The following notation will be used throughout this paper,

and the companion paper [3]. Upper case bold face Roman

characters denote matrices; underlined lower case characters

represent column vector quantities.

A :primitive incidence matrix, A 2 <
n�2l

Yp :primitive admittance matrix, Yp 2 <
2l�2l

Yb :bus admittance matrix, Yb 2 <
n�n

s :bus injection complex power vector, s 2 Cn

e :bus voltage real part vector, e 2 <n

f :bus voltage imaginary part vector, f 2 <n

f
r
:reduced bus voltage imaginary part vector, f

r
2 <

n�1

~v :bus voltage complex vector, ~v 2 Cn

� :bus voltage magnitude square vector, � 2 <n

i :bus injection current vector, i 2 Cn

x :reduced state variable vector, x = [e f
r
]T , x 2 <2n�1

h1(x) :active line ow(at both ends) vector

h2(x) :reactive line ow(at both ends) vector

h3(x) :active bus injection vector

h4(x) :reactive bus injection vector

h5(x) :bus voltage magnitude square vector

h(x) :measurement function vector, h = [h1 h2 h3 h4 h5]
T

H(x) :measurement Jacobian matrix, H 2 <
m�(2n�1)

ẑ :measurement vector, ẑ 2 <m

� :measurement noise vector with normal distribution, � 2 <m

R : the diagonal noise covariance matrix, R 2 <
m�m

The inverse of R will be referred to as the measurement

weighting matrix throughout this paper, and is assumed to be

diagonal. If one wishes to view the least squares estimate as

a maximum likelihood estimator with additive measurement

errors having a Gaussian distribution, this would correspond

to an assumption that measurement errors are uncorrelated.

III. Review of Basic WLS State Estimation

Algorithm

The mathematical model of power system estimation used

by the classic least-squares algorithm is given by:

ẑ = h(x) + � (1)

As noted above, under the assumption of additive, Gaussian

measurement error, the maximum likelihood estimate x� is

found by solving the simple unconstrained minimization prob-

lem:

minimizeJ(x) =
1

2
[ẑ � h(x)]T R�1 [ẑ � h(x)] (2)

As a necessary condition for optimality, any solution will sat-

isfy the �rst order Kuhn-Tucker condition

H(x)
T
R
�1 [ẑ � h(x)] = 0 (3)

If one applies a Newton-Raphson method, one seeks an esti-

mate x� which corresponds to an accumulation point of the

iteration

x
k+1

= x
k
� [5

2
J(x

k
)]
�1
5 J(x

k
) (4)

where 5J(x) is column vector of the �rst order derivative of

the cost function w.r.t. the state variable, and 52J(x) is the

second order derivative of the cost function w.r.t. the state

variables. Employing the speci�c form of J(x) yields

5J(x) =
@J(x)

@x
= �H

T (x)R�1�z (5)

5
2
J(x) =

@ 5 J(x)

@x
= G(x)�

@HT (x)

@x
R
�1�z (6)

where G(x) = HT (x)R�1H(x) and �z = ẑ � h(x) is the

residual.

If one considers the linearized state estimation process,

and ignores the second order derivative term within 52J(x),

the traditional normal equation method is obtained

x
k+1 = x

k
+G�1(xk)HT (xk)R�1�z

k (7)

Since the iteration process above uses only an approximation

to 52J(x), one can consider this a \quasi Newton's method".



Here the matrix de�ning the linear equation set is G(x); this

is often referred to as the \gain matrix" in state estimation

literature. For our development, we will refer to this quantity

as the \approximate gain" matrix and denote it as Ga(x).

If one does not ignore the second order derivative informa-

tion represented by 52J(x), the following iteration process is

obtained

x
k+1 = x

k
+Ge(x

k)�1
H

T (xk)R�1�z
k (8)

This is the exact Newton's method. Here the gain matrix is

Ge(x) = G(x) �
@H

T (x)

@x
R�1�z. We will refer to it as the

\exact gain" matrix.

The normal equation method has proven popular because

of a number of convenient numerical properties it o�ers. It

preserves sparsity in a network having relatively few branches

incident on each node. Moreover, in the linear equation solu-

tion the gain matrix is symmetric and positive de�nite, allow-

ing relatively simple algorithms to be e�ciently employed in

the factorization process. For many practical cases, the nor-

mal equation method o�ers very fast convergence at low com-

putational cost per iteration. However, if the system displays

any of a variety of problems that lead to ill-conditioning, the

normal equation method will give rise to numerical problems.

One common ill-conditioning problem arises from exact zero

injections. In a power system, there are typically a number

of buses from which no external current is drawn of injected,

so that the complex power injection is physically constrained

to be exactly zero. While no measurement device is present

at such a bus, it is useful to impose the zero power injec-

tion constraint. Such a zero injection is typically referred to

as a virtual measurement, and can be incorporated in the

measurement set along with physically measured injections.

Such virtual measurements may impose equality constraints

appended to the previously developed Kuhn-Tucker condi-

tions for optimality, or they may be approximately incorpo-

rated in the original objective function, with large weights (a

penalty function approach to equality constraints) When a

large number of these virtual measurements are incorporated

in the objective function, with large weights, ill-conditioning

of the gain matrix can result [10]. In such cases normal equa-

tion method often displays convergence problems.

To a naive observer, approaching the state estimation

problem from a background of iterative power ow calcula-

tions, it might seem that the in such a case, use of an exact

Newton method (8) might be likely to improve convergence

properties, at the cost of more computation per iteration to

evaluate to the second order derivative term. However, nu-

merical experience reported in the literature shows quite the

opposite conclusion [1] and [11].

As documented in [1] (and re-enforced by our own numer-

ical experience), in the early iterations, use of exact Newton's

method signi�cantly degrades the convergence properties. In

particular, starting from at voltage, use of the exact New-

ton often results in extremely large steps, and as a practical

matter, immediate divergence ([11] o�ers a simple two bus

illustrative example in which this property is illustrated dra-

matically). Certainly, there is no contradiction to general

analytic properties of the Newton's method in these obser-

vations, as the Newton's method is guaranteed to be a con-

traction mapping with quadratic convergence properties only

in some su�ciently small neighborhood of a solution point.

The expectation of quadratic convergence for exact Newton,

versus linear convergence rate for quasi-Newton (i.e., tradi-

tional normal form with the standard approximate gain ma-

trix) is observed in the numerical examples of [1], for very

small neighborhoods of solutions.

Hence, [1] �nishes its exposition with the pragmatic sug-

gestion that a state estimation iteration should start with the

standard normal equation method in its �rst two to three it-

erations, and then switch to exact Newton's method for the

remaining steps to convergence. Accepting this heuristic as

the existing state of the art for exploiting the second order

information of the exact gain matrix, our exposition "picks

up" from this point.

IV. Measurement Functions in Rectangular

Coordinates and Their Taylor Expansion

As noted previously, one of the attractive features of rect-

angular coordinate representations is that once a step direc-

tion is determined for bus voltage phasor quantities, the power

mismatch equations are simple quadratic expressions with re-

spect to step size. Hence, step size selection criterion that are

themselves a simple function of mismatch often has minima

that can be trivially computed. This property extends in an

obvious way to the least squares state estimation problem.

Given any method of selecting a step direction, one can triv-

ially compute the step size that minimizes the least squares

objective function along that ray. This motivates our choice

of a rectangular formulation here.

To illustrate the properties of the rectangular formula-

tion, we describe the measurement functions in a simple closed

form fashion, consistent with evaluation MATLAB [12].

h1(x) = real
�
A0

� ~v: � (Y�

p �A
0
� ~v�)

�
(9)

h2(x) = imag
�
A
0

� ~v: � (Y
�

p �A
0

� ~v
�

)
�

(10)

h3(x) = real [~v: � (Y�

� ~v
�)] (11)

h4(x) = imag [~v: � (Y
�

� ~v
�)] (12)

h5(x) = e
2 + f

2 (13)

where:

~v = e+ jf

It is obvious that the above measurement functions are

quadratic functions of the state variables e; f
r
. Note the

imaginary part of the reference bus voltage magnitude is al-

ways 0.

As noted previously, the measurement functions are

quadratic. In exact analogy to developments for the power

mismatch equations for power ow [6], the Taylor has three

terms, which may be conveniently expressed as

h(x) = h(x
e
) +H�x+ h(�x) (14)



where: x
e
: estimate of x, �x: error(correction vector)

For the a derivation of the measurement Jacobian matrix,

please refer to the companion paper [3]. As noted in the

introduction, one of the motivations for the work presented

here is the observation that the structure of the Jacobian

matrix as presented in [3] allows very e�cient sparse matrix

computation of the second order derivative terms.

V. WLS State Estimation Problems by Nonlinear

Programming Approach

The objective of WLS algorithm for power system state

estimation is to minimize the following cost function.

F (x) =
1

2
[ẑ � h(x)]T R�1 [ẑ � h(x)] (15)

If there are zero injection buses, we will adopt the penalty

function approach to their treatment, and associate large

weights to these virtual measurements. Let W = R
1

2 , then

F (x) =
1

2
[W(ẑ� h(x))]T [W(ẑ� h(x))] (16)

In the presentation to follow, we will o�er a number of

methods that di�er in their choice of step direction compu-

tation. However, independent of the step direction, the pro-

posed methods all share a general structure, as outlined be-

low.

Step 1. From a known iterate value, xk
e
, construct the cost

function F k as a second order Taylor expansion about xk
e
.

F
k =

1

2

�
W(ẑ � h(xk

e
+ �

k�x
k)

�T �
W(ẑ� h(xk

e
+ �

k�x
k)

�

(17)

where k is the iteration step

Step 2. Determine a step direction, �xk .

Step 3. Compute the scalar multiplier �k so that minimizes

the cost function along the selected step direction.

Step 5. Update estimate xk+1
e

= xk
e
+ �k�xk.

Step 6. If norm of xk+1
e

= xk
e
is su�ciently small, terminate;

else set k = k + 1, go to the step 2.

As noted in works such as [6] and [2], power ow problems

can be treated in the same least squares minimization frame-

work, selecting a weighting matrix as the identity matrix, and

functions h just as power mismatch expressions. If the cost

function is driven to zero, the power ow solution is found;

for injection values for which no power ow solution exists,

[2] employees an iteration structure similar to that above to

�nd a point that satis�es necessary conditions for minimizing

the Euclidean norm of the mismatch. It is interesting to note

that the work of [2] used an exact Newton's method to set

step direction, and observed excellent convergence properties

in all its examples. In the state estimation problems, we have

already noted published results that suggest the experience

will be very di�erent. However, the work here will share the

key idea of [2], and original work of [6], in selecting the op-

timal �k to accelerate the convergence. Standard numerical

texts [4] o�er a wide range of options in approximate optimal

multiplier � selection; the rectangular coordinate formulation

a�ords us the luxury of easily computing an exact optimal

multiplier.

VI. Derivation of The Optimal Multiplier Method

The derivation below closely follows that of [6]. From the

previous section, we have already expressed the measurement

functions as quadratic functions of the state variables. From

the Taylor series expansion we have the following overdeter-

mined equation.

W [ẑ � h(x
e
)�H��x� h(��x)] = 0 (18)

By multiplying the scalar � we can adjust the correction vec-

tor �x. It follows that

W
�
ẑ � h(x

e
)� �H�x� �

2
h(�x)

�
= 0 (19)

For simplicity we de�ne the vectors a; b; c as follows

a = W [ẑ � h(x
e
)] (20)

b = �WH�x (21)

c = �Wh(�x) (22)

Then (19) can be simply written as below

a+ �b + �2c = 0 (23)

In order to determine the value of the optimal � in a least-

squared sense, the following cost function should be mini-

mized.

F =
1

2
(a + �b+ �

2
c)T (a+ �b+ �

2
c) (24)

Candidate minimizers for the above equation can be obtained

by solving:
@F

@�
= 0: (25)

That is

g3�
3 + g2�

2 + g1�+ g0 = 0 (26)

where

g0 = a
T
b (27)

g1 = b
T
b+ 2aT c (28)

g2 = 3bT c (29)

g3 = 2cT c (30)

Solution of such a cubic equation can expressed in closed form

via Cardano's formula, or at very low cost numerically via

standard root �nding routines.

VII. Application of Optimal Multiplier Method

and Exact Newton Method to WLS State

Estimation Problems

Standard measurement quantities in a state estimator are

line ows, bus injections and bus voltage magnitudes. To

facilitate our rectangular coordinate formulation, and in par-

ticular to maintain the advantage of quadratic measurement

functions, we treat voltage magnitude measurements as pro-

viding information regarding the square of the voltage mag-

nitude. If one were adopting a strict maximum likelihood

estimator formulation, and strictly required that Gaussian er-

rors entered as additive noise in the measurement of voltage



magnitude, the transition to the square of the measurement

would be problematic. However, a pragmatic approach recog-

nizes that the additive Gaussian error assumption is far from

realized in practice, and while physical equipment used to

collect a voltage magnitude from a three phase system varies,

techniques that construct a sum of squares of individual phase

quantities are common. Hence, we may argue that treating

the unlying measurement quantity as a square of voltage mag-

nitude is at least reasonable, without undo concern for the

distribution of the measurement error.

For the WLS state estimation problem we need to solve

the equation (15). If the maximum component of the dif-

ference between the two consecutive state variable vector is

less than the prede�ned tolerance, the converged result is ob-

tained. We now propose three WLS state estimation algo-

rithms based on optimal multiplier method.

Algorithm 1:

The computation procedure is as follows.

Step 1. Use the at voltage, i.e. e is a all ones vector and f
r

is a zeros vector, as the initial guess to start the algorithm.

Note the imaginary part of the reference bus voltage magni-

tude is always zero.

Step 2. Solve the following overdetermined equation using

normal equation method

W
�
ẑ � h(xk

e
)
�
= 0 (31)

that is we need to solve

H(x)TR�1 [ẑ � h(x)] = 0 (32)

to get �xk in the least-squares sense

�x
k = Gakn

�
H

T

kR
�1(ẑ � h(xk

e
))
�

(33)

Step. 3 Compute the following coe�cients

a
k = W[ẑ � h(xk

e
)] (34)

bk = �WHk�xk = �ak (35)

c
k = �Wh(�x

k) (36)

to solve the cubic equation (26) to get the optimal multiplier

�k.

Step 4. Update the estimate vector xk+1 = xk + �k�x, mea-

surement Jacobian and the measurement residual ẑ�h(xk+1).

Step 5. If the solution converges, stop the iteration; otherwise

go back to step 2. Note: in theory the new mismatch can also

be computed by

W
�
ẑ � h(xk+1

e
)
�

= W
�
ẑ � h(xk+1

e
+ ��x

k
)
�

= W
�
ẑ � [h(xk

e
) + �H

k�x
k + �

2
h(�x

k)]
�

= W
�
ẑ � h(xk

e
)� �H

k�x
k
� �

2
h(�x

k)
�

= a
k + �b

k + �
2
c
k (37)

But in practice it's better to recompute the measurement

function to reduce computation error.

Algorithm 2:

The computation procedure is as follows.

Step 1. Use the at voltage as the initial guess to start the

algorithm.

Step 2. Solve the following overdetermined equation using

normal equation method

W
�
ẑ � h(xk

e
)
�
= 0 (38)

that is we need to solve

H(x)
T
R
�1 [ẑ � h(x)] = 0 (39)

to get �xk in the least-squares sense

�x
k = Gakn

�
H

T

kR
�1(ẑ � h(xk

e
))
�

(40)

Step. 3 Compute the following coe�cients

a
k

= W[ẑ� h(x
k

e
)] (41)

b
k = �WH

k�x
k = �a

k (42)

c
k = �Wh(�x

k) (43)

to solve the cubic equation (26) to get the optimal multiplier

�k

Step 4. Update the estimate vector xk+1 = xk + �k�x; mea-

surement Jacobian and the measurement residual ẑ�h(xk+1).

Step 5. If the solution converges stop the iteration, otherwise

go back to step 2.

Step 6. Do above iteration 3 times.

Step 7. Now switch to exact Newton's method to get

�x
k
=Gekn

�
H

T

kR
�1
(ẑ � h(xk

e
))
�

(44)

Step 8. Compute the following coe�cients

a
k = W[ẑ� h(xk

e
)] (45)

b
k

= �WH
k
�x

k
(46)

c
k = �Wh(�x

k) (47)

to solve the cubic equation (26) to get the optimal multiplier

�k

Step 9. Update the estimate vector xk+1 = xk + �k�x and

measurement residual ẑ � h(xk+1).

Step 10. If the solution converges, stop the iteration; other-

wise set k = k + 1 and go back to step 7.

Algorithm 3:

The computation procedure is as follows.

Step 1. Use the at voltage as the initial guess to start the

algorithm.

Step 2. Solve the following overdetermined equation using

quasi newton method and exact Newton method

W
�
ẑ � h(xk

e
)
�
= 0 (48)

that is we need to solve

H(x)TR�1 [ẑ � h(x)] = 0 (49)



to get �xk1 and �xk2 in the least-squares sense

�x
k

1 = Gakn
�
H

T

kR
�1
(ẑ � h(x

k

e
))
�

(50)

�x
k

2 =Gekn
�
H

T

kR
�1
(ẑ � h(x

k

e
))
�

(51)

Step. 3 Compute the following coe�cients

a
k

1 = W[ẑ � h(xk
e
)] (52)

b
k

1 = �WH
k�x

k

1 = �a
k

1 (53)

c
k

1 = �Wh(�xk1) (54)

a
k

2 = W[ẑ � h(xk
e
)] (55)

bk2 = �WHk�xk2 = �ak2 (56)

c
k

2 = �Wh(�x
k

2) (57)

to solve the cubic equation (26) to get the optimal multiplier

�k and k.

Step 4. Compare the two cost functions

J1 =
�
ẑ � h(xk + ��x

k

1)
�T
R
�1

�
ẑ � h(xk + ��x

k

1)
�

(58)

J2 =
�
ẑ � h(xk + �x

k

2)
�T
R
�1

�
ẑ � h(xk + �x

k

2)
�

(59)

If J1 is less equal than J2, xk+1 = xk + ��xk1 , otherwise

xk+1 = xk + �xk1
Step 5. Update the measurement residual ẑ � h(xk+1) and

measurement Jacobian.

Step 6. If the solution converges, stop the iteration; otherwise

go back to step 2.

VIII. Closing Remarks

This paper analyzes the existing drawback of the tradi-

tional normal equation method in power system state esti-

mation problems. If the input measurement values are ill

conditioned, the normal equation method will probably dis-

play poor numerical stability. Base on the optimal multiplier

method which was successfully used in load ow computa-

tion to handle ill conditioned cases and second order exact

Newton's method which has fast convergence speed when it

reaches the small neighborhood of the solution, three New-

ton type algorithms combining the above two ideas are pro-

posed to improve the state estimator convergence for ill condi-

tioned cases. Detail formulation for these algorithms variants

is given. Part II [3] of the companion paper will pick up at

this point and discuss the simulation of the proposed algo-

rithms in more detail.
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