
Solving Power Flow Problems with a Matlab Implementation
of the Power System Applications Data Dictionary

Fernando L. Alvarado
alvarado@engr.wisc.edu

ECE Department, The University of Wisconsin, Madison, Wisconsin 53705

Abstract
This paper implements a power flow application and
variations using the IEEE Power System Application
Data Dictionary within a Matlab environment. It
describes a number of useful data and implementation
techniques for a variety of applications. The
techniques include the use of very compact and
efficient code for the computation of Power Transfer
Distribution Factors. Power Transfer Distribution
Factors are an important element of present and
proposed congestion management strategies for
power systems, particularly when these systems must
operate in a deregulated environment. Keywords:
databases, IEEE Common Format, data exchange.

1. Introduction
This paper provides a brief overview of the major
elements of the IEEE Power System Application Data
Dictionary (PSADD). It utilizes PSADD elements
toward the creation of flexible general-purpose power
flow environments that have great expandability and
flexibility. The PSADD is intended primarily as a
means for exchanging application data among power
system analytical applications of various types. The
paper then uses an environment closely based on
PSADD concepts toward the creation of sample
applications in Matlab. The two main applications
considered are: a simple “vanilla” power flow and a
rapid and efficient computation of Power Transfer
Distribution Factors (PTDF). The paper is intended as
a means of documenting efforts conducted by PSerc1

toward the creation of a unified environment for
power flow analysis, as a means for illustrating and
popularizing the Data Dictionary itself, and as a
means for illustrating Matlab vectorized computation
techniques and methods. The paper contains much
actual code because it is intended for use in its
electronic form, where users are expected to be able to
“cut and paste” examples to a Matlab environment
directly from the text of the paper.

1 The Power Systems Engineering Research Center, an
NSF and industry sponsored university consortium.

2. The Data Dictionary
The PSADD is an attempt by IEEE to extend and
renovate the old standby of the power industry, the
IEEE Common Format [1], which served the industry
well for many years. The Data Dictionary is meant
primarily as a definition of terms used for analytical
applications within power system models. It is
organized around the notion of objects. Within this
paper, we consider objects to be structures within the
Matlab environment. Each object contains a number
of attributes or fields. As such, each object constitutes
a relational database. The following is a list of all data
types defined in the dictionary. Boldface indicates
data types that are used in the present paper. Some of
the data types are defined but declared obsolescent
• Analog Data
• Area
• Bus Data
• Capacitor Data: obsolete, see shunt device data.
• Company Data
• Connectivity Node Data
• Data Exchange Data
• Equivalent AC Series Device Data
• Equivalent Injection/Shunt Device Data
• Generator Data: obsolete, see machine data.
• Interchange Control Data
• Line Data
• Load Data
• Machine (Synchronous) Data
• Miscellaneous Application Data
• Ownership Data
• Rating Data
• Reactor Data: obsolete, see shunt device data.
• Set Data
• Shunt (Nonsynchronous) Device Data
• Station Data
• Status Data
• Switching Device Data
• TieSwitch Data
• System
• Terminal
• Transaction Data
• Transformer Data

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

1

Each field of each object type has a type: integer, text,
real or date. We only consider text or real types. In
some cases, two alternative types are permitted in the
PSADD for certain fields. We do not allow this. Only
a small subset of all available PSADD fields is used in
this paper. Fields or data types mentioned but not
used are indicated with an asterisk*. T denotes Text
(string) data, R denotes real data, I denotes integer
data. The Transformer and Load data types have
subtypes not described here.

The PSADD integrates two viewpoints: a bus-oriented
viewpoint common to analytical studies, and an
equipment-oriented viewpoint common to measured
values and system operation. The Miscellaneous
Application Data describes this information. Here is a
subset of the Miscellaneous Application Data table:
Name Description
Misc.Title User defined case title T
Misc.BaseMVA MVA base R
Misc.ModelConnect
ivityType

BM or Bus.Model
BS or BusSection*
BO or Both*

T

Misc.ContingencyG
enMWResponse

RF = Use response factors
PC = Proportional to capacity
PO = Proportional to output

T

Misc.DeviceRefMet
hod

Method (i.e., Number or Name)
used as for referencing a device.

T

Four other tables of generic interest are those for
Analog Data, Status Data, Ratings Data and Set Data.
The Set Data is useful for grouping information into
Zones, Areas, Companies, Locations and almost any
other user-desired grouping. It is not used here. The
Ratings Data specifies rating types. This paper
assumes all flow ratings are in MVA, thus no such
data is required. Status Data is used to denote the
status of a device or component. We use 1 to denote in
service, active or closed, 0 otherwise. Thus, we do not
need Status Data as a separate data type. Analog Data
is used to specify “metered” information (as opposed
to “parameters” of components). Rather than entering
this information as part of each device type, it is
entered as “analog data” with a pointer to the device
type where it is used. Here is a subset of the
definition of Analog Data:
Name Description
Analog.Number Unique number I
Analog.Type VOLT=voltage magnitude

FLOW=Power or current
MW = Active Power
MVAR = Reactive Power
TAP = Transformer Tap
ANGL = Voltage Angle

T

Analog.AssignDev
ice

Device type associated with
value (complete spelling or

T

abbreviation of one of the root
entities). Some possibilities are:
BS=Bus LN=Line
TR=Xformer SW=Switch
MA=Machine LD=Load
SH=Shunt

Analog.DeviceRef Device assignment
(Bus.Number, Line.Number) of
value on device for device type.

I

Analog.Value Numeric value R

The next important category is the Bus type:
Name Definition
Bus.Number Bus number I
Bus.Name Bus name T
Bus.BasekV Base voltage RMS R
Bus.Status I
Bus.Vmag Magnitude of bus voltage. Solved

value.
R

Bus.Vangle Phase angle of bus voltage.
Solved value

R

Bus.MWMismatch Net Mw not assigned to
generator, load or shunt

R

Bus.MvarMismatc
h

Net Mvar not assigned to
generator, load or shunt

R

Bus.TypeCode *L or Load (no control)
*CB or ControlToBand
*CT or ControlToTarget
*S = Swing (or reference)
*I = Isolated

T

Bus.VoltTarget Voltage magnitude setpoint R
Bus.LowVoltLim Voltage control band lower limit R
Bus.UpVoltLim Voltage control band upper limit R
Bus.ControlPriorit
yCode

T= transformer
S= Synchronous machine
N =nonsynchronous shunt

T

The nodal injections types used in this paper include
Machine, Load and Shunt Element, defined next:
Name Description
Machine.Number Unique Number I
Machine.BusRef Bus.Number to which

machine is connected
I

Machine.Id Identifier T
Machine.Status I
Machine.MW MW output, solved value R
Machine.Mvar MVAR output, solved value R
Machine.ControlMode PQ = hold P and Q constant

PV = adjust Q to hold V
NL = adjust Q, no limits
SW = case swing Machine

I

Machine.ControlledBu
sRef

Bus (Bus.Number) whose
voltage is controlled

I

Machine.RatingId Identification of ratings T
Machine.RatingValue A vector of possible generator

maximum MW values
R

Machine.RatingMinim
um(+)

A vector of possible generator
minimum MW values

R

Machine.MinQOutput Lower limit for reactive R

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

2

power
Machine.MaxQOutput Upper limit for reactive power R
Machine.MinOperatin
gVolt

Machine minimum operating
voltage

R

Machine.MaxOperatin
gVolt

Machine maximum operating
voltage

R

Machine.PostContRes
pFact

Percent of Machine MW
response to system MW
imbalance. Values are
normalized for each island

R

(+) Not in the current version of the Data Dictionary.

Name Description
Load.Number Unique Number I
Load.BusRef Bus.Number of bus to which load

is connected
I

Load.Id Identifier T

Load.Status I
Load.ModelType* CONST = constant MW and

MVAR
VFUNC = voltage depend
INDMOT=induction motor

T

Load.ModelMinVo
ltage*

Minimum model voltage for this
models

R

Load.ModelMaxV
oltage*

Maximum voltage for this load
model

R

Load.MinMW* Minimum real power R
Load.MaxMW* Maximum real power R
Load.ReferenceM
W*

Reference real power at one per
unit (for scaling)

R

Load.MinMvar* Minimum reactive power
consumed

R

Load.MaxMvar* Maximum reactive power R
Load.ReferenceMv
ar*

Reference reactive power at one
per unit (for scaling)

R

Load.Mvar Magnitude of Load Mvar. Solved
value

R

Load.Mw Magnitude of Load MW. Solved
value

R

Name Description
Shunt.Number Unique Number I
Shunt.BusRef Bus.Number to which shunt is

connected
I

Shunt.Id Identifier I
Shunt.Status I
Shunt.BaseMVA* MVA of this device R
Shunt.BasekV* Base voltage of this device R
Shunt.Type Identifier of this device

(Capacitor, Reactor)
T

Shunt.ControlMode NONE = fixed shunt value
VOLT = hold voltage between
limits
MVAR=hold MVAR flow*

I

Shunt.ControlBusRe
f

Bus.Number at which voltage is
to be controlled

I

Shunt.MaxRegVolta
ge

Value at which shunt will
change out to lower voltage

R

Shunt.MinRegVolta
ge

Value at which shunt will
change out to raise voltage

R

Shunt.BlockSuscept
ValueNo

Number of discrete values
available. Zero for continuous
adjustment

I

Shunt.BlockSuscept
ance

Susceptance of each block A
vector.

R

Shunt.MW Magnitude of Shunt output MW.
A solved value

R

Shunt.Mvar Magnitude of Shunt output
Mvar. A solved value

R

Two series PSADD elements are implemented here:

Name Definitions
Line.Number Unique number I
Line.FromBusRef Bus.Number of "from" bus I
Line.ToBusRef Bus.Number of "to" bus I
Line.Circuit Alphanumeric circuit ID T
Line.Status I
Line.SectionR Series resistance R
Line.SectionX Series reactance R
Line.ShuntConducta
nce

Total uniformly shunt
conductance of this section

R

Line.ShuntSuscepta
nce

Total shunt susceptance of this
section

R

Line.FromMW Line MW flow at From end. A
solved value

R

Line.FromMvar Line Mvar flow at From end. A
solved value.

R

Line.ToMW Line MW flow at To end. A
solved value

R

Line.ToMvar Line Mvar flow at To end. A
solved value

R

Line.TypeId Type of equipment type (LINE,
CAPACITOR*)

T

Line.Length* Length R
Line.LossAssignBus
Ref

Bus.Number to which losses
should be assigned

I

Line.FromLumpedC
ond

Conductance of lumped shunt
element at "from" bus

R

Line.FromLumpedS
uscept

Susceptance of lumped shunt
element at "from" bus

R

Line.ToLumpedCon
d

Conductance of lumped shunt
element at "to" bus

R

Line.ToLumpedSuc
ept

Susceptance of lumped shunt
element at "to" bus

R

Line.RateId ID of line rating value. A vector
of text strings

T

Line.RateValue Rating value (a vector) R

Name Definition
Xformer.Number Unique Number I
Xformer.PrimaryBu
sRef

Bus.Number to which winding
awinding A is connected

I

Xformer.Secondary
BusRef

Bus.Number to which winding
B is connected

I

Xformer.Circuit Identifier T
Xformer.Type FIXED Fix ratio and angle T

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

3

VOLT Fix angle var ratio
MVAR Fix angle var ratio
MW – Fix ratio var angle

Xformer.TapRatio Tap ratio value R
Xformer.TapAngle Tap angle value R
Xformer.TapRatioM
in

Minimum Tap ratio value of the
transformer

R

Xformer.TapRatioM
ax

Maximum Tap ratio value of the
transformer

R

Xformer.TapRatioSt
ep

Tap ratio step size value of the
transformer

R

Xformer.TapAngle
Min

Minimum Tap angle value of the
transformer

R

Xformer.TapAngle
Max

Maximum Tap angle value of
the transformer

R

Xformer.TapAngleS
tep

Tap angle step size value of the
transformer

R

Xformer.Status I
Xformer.BaseMVA * R
Xformer.FromMw Mw flow From bus. Solved

value
R

Xformer.FromMvar Mvar flow From bus. Solved
value

R

Xformer.ToMw Mw flow To bus. Solved value R
Xformer.ToMvar Mvar flow To bus. Solved value R
Xformer.LossAssign
BusRef

Bus.Number to which losses
should be assigned

I

Xformer.Pri-SecR s.c. resistance winding A to B R
Xformer.Pri-SecX s.c. reactance winding A to B R
Xformer.Pri-
SecZeroR*

s.c. zero sequence resistance
winding A to B

R

Xformer.Pri-
SecZeroX*

s.c. zero sequence reactance
winding A to B

R

3. Rendition in Matlab
The implementation of the Data Dictionary in Matlab
is done by means of sparse arrays, structures and cells
of types real and character. For the sake of clarity, all
concepts will be illustrated by means of an example.
The example in question corresponds to the 6-bus
system from Wood and Wollenberg. The Common
Format File (CFF) describing this data is illustrated in
the appendix. The CFF is not sufficient to describe all
the necessary information. Thus, additional
assumptions will be made as needed.

To implement the data dictionary, one needs to first
establish the necessary structures for all the base data
types and the corresponding fields (or attributes) of
each data type. Some data types (such as Misc)
contain only scalar or simple text attributes. The
complete definition for the Misc data type subset is:
Misc.Title=’This is a sample case’;
Misc.BaseMVA=100; Misc.ConnectivityType=’BM’;
Misc.ContingencyGenMWResponse=’PC’;
Misc.DeviceRefMethod=’Number’;

Most other data types include vector or even sets of
vectors as their data elements. The question arises
immediately in Matlab whether it is better to represent
these types as a single structure with vector structure
entries, or to represent each data type entry as a
structure and to represent the entire data type as a
vector of structures. Either answer is correct and will
work, but because of the vectorized nature of Matlab
computations, our experiments indicate that it is quite
efficient to represent data types as structures of
vectors. Furthermore, for the sake all consistence
almost all vectors will be column vectors. When it is
necessary to represent sets (actually vectors) of
variable-length vectors, this is done by using the
notion of cells, which are vectors of arbitrary entry
types. This is the convention adopted in the data
dictionary.

Start with a definition of all buses along with, loads,
machines and shunts connected to them.
% Initialization of Bus Data Type
Bus.Number=[]; Bus.Name=’’;
Bus.BasekV=[]; Bus.Status=[];
Bus.Vmag=[]; Bus.Vangle=[];
Bus.MwMismatch=[]; Bus.MvarMismatch=[];
Bus.TypeCode=’’; Bus.VoltTarget=[];
Bus.LowVoltLim=[]; Bus.UpVoltLim=[];

% Initialization of Machine Data Type
Machine.Number=[]; Machine.BusRef=[];
Machine.Id=’’; Machine.Status=[];
Machine.Mw=[]; Machine.Mvar=[];
Machine.ControlMode=’’;
Machine.ControlledBusRef=[];
Machine.MinQOutput=[]; Machine.MaxQOutput=[];
Machine.MinOperatingVolt=[];
Machine.MaxOperatingVolt=[];
Machine.PostContRespFact=[];

% Initialization of Load Data Type
Load.Number=[]; Load.Id=’’;
Load.BusRef=[]; Load.Status=[];
Load.Mvar=[]; Load.Mw=[];

% Initialization of Shunt Data Type
Shunt.Number=[]; Shunt.BusRef=[];
Shunt.Id=’’; Shunt.Status=[];
Shunt.Type=’’; Shunt.ControlMode=[];
Shunt.ControlBusRef=’’;
Shunt.MaxRegVoltage=[];
Shunt.MinRegVoltage=[];
Shunt.BlockSusceptValueNo=[];
Shunt.BlockSusceptance=[];
Shunt.Mw=[]; Shunt.Mvar=[];

Likewise, all structures for lines can be initialized:
Line.Number=[]; Line.FromBusRef=[];
Line.ToBusRef=[]; Line.Circuit=’’;
Line.Status=[];
Line.SectionR=[]; Line.SectionX=[];
Line.ShuntConductance=[];
Line.ShuntSusceptance=[];
Line.FromMw=[]; Line.FromMvar=[];
Line.ToMw=[]; Line.ToMvar=[];
Line.TypeId=’’; Line.LossAssignBusRef=[];

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

4

Line.FromLumpedCond=[];
Line.FromLumpedSuscept=[];
Line.ToLumpedCond=[];Line.ToLumpedSuscept=[];
Line.RateId=’’; Line.RateValue=[];

Since no transformers are used in the example, details
of transformers are not illustrated.

At this point, the table values can be loaded for the
example at hand more or less directly from the Data
Dictionary. Some assumptions are made:
• All machine minimum powers are 10% of the

machine maximum powers.
• All machine maximum powers are 200 MW (or

2pu).
• We prefer to work in per-unit everywhere, even

when the Data Dictionary calls for Mw or Mvar.
• Minimum voltages anywhere are specified at 0.85

pu, maximum voltages at 1.2 pu.
• All shunt susceptances are assumed to be

adjustable in exactly two equal-sized steps. Since
there are no susceptances in this example, a
capacitive susceptance with a value of 0.02 pu is
assumed at bus 5.

• Normally, data types would be constructed using
a function that reads raw data from a database,
from a common format data file, or some other
available source. Here, data is constructed
directly for the example at hand, without resorting
to a reading and translation function.

% Bus data specification
n=6; Bus.Number=(1:n)’;
Bus.Name=strvcat(’BUS1’,’BUS2’,...
 ’BUS3’,’BUS4’,’BUS5’,’BUS6’);
Bus.BasekV=138*ones(n,1);
Bus.Status=ones(n,1);
Bus.Vmag=[1.05;1.05;1.07;1;1;1];
Bus.Vangle=zeros(n,1);
Bus.TypeCode=...
 strvcat(’S’,’CT’,’CT’,’L’,’L’,’L’);
Bus.VoltTarget=Bus.Vmag;
Bus.LowVoltLim=0.85*ones(n,1);
Bus.UpVoltLim=1.2*ones(n,1);

% Machine data specification
ng=3; Machine.Number=(1:ng)’;
Machine.Id=strvcat(Machine.Id,’1’,’1’,’1’);
Machine.Status=ones(ng,1);
Machine.ControlMode=strvcat(’SW’,’PV’,’PV’);
Machine.BusRef=[1;2;3];
Machine.ControlledBusRef=[1;2;3];
Machine.RatingId=...
 strvcat(’NORMAL’,’NORMAL’,’NORMAL’);
Machine.RatingValue=[1.5;1.5;1.5];
Machine.RatingMinimum=[0.15;0.15;0.15];
Machine.MinQOutput=[-0.25;-0.25;-0.25];
Machine.MaxQOutput=[0.75;0.75;0.75];
Machine.MinOperatingVolt=0.85*ones(ng,1);
Machine.MaxOperatingVolt=1.2*ones(ng,1);
Machine.PostContRespFact=[1;1;1];

% Load data specification

nl=3; Load.Number=(1:3)’;
Load.BusRef=[4;5;6];
Load.Id=strvcat(’1’,’1’,’1’);
Load.Status=[1;1;1];

% Shunt data specification
nsh=1; Shunt.Number=[1]; Shunt.BusRef=5;
Shunt.Id=’1’; Shunt.Status=1;
Shunt.Type=’Capacitor’;
Shunt.ControlMode=’NONE’;
Shunt.ControlBusRef=5;
Shunt.MaxRegVoltage=1.25*ones(nsh,1);
Shunt.MinRegVoltage=0.85*ones(nsh,1);
Shunt.BlockSusceptValueNo={2}; % CELL ARRAY
Shunt.BlockSusceptValue={[0.1,0.1]}; % ”

% Line data specification
nL=11; Line.Number=(1:nL)’;
Line.FromBusRef=[1;1;1;2;2;2;2;3;3;4;5];
Line.ToBusRef=[2;4;5;3;4;5;6;5;6;5;2];
Line.Circuit=strvcat(’1’,’1’,’1’,’1’,...
 ’1’,’1’,’1’,’1’,’1’,’1’,’1’);
Line.SectionR=[.1;.05;.008;.05;.05; ...
 .1;.07;.12;.02;.02;.1];
Line.SectionX=[.2;.2;.3;.25;.1;.3; ...
 .2;.26;.1;.4;.3];
Line.ShuntConductance=zeros(nL,1);
Line.ShuntSusceptance=[.02;.02;.03; ...
 .02;.01;.02;.025;.025;.01;.04;.03];
Line.TypeId=char(ones(nL,1)*double(’Line’));
Line.LossAssignBusRef=Line.FromBusRef;
Line.FromLumpedCond=zeros(nL,1);
Line.FromLumpedSuscept=zeros(nL,1);
Line.ToLumpedCond=zeros(nL,1);
Line.ToLumpedSuscept=zeros(nL,1);
ratid=strvcat(’NORMAL’,’EMERG’);
ratval=[1.5;2];
for k=1:nL,
 Line.RateId{k,1}=ratid;
 Line.RateValue{k,1}=ratval;
end

The specification of metered parameters for all data
types is done by means of the Analog data type. We
consider first the specification of data values for all
loads, followed by the specification of all machines,
all shunts, all lines and all transformers (this example
has no transformers). Ordinarily this would also be
accomplished by an input routine that would translate
appropriate database entries, common format file
information and/or other such available data into the
Data Dictionary structures. Here, the data is specified
directly for the example of interest, starting with an
initialization of all Analog data types:
%Initialization of all Analog data
Analog.Number=[]; Analog.Type=’’;
Analog.AssignDevice=’’;
Analog.DeviceRef=[]; Analog.Value=[];

% Specification of all Load operating Analog
data
for k=1:nl,
 na=length(Analog.Number);
 Analog.Number=[Analog.Number;na+1;na+2];
Analog.Type=strvcat(Analog.Type,’MW’,’MVAR’);
 Analog.AssignDevice=...
 strvcat(Analog.AssignDevice,’Load’,’Load’);

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

5

 Analog.DeviceRef=[Analog.DeviceRef;k;k];
end
Analog.Value=[Analog.Value;0.7;0.7;...
 0.7;0.7;0.7;0.7];

% Specification of all Machine operating
Analog data
for k=1:ng,
 na=length(Analog.Number);
 Analog.Number=[Analog.Number;na+1];
 Analog.Type=strvcat(Analog.Type,’MW’);
 Analog.AssignDevice = ...
 strvcat(Analog.AssignDevice,’Machine’);
end
Analog.DeviceRef=[Analog.DeviceRef;1;2;3];
Analog.Value=[Analog.Value;0;0.5;0.6];

4. A “Vanilla” Newton Power Flow
The above structures can be used directly in the
implementation of a basic Newton power flow.
Convenient computation in Matlab requires a few
additional ideas:
• Most data types used for computation should be

complex. Thus, a few data types are added to the
definition of the Bus data type (and other data
types as needed).

• An Internal data type is defined and used to
contain all important intermediate matrix
variables.

• An overall encapsulation of all data types into a
single master data types is done to be able to refer
to all the variables and data for a single study by
means of a single variable. This is a structure of
structures.

The first step is to convert pertinent Data Dictionary
structures into Matlab structures suitable for
computation. Also, it is extremely useful to associate
any analog measurement data from the Analog data
types and associate it with the pertinent data type in a
manner suitable for computation. The following code
performs these tasks and further encapsulates all
information:
j=sqrt(-1);
kPL=intersect(strmatch(’Load’,Analog.AssignDe
vice),strmatch(’MW’,Analog.Type));
kQL=intersect(strmatch(’Load’,Analog.AssignDe
vice),strmatch(’MVAR’,Analog.Type));
kPM=intersect(strmatch(’Machine’,Analog.Assig
nDevice),strmatch(’MW’,Analog.Type));
Bus.SL=zeros(n,1); Bus.PM=zeros(n,1);
iPL=Load.BusRef(Analog.DeviceRef(kPL));
iQL=Load.BusRef(Analog.DeviceRef(kQL));
iPM=Machine.BusRef(Analog.DeviceRef(kPM));
Bus.SL(iPL)=Bus.SL(iPL)+Analog.Value(kPL);
Bus.SL(iQL)=Bus.SL(iQL)+j*Analog.Value(kQL);
Bus.PM(iPM)=Bus.PM(iPM)+Analog.Value(kPM);
Line.Z=Line.SectionR+j*Line.SectionX;
Line.ShuntY2=(Line.ShuntConductance+j*Line.Sh
untSusceptance)/2;
Line.YI=Line.FromLumpedCond+j*Line.FromLumped
Suscept;
Line.YJ=Line.ToLumpedCond+j*Line.ToLumpedSusc

ept;
% Shunt devices at bus not considered here
PQlist=strmatch(’L’,Bus.TypeCode);
PVlist=strmatch(’CT’,Bus.TypeCode);
SlackList=strmatch(’S’,Bus.TypeCode);
GenList=union(SlackList,PVlist);
NonSlack=union(PQlist,PVlist);

Next we construct the Y-bus matrix:
n=length(Bus.Number);
Ybus=sparse([],[],[],n,n);
Ybus=Ybus+sparse(Line.FromBusRef,Line.FromBus
Ref,1./Line.Z+Line.ShuntY2,n,n);
Ybus=Ybus+sparse(Line.FromBusRef,Line.ToBusRe
f,-1./Line.Z,n,n);
Ybus=Ybus+sparse(Line.ToBusRef,Line.FromBusRe
f,-1./Line.Z,n,n);
Ybus=Ybus+sparse(Line.ToBusRef,Line.ToBusRef,
1./Line.Z+Line.ShuntY2,n,n);
Ybus=Ybus+sparse(Line.FromBusRef,Line.FromBus
Ref,Line.YI,n,n);
Ybus=Ybus+sparse(Line.ToBusRef,Line.ToBusRef,
Line.YJ,n,n);

We then illustrate the code to construct the complete
power flow Jacobian for any system (Note: this highly
vectorized version of the code is due to Christopher
DeMarco of the University of Wisconsin):
function [dSdd,dSdv]=pflowjac(Yb,Vb)
Ib=Yb*Vb;
dSdd=j*diag(conj(Ib).*Vb)-
j*diag(Vb)*conj(Yb)*diag(conj(Vb));
dSdv=diag(conj(Ib).*(Vb./abs(Vb)))+diag(Vb)*c
onj(Yb)*diag(conj(Vb)./abs(Vb));

Finally, the complete master vanilla Newton solver is:
Vmag=Bus.Vmag; Vang=Bus.Vangle*pi/180;
for iter=1:10,
 V=Vmag.*exp(j*Vang);
 [dSdd,dSdv]=pflowjac(Ybus,V);
 misvect=V.*conj(Ybus*V)+Bus.SL-Bus.PM;
 rmiss=[real(misvect(NonSlack)); ...
 imag(misvect(PQlist))];
 mismatch=max(abs(rmiss));
 if mismatch<0.0001, break; end
 rjac=[real(dSdd(NonSlack,NonSlack)) ...
 real(dSdv(NonSlack,PQlist)); ...
 imag(dSdd(PQlist,NonSlack)) ...
 imag(dSdv(PQlist,PQlist))];
 dx=rjac\rmiss;
 dxAng=dx(1:length(NonSlack));
 dxMag=dx(length(NonSlack)+1:length(dx));
 Vang(NonSlack)=Vang(NonSlack)-dxAng;
 Vmag(PQlist)=Vmag(PQlist)-dxMag;
end
Bus.Vmag=Vmag; Bus.Vangle=Vang*180/pi;

To run the example in this paper, “cut and paste”
every Matlab code segment to a Matlab environment.
Store function code segments in m-files.

Extrapolation of these techniques to considerably
more complex cases and problems is immediate. We
illustrate only one such extension.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

6

5. Power Transfer Distribution Factors
As an example of the usefulness of this approach to
practical power system computations, we illustrate the
code to compute Power Transfer Distribution Factors
for an increase in active power demand at any location
in the network, relative to the power being supplied at
the slack generator. By having the PTDFs for any two
(or more) locations in the grid, the PTDF for any
bilateral (or multilateral) transaction not involving the
slack generator can also be readily found, although
this is not done here. For the example above, the
PTDF code requires the determination of a Jacobian
matrix that relates the flows at either end of a line to
changes in voltage magnitudes and angles. The
vectorized code to construct such matrix for the flow
at the “from” end of every line in the system is given
next. Here Vb is the vector of complex nodal voltages
and Vs refers to the sending end voltages of the lines
of interest. Yf is either YflowI or YflowJ, the
from or to end “flow” admittance matrices.
function [YflowI,YflowJ]=bldyflow(Bus,Line)
n=length(Bus.Number);
nb=length(Line.FromBusRef); nbe=(1:nb)';
YflowI=sparse(nbe,Line.FromBusRef,1./Line.Z+i
*Line.ShuntY2+Line.YI,nb,n);
YflowI=YflowI+sparse(nbe,Line.ToBusRef,-
1./Line.Z,nb,n);
YflowJ=sparse(nbe,Line.FromBusRef,-
1./Line.Z,nb,n);
YflowJ=YflowJ+sparse(nbe,Line.ToBusRef,1./Lin
e.Z+i*Line.ShuntY2+Line.YJ,nb,n);

function [dFdd,dFdv]=flowjac(Yf,Line,Vb,Vs)
nb=length(Line.FromBusRef); n=length(Vb);
If=Yflow*Vb;
dFdd=j*sparse((1:nb)',Line.FromBusRef,(conj(I
f).*Vs),nb,n)-
j*diag(Vs)*conj(Yf)*diag(conj(Vb));
dFdv=sparse((1:nb)',Line.FromBusRef,(conj(If)
.*(Vs./abs(Vs))),nb,n)+diag(Vs)*conj(Yf)*diag
(conj(Vb)./abs(Vb));

This code can be used to determine the sensitivity of
flows on any line to any injections at a given operating
point. Sample code to do this calculation for our
example for an injection at bus 5 would be:
[YflowI,YflowJ]=bldyflow(Bus,Line);
[dFdd,dFdv]=flowjac(YflowI,Line,V,V(Line.From
BusRef));
[dSdd,dSdv]=pflowjac(Ybus,V);
rJ=[real(dSdd(NonSlack,NonSlack)),real(dSdv(N
onSlack,PQlist));imag(dSdd(PQlist,NonSlack)),
imag(dSdv(PQlist,PQlist))];
rJf=[real(dFdd(:,NonSlack)),real(dFdv(:,PQlis
t));imag(dFdd(:,NonSlack)),imag(dFdv(:,PQlist
))];
e=zeros(n,1); e(5)=1;
er=[real(e(NonSlack));imag(e(PQlist))];
dFP5=rJf*(rJ\er)

At this point, the Matlab environment contains already
a wealth of useful information for answering a large
number of questions about the system.

6. Conclusions
Power System Application Data Dictionary data types
have been used as the basis for a direct
implementation of a simple power flow in Matlab.
The implementation is remarkably efficient and easy
to extend to any desired additional purpose: new
methods can be tested with ease, new functions and
objectives implemented, all while maintaining the
ability to communicate between and among diverse
applications in a standardized manner.

Acknowledgements
Professor Christopher DeMarco made available the
key Jacobian routine to this author. Joann Staron has
been for years instrumental in developing the PSADD.
Thanks are also due to Scott Greene and Taiyou Yong.

References
[1] IEEE Committee Report, “Common format for

exchange of solved load flow data,” IEEE
Transactions on Power Apparatus and Systems,
Volume PAS-92, Number 6, pages 1916-1925,
November/December, 1973.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

7

