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Sensitivity of Transfer Capability Margins
With a Fast Formula
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Abstract—Bulk power transfers in electric power systems are
limited by transmission network security. Transfer capability mea-
sures the maximum power transfer permissible under certain as-
sumptions. Once a transfer capability has been computed for one
set of assumptions, it is useful to quickly estimate the effect on
the transfer capability of modifying those assumptions. This paper
presents a computationally efficient formula for the first order sen-
sitivity of the transfer capability with respect to the variation of any
parameters. The sensitivity formula is very fast to evaluate. The
approach is consistent with the current industrial practice of using
dc load flow models and significantly generalizes that practice to
more detailed ac power system models that include voltage and re-
active power limits. The computation is illustrated and tested on a
3357 bus power system.

Index Terms—Optimization, power system control, power
system security, power transmission planning, sensitivity.

I. INTRODUCTION

TRANSFER capability indicates how much a particular
bulk power transfer can be changed without compro-

mising system security under a specific set of assumptions. The
increased attention to the economic value of transfers motivates
more accurate and defensible transfer capability computations.
A variety of applications in both planning and operations

require the repetitive computation of transfer capabilities.
Transfer capabilities must be quickly computed for various
assumptions representing possible future system conditions
and then recomputed as system conditions change. The useful-
ness of each computed transfer capability is enhanced if the
sensitivity of the transfer capability is also computed [10], [15].
This paper shows how to quickly compute these sensitivities
in a general and efficient way. The sensitivities can be used
to estimate the effect on the transfer capability of variation
in simultaneous transfers, assumed data, and system controls.
A web site [6] is available to calculate these sensitivities on
sample power systems and further illustrate their use.
While there is general agreement on the overall purpose and

outline of transfer capability determination, the precise require-
ments for such computations vary by region and are evolving. In
this paper we focus on the fast computation of the sensitivity of
the transfer margin, not the computation of the transfer margin
itself. However, to explain the sensitivity computation we need
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to first discuss a generic transfer margin computation. The sen-
sitivity computation is largely independent of the method used
to obtain the transfer margin.

II. GENERIC TRANSFER MARGIN COMPUTATION

We assume that an initial transfer margin computation has
established the following.

1) A secure, solved base case consistent with the study op-
erating horizon.

2) Specification of transfer direction including source, sink,
and loss assumptions.

3) A solved transfer-limited case and a binding security
limit. The binding security limit can be a limit on
line flow, voltage magnitude, voltage collapse or other
operating constraint. Further transfer in the specified
direction would cause the violation of the binding limit
and compromise system security.

4) The transfer margin is the difference between the transfer
at the base case and the limiting case.

Calculations of available transfer capability (ATC), capacity
benefit margin (CBM), and transfer reliability margin (TRM)
typically require that this generic transfer margin computation
be repeated for multiple combinations of transfer directions,
base case conditions, and contingencies [13], [15].
The generic transfer margin computation can be implemented

with a range of power system models and computational tech-
niques. One convenient and standard practice is to use a dc
power flowmodel to establish transfer capability limited by line
flow limits. The limiting cases are then checked with further ac
load flow analysis to detect possibly more limiting voltage con-
straints.
Alternatively, a detailed ac power system model can be used

throughout and the transfer margin determined by successive
ac load flow calculations [10] or continuation methods [1]–[3],
[16]. A related approach [e.g., Electric Power Research Insti-
tute’s TRACE] uses an optimal power flow where the optimiza-
tion adjusts controls such as tap and switching variables tomaxi-
mize the specified transfer subject to the power flow equilibrium
and limit constraints. The formulations in [10] and [18] show
the close connection between optimization and continuation or
successive load flow computation for transfer capability deter-
mination. The sensitivity methods of this paper are applicable
to transfer margins computed by optimization, continuation or
other methods. The implementation of the sensitivity formula
can take advantage of numerical byproducts of common sequen-
tial linear programming (LP) techniques.
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Methods based on ac power system models are slower than
methods using dc load flow models but do allow for consider-
ation of additional system limits and more accurate accounting
of the operation guides and control actions that accompany the
increasing transfers. Under highly stressed conditions the ef-
fects of tap changing, capacitor switching, and generator reac-
tive power limits become significant. A combination of dc and
ac methods may be needed to achieve the correct tradeoff be-
tween speed and accuracy. The methods in this paper account
directly for any limits which can be deduced from equilibrium
equations such as dc or ac load flow equations or enhanced ac
equilibrium models.

III. SENSITIVITY COMPUTATION

A. System Modeling
Assume a general power system equilibrium model written

as equations

where
dimensional state vector that includes voltage mag-

nitudes, angles, branch flows, and generator MW and
MVAR outputs;
vector of generatorMWoutput set points and/or sched-
uled net area exports;
parameter vector including regulated voltage set
points, generator load sharing factors, load and load
model parameters and tap settings.

The limits on line flows, voltage magnitudes, or generator
reactive power outputs are modeled by inequalities in the states

Due to themodeling of operator actions and generator limits, the
equilibrium equations and the physical quantities represented
by the and vectors can change under varying conditions and
transfer levels. For example, when a nonslack generator is oper-
ated within its reactive power limits, the reactive power output
and angle at the generator bus are components of and the reg-
ulated bus voltage and real power output are components of .
However, when the same generator is at a reactive power limit,
the generator bus voltage and angle are components of and the
real and reactive power output are components of .

Base Case: The base case specifies the nominal value of
the generator outputs and net area exports.

Transfer Specification: The transfer is specified by changes
to the vector . The transfer direction describes how changes
as the transfer increases so that

where is the transfer amount and is a unit vector describing
the transfer direction. For the simple case of net exports in-
creasing from one area matched by reduction in net export from
another area, the transfer direction is a column vector with 1
in the row corresponding to the source area export equation and
1 in the row corresponding to the sink area export equation.

For transfers specified by changes in individual bus injections,

is a column vector with positive entries at the source buses
and negative entries at the sink buses.

Transfer-Limited Case: Identification of a solved transfer-
limited case yields an equilibrium solution ( ) and an
additional constraint referred to as the binding limit. The equi-
librium equations that model the power system at the binding
limit are written

(1)

When a limit is encountered, one of the limit equations
or holds for some . We write the applicable

equation for the binding limit in the general form

(2)

The form (2) also encompasses more general limits. At the
binding limit

Transfer Margin: The transfer margin is the change in the
transfer between the base case and the transfer-limited case.
Since , the transfer margin is .

B. Sensitivity Formula
Once the binding limit and the corresponding transfer-lim-

ited solved case have been found, the sensitivity of the transfer
margin can be evaluated. The sensitivity of to the parameter
, often written as and here written as , is computed
using a formula derived in Appendices A and B

(3)

where
and derivatives of the equilibrium and limit equa-

tions with respect to ;
and derivatives of the equilibrium and limit equa-

tions with respect to the amount of transfer ;
nonzero row vector orthogonal to the range of
the Jacobian matrix of the equilibrium and
limit equations;

where

The row vector is found by solving the linear system

(4)

Since has one more row than column, there is always a
nonzero vector that solves (4). generically has full column
rank, so that is unique up to a scalar multiple. The sensitivity

computed from (3) is independent of the scalar multiple.
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The first order estimate of the change in transfer margin cor-
responding to the change in of is

(5)

If the binding limit is an immediate voltage collapse due to a
reactive power limit [5], then the analysis of this paper applies
with (2) becoming . If the binding limit is voltage
collapse due to a fold bifurcation, the sensitivity formula of [8]
applies.

C. Computational Efficiency

Once the transfer-limited solution is obtained, the margin es-
timates corresponding to varying a large number of different
parameters can be obtained for little more computational effort
than solving the sparse linear equations (4) for . Solving (4) is
roughly equivalent to one Newton iteration of a load flow solu-
tion. Note that need only be computed once but can be used to
find the sensitivity with respect to any number of parameters. If
a sequential LP is used to determine the transfer margin as part
of an optimization program, then is found from the Lagrange
multipliers obtained at the last LP solution. The remaining com-
putations (3) and (5) needed for the estimates require only sparse
matrix–vector multiplications.
The Jacobian matrix in (4) is available, often in factored

form, from the computation of the transfer-limited solution by
Newton based methods. The matrix in (3) is different for
each parameter but its construction is a simple sparse index
operation, especially when the parameters appear linearly.
The sensitivity of the transfer capability with respect to

thousands of changes in load, generation, interarea transfers, or
voltage set points can be obtained in less time than a single ac
load flow solution.

IV. 3357 BUS EXAMPLE

The application of sensitivity formula (3) is illustrated using
a 3357 bus model of a portion of the North American eastern in-
terconnect. The model contains a detailed representation of the
network operated by the New York independent system oper-
ator and an equivalent representation of more distant portions
of the network. From a base case representative of a severely
stressed power system, small increases in transfer between On-
tario Hydro and New York City lead to low voltages, cascading
generator reactive power limits, and finally voltage instability.
The sensitivity formulas are used to identify effective control
action to avoid low voltage and reactive power limit conditions,
and to estimate the effects of variation in transfers and loading
on the security of the system.

Base Case: The base case is motivated by a scenario
identified as problematic in the New York Power Pool
summer 1999 operating study. The loss of two 345 KV lines,
Kintigh–Rochester and Rochester–Pannell Road during high
west to east transfer leads to low voltage conditions at the
Rochester 345 kV bus. At the base case solution, the voltage at
the Rochester 345 kV bus is 333 kV, slightly above the 328 kV
low voltage rating.

TABLE I
NET ZONE EXPORTS IN MW AT BASE CASE. THE INITIAL VOLTAGE LIMIT
AT THE ROCHESTER 345 KV BUS, AND THE FINAL REACTIVE POWER

LIMIT AT DANKSAMMER

Limiting Events: From the base case, a sequence of ac load
flow solutions are obtained for increasing levels of export from
Ontario Hydro and increasing demand in the New York City
zone. A 100 MW increase in this transfer results in the voltage
at the 345 kV Rochester bus reaching its low voltage rating
of 328 kV. Additional transfer leads to several low voltages
and nine additional generating units reachingmaximum reactive
power limits. Finally, for transfer of 140MWbeyond that corre-
sponding to the Rochester voltage limit, a reactive power limit
at one of the Danksammer generating units leads to immediate
voltage instability [5]. (System behavior under the stressed con-
ditions is unstable without voltage regulation at Danksammer.)
Table I shows the net exports for five of the zones at the

base case and at two different limits. The transfer margin to
the voltage limit is 100 MW and the transfer margin to the
critical reactive power limit is 240 MW. Since it is of interest
how avoiding the low voltage limit also improves the margin
to voltage instability, we compute the sensitivities of both these
margins.

A. Sensitivity to Regulated Voltage Set Points
The sensitivity of the transfer margins to the Rochester

voltage limit and the Danksammer reactive power limit with
respect to all parameters is obtained using (3). Ranking of
all the NY ISO generator buses according to the sensitivity
of the transfer margins with respect to regulated generator
voltages indicates that the regulated voltage with the greatest
effect on the transfer margin to the Rochester voltage limit and
the second greatest effect on the margin to the Danksammer
reactive power limit is the Hydro facility in Niagara.
Fig. 1 shows the linear estimate for the change in transfer

margin to the voltage limit as a function of the voltage set point
at the Niagara generator. The estimates are compared with ac-
tual values computed by ac loadflow analysis represented by the
circles in Fig. 1. The actual values are obtained by incrementing
the voltage set point and rerunning the transfer capability calcu-
lation. In effect, the incremental variation method of [9] is used
to check the sensitivity formula. Fig. 2 compares the linear es-
timate with actual values computed by ac loadflow analysis for
the change in the transfer margin to the Danksammer reactive
power limit as a function of the Niagara voltage set point. Figs. 1
and 2 show that the estimates are accurate for a 5% variation
in the regulated output voltage of the Niagara unit. Note that for
both limits, setting the voltage set point greater than 1.07 p.u.
does not improve the margin as predicted because at that voltage
the generator reactive power output reaches its maximum before
the transfer limit is encountered.
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Fig. 1. Effect of regulated output voltage on margin to voltage limit.

Fig. 2. Effect of regulated output voltage on margin to critical VAR limit.

B. Sensitivity to Simultaneous Transfers
One concern is the effect of simultaneous transfers on the

computed transfer margins. Figs. 3 and 4 show the effects on
the voltage and reactive power limited transfer margins of a si-
multaneous Hydro Quebec to PJM transfer. The simultaneous
transfer affects the reactive power limit more than the voltage
limit, and the sensitivity based estimates are accurate for a 200
MW transfer variation, which is a 20% variation in export from
Hydro Quebec.

C. Sensitivity to Load Variation
Another concern is load forecast error. For example, consider

the effect of load variation in the Albany region on the transfer
margins. The real and reactive power loads in Albany are
changed keeping constant power factor. The estimates are
compared with the actual values computed directly from ac
loadflow analysis in Figs. 5 and 6. The results are very accurate
for 200 MW total load variation, but less accurate for 400
MW. The base case Albany zone load is 2000 MW.

Fig. 3. Effect of simultaneous transfer on margin to voltage limit.

Fig. 4. Effect of simultaneous transfer on margin to critical VAR limit.

Fig. 5. Effect of Albany loading on margin to voltage limit.

All the results confirm the accuracy of the formula in pre-
dicting the transfer margin when small changes are made in a
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Fig. 6. Effect of Albany loading on margin to critical VAR limit.

parameter. For some parameters, the transfer margin is accu-
rately predicted for large changes in the parameter.1 The range
of parameter variation for which the prediction of transfer ca-
pability is accurate depends on the parameter considered, but
generally is sufficiently large to support the usefulness of the
first order approximation. Two possible sources of error in pre-
dicting the transfer margin for large parameter changes are the
following.

• Nonlinearity: For fixed power system equations, the
transfer margin varies nonlinearly with the parameter.
For example, this is evident in the curvature of the actual
results in Figs. 5 and 6.

• Structural Changes: As the parameter changes from its
nominal value, the power system equations change when
variables reach limits. After the equations change, the esti-
mated changes in transfer margin computed with the equa-
tions valid at the nominal parameter value can be inaccu-
rate. For example, this is evident in the sudden change in
the actual results in Figs. 1 and 2 when a generator reactive
power limit is encountered. It is clear that proximity of the
transfer limited case to limits can in some cases limit the
accuracy of the estimated changes in transfer margin. This
proximity can be detected by the additional computation
of state variable sensitivities suggested in Appendix A.

V. HANDLING MULTIPLE LIMITS

A simple approach computes the sensitivity of the transfer
margin to the single binding limit. In practice, particularly when
the power system is uniformly and highly stressed, there are
often other limits encountered just after the binding limit.
For example, Fig. 7(a) illustrates the next limit encountered

at if the binding limit at is neglected. This next limit can
be computed by running the continuation past the binding limit.

1We clarify meanings of “small” and “large.” From a mathematical perspec-
tive, “small” means “infinitesimally small.” From an engineering perspective,
“small” can, for example, be 1 MW for power variations and 0.1% for changes
in voltage magnitude. Thus “small” corresponds to parameter changes for which
the first order linearization will produce very accurate results. “Large” means
not small.

(a)

(b)

Fig. 7. Effect of parameter change on the next limit (dashed line) encountered
just after the binding limit (solid line). (a) Actual limits. (b) Estimated limits.

Fig. 7(a) shows that if the parameter is increased past 0.56, the
next limit becomes the binding limit. In the situation of Fig. 7(a),
the sensitivity of the transfer margin to both the binding limit
and the next limit can be computed using the methods of this
paper and the resulting linear estimates of the changes in these
margins are illustrated in Fig. 7(b). For power system examples
of this computation see [6].
Thus in the presence of multiple limits close to the binding

limit, we recommend that the sensitivity of the corresponding
transfer margins also be computed. Then the power system can
be steered away from several security limits that may become
binding. Finding the transfer margin sensitivity at each further
limit requires recomputation of the transfer limited case. This
is usually much quicker than the original computation of the
binding transfer limited case, because if the further limit is
relevant, it must occur soon after the binding limit. However,
the re-computation of each transfer limited case is significantly
more expensive than the sensitivity computation for each
limit. Prediction of which voltage magnitude and line limits
will occur soon after a binding limit can be done using the
additional computation of state variable sensitivities suggested
in Appendix A.

VI. RELATED WORK

The primary tool used in industry for computing transfer
capability margins is the dc loadflow model with power transfer
distribution factors (PTDF) and outage transfer distribution
factors (OTDF) computations (e.g., Power Technologies, Inc.
program MUST [12]). It can be shown [7] that the sensitivity
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formula (3) reduces to PTDFs and OTDFs for the appropriate
dc load flow models and this is illustrated in Appendix C. Thus
this paper significantly generalizes standard sensitivity methods
to encompass more accurate transfer capability calculations
on more detailed models. In particular, account can be taken
of power system nonlinearity, operator and automatic control
actions, and voltage and reactive power limits. The detailed
models also expand the range of parameters with respect to
which transfer capabilities can be computed. For example, the
sensitivity of a line flow limit to reactive power injection can
be computed.
There is a close connection between continuation and opti-

mization formulations for computing transfer capabilities. For
example, continuation can be viewed as an interior point method
of optimizing the amount of transfer. While there can be dif-
ferences in the assumptions and accuracies of the various con-
tinuation and optimization methods of computing the transfer
capability, the transfer capability sensitivity formula (3) is un-
affected by these choices. The sensitivity formula (3) is derived
using both continuation and optimization frameworks in Appen-
dices A and B, respectively.
Gravener and Nwankpa [10] have also nicely demonstrated

the use of transfer margin sensitivities; the difference with this
paper lies in the way the sensitivities are computed. In [10],
the sensitivities are computed numerically by incrementing the
parameter and rerunning whereas we suggest a fast analytical
formula for the sensitivities.
The overall margin sensitivity approach which is generalized

in this paper arose in the special case and restricted context of
loading margins to voltage collapse caused by fold bifurcation
[4], [8]. This paper considers transfer margins to general limits
other than voltage collapse. The sensitivity of transfer margins
to voltage collapse can be easily adapted from [8] and this ma-
terial special to voltage collapse is not repeated here. The sen-
sitivity formula of [8] differs from (3) in that stands for a dif-
ferent vector and that no event equation is used.2 Reference [11]
demonstrates the use of the margin sensitivity methods of [8]
for fast contingency screening for voltage collapse limits only.
Testing of fast contingency screening using the more general se-
curity limits of this paper is future work.
The transfer capability sensitivity formula (3) was first

stated in the workshop [9] and then in Greene [7]. This paper
greatly extends the initial concepts in [9] by deriving the
formula, testing it on a realistic power system, and assessing
its practicality.

VII. CONCLUSION

We show how the sensitivity of the transfer capability can be
computed very quickly by evaluating an analytic formula at the
binding limit. The sensitivities can be used to estimate the ef-
fect on the transfer capability of variations in parameters such
as those describing other transfers, operating conditions or as-
sumed data. The approach is consistent with current industrial
practice using dc load models and significantly generalizes this
practice to include more elaborate ac power system models and

2Greene [7] formulates an event equation for the fold bifurcation to obtain a
formula of the form of (3) which does reduce to the formula of [8].

voltage and reactive power limits on power system operation.
Once the transfer capability and corresponding binding limit
and solved case have been computed, the first order sensitivity
of this transfer capability to a wide range of parameters can be
quickly computed. These first order sensitivities can contribute
to the quick update of transfer capabilities when operating con-
ditions or other transfers change. Moreover, the sensitivities can
be used to select operator actions to increase transfer capability.
We conclude that after each computation of a transfer capa-

bility, it is so quick and easy to compute sensitivities of that
transfer capability that this should be done routinely to extract
the maximum amount of engineering value from each compu-
tation. In the case of predicting the effects of large parameter
changes on transfer margins, even if more than first order accu-
racy is ultimately required, it is still desirable to first estimate
the effects with first order sensitivities.

APPENDIX

A. Derivation of Sensitivity
Define

. Assume that is smooth and assume
the generic transversality condition that

has rank (6)

Then the implicit function theorem implies that there are smooth
functions , defined near with and

such that

(7)

Differentiating (7) yields

(8)

There is a nonzero row vector such that . is
unique up to a scalar multiple when has full rank, which
is implied by (6). Premultiplying (8) by yields

(9)

Condition (6) implies that is not zero and hence (9)
can be solved to obtain (3). The geometric interpretation of the
quantities in (3) is that is the normal vector
to the hypersurface in space corresponding to the binding
limit.
The sensitivity of the states at the binding limit is often

useful and this can be obtained by solving (8). For example,
can be used to screen for cases where new limits would

be violated (e.g., ) [7].

B. Derivation of Sensitivity in an Optimization Context
An optimization formulation [16, ch. 7], [18] of the transfer

margin determination is: Maximize the cost function
subject to the equilibrium equations (1) and the limit equations
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and for all applicable . This optimiza-
tion can be solved to find the transfer-limited case equilibrium
solution and the binding limit (2). In order to use
the notation of Appendix A, note that this solution is also the
solution of the optimization: Maximize the cost function
subject to

(10)
(11)

To be able to quote a common optimization result in the sequel,
it is convenient to introduce the parameters into (10) via the
new variables . The variables are now . Write

(12)

where and are row vectors of Lagrange multipliers. Then,
at the optimum solution, it is necessary that , or,
equivalently, that

(13)
(14)
(15)

Equation (13) is identical to (4), showing that the Lagrange mul-
tiplier must be proportional to the vector used in the rest
of the paper [the length of the Lagrange multiplier is fixed by
(14)]. It is well known in optimization theory (e.g., see [17] or,
in the context of applications to minimum cost optimal power
flow see [14]) that the sensitivity of the cost function to the con-
straints is given by the corresponding Lagrange multiplier. Thus

. Applying (15) and then (14) yields

(16)

which is identical to the desired formula (3).

C. dc Load Flow Example
We show how the general formula (3) applies in a simple dc

load flow example with six buses. The slack bus is numbered 0.
For the nonslack buses, write for the
angles and for the power injections.
The dc load flow equations are . The transfer
is from bus 3 to bus 4 so that . The limit
on the transfer is overload on line 1–2 so that the limit equa-
tion is . The parameter is ,
the base case power injection at bus 5. and

and hence .
and . and .

The transfer margin is the increase in transfer from bus 3 to
bus 4 which causes the flow limit on line 1–2. Substitution in
(3) gives the sensitivity of with respect to injection at bus 5

where is the well known sensitivity
of the flow on line 1–2 with respect to power injection at bus .
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