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Abstract

In a deregulated electricity market such as the California WEPEX, spinning reserves must be explicitly identified as an ancillary service
and priced. Additionally, scheduling coordinators who match suppliers and demands may either self-provide spinning reserves, or rely on the
Independent System Operator (ISO) to provide reserves at the spot price. The deregulated market structure makes explicit the implicit
softness that has always been recognized in the reserve constraints: additional reserves may have value even when a minimum reserve
requirement has been met. In this paper we formulate the spinning reserve requirement (SRR) as a function of the endogenously determined
marginal values of reserves. The spinning reserve requirement depends, according to a non-increasing response function, on a price/value
signal. We present three power system scheduling algorithms in which this price/value signal is updated at each iteration of a dual
optimization. Game theory is used to interpret the proposed algorithms. Numerical test results are also presented. � 1998 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The solution of power system scheduling problems is
essential to a power utility such as PG&E for major unit
commitment and transaction decisions. Many optimization
methods have been proposed to solve this problem [1].
Among them, Lagrangian relaxation methods are now
widely used approaches to solve unit commitment [2–4].
At PG&E, the Hydro-Thermal Optimization (HTO)
program was developed almost a decade ago, based on the
Lagrangian relaxation approach [3]. In our recent work, the
Lagrangian relaxation-based algorithm has been extended to
schedule thermal units under ramp rate constraints [5] and
transmission constraints [6].
The objective of the unit commitment is to minimize the

total generating costs of the power system over the planning
horizon subject to system constraints (e.g. load balance
constraints and spinning reserve constraints) and unit
constraints (e.g. minimum up/down time constraints and
ramp constraints). Most of the unit constraints describe
the physical limits of generation units and should not be
violated.
In contrast to these ‘hard’ constraints, the spinning

reserve constraints are ‘soft’, both in the sense that they
do not represent actual physical limits (normally they are
determined by regulation or law), and in the sense that there
may be value-added in exceeding the set level. A deregu-
lated electricity market structure makes explicit the implicit
softness that has always been recognized in the reserve
constraints. In the deregulated electricity market proposed
in California, spinning reserve has been explicitly identified
as an ancillary service that will be priced. Additionally,
coordinators who match suppliers and demands (in Califor-
nia, for example, the Power Exchange, which will initially
be responsible for matching most current utility-owned
generation and load) may either self-provide spinning
reserves or rely on the independent system operator (ISO),
who conducts an auction to provide a spot price for reserves.
The softness of the reserve constraints has previously

been dealt with using fuzzy logic techniques [7]. In Ref.
[7], Guan et al. proposed an efficient fuzzy optimization-
based method to solve the unit commitment problem with
soft reserve requirements. They first convert the problem to
a ‘crisp’ one, then take advantage of separability of the
problem and solve it by Lagrangian relaxation. They also
demonstrate the trade-off between cost minimization and
system reserve satisfaction. However, to avoid infeasibility,
the aspiration level of the generation cost is obtained by
running the crisp problem with the lowest acceptable
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reserve requirement. This requires multiple runs of the unit
commitment algorithm.
Hourly spinning reserve requirements are usually defined

to be the greater of a fixed percentage of total forecast
demand and the largest on-line unit. A utility or scheduling
coordinator may however wish to increase the SRR to a
higher level, provided the additional reserves do not cost
too much. In this situation, the unit commitment program as
usually formulated would probably first be run with the
higher SRR. If the marginal cost of reserves at that level
were too high, or no feasible commitment satisfying the
requirement could be found, the operator would run the
program again with a lower requirement, though still greater
than or equal to the minimum reserve requirement defined
by statute or scheduling protocol. Such a trial and error
approach requires multiple runs of the unit commitment
program and is time-consuming.
In this paper, we propose a new approach embedded in

the Lagrangian relaxation approach. The SRR is defined as
adaptive and adjustable between two levels of reserve
requirement in all hours. The SRR is adjusted based on
the corresponding Lagrange multiplier, which is viewed as
price information. Game theory is used to interpret our
proposed algorithms. The method proposed in this paper
does not require the multiple runs of unit commitment
required by other approaches.
We present a formulation of the thermal unit commitment

problem in Section 2. In Section 3, after a brief review of the
Lagrangian relaxation formulation, we interpret this formu-
lation by a two-firm model, from which the adaptive price-
based SRR is derived. A three-phase algorithm is then
presented in Section 4 to solve the unit commitment
problem with the adaptive SRR. Numerical test results
and conclusions are given in Sections 5 and 6.

2. Problem formulation

In this paper the following standard notation will be used.
Additional symbols will be introduced when necessary.

i: index for the number of units (i � 1,…,I)
t: index for time (t � 0,…,T)
uit: zero–one decision variable indicating

whether unit i is up or down in time period
t

xit: state variable indicating the length of time
that unit i has been up or down in time
period t

toni : the minimum number of periods unit i
must remain on after it has been turned on

toffi : the minimum number of periods unit i
must remain off after it has been turned off

pit: state variable indicating the amount of
power unit i is generating in time period t

pmini : minimum rated capacity of unit i
pmaxi : maximum rated capacity of unit i

rmaxi : maximum reserve for unit i
ri(pit): reserve available from unit i in time period

t �� min�rmaxi � pmaxi � pit��
Ci(pit): fuel cost for operating unit i at output level

pit in time period t
Si(xi,t�1,uit,ui,t�1): start-up cost associated with turning on

unit i at the beginning of time period t
Dt: forecast demand requirement in time

period t
Rt: spinning reserve requirement (SRR) in

time period t

The unit commitment problem is formulated as the
following mixed-integer programming problem (note that
the underlined variables are vectors in this paper, e.g.
u � �u11�…� uIT �):

�P�min
u�x�p

�T
t�1

�I

i�1
�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1�� �1�

subject to the demand constraints,

�I

i�1
pituit � Dt� t � 1�…�T �2�

and the spinning reserve constraints,

�I

i�1
ri�pit�uit � Rt� t � 1�…� T �3�

There are other unit constraints such as unit capacity
constraints,

pmini � pit � pmaxi � i � 1�…� I� t � 1�…� T �4�
the state transition equation for i � 1,…,I,

xit �
max�xi�t�1� 0� � 1� if uit � 1

min�xi�t�1� 0� � 1� if uit � 0

�
�5�

the minimum up/down time constraints for i � 1,…,I,

uit �
1� if 1 � xi�t�1 � toni

0� if � 1 � xi�t�1 � �toffi

0 or 1� otherwise

����
��� �6�

and the initial conditions on xit at t � 0 for �i.

3. Two-firm model

The method proposed in this paper is embedded in the
Lagrangian relaxation approach. In this section, we will use
a two-firm model to interpret this approach. The Lagrangian
relaxation approach relaxes the demand constraints and the
spinning reserve constraints by using Lagrange multipliers.
The problem is then decomposed into I subproblems. Let � t
and � t (t � 1,…,T) be the corresponding non-negative
Lagrange multipliers to Eqs. (2) and (3). We have the
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following dual problem:

�D� max
����0

d�����R� �7�

where

d�����R� �
�I

i�1
di����� �

�T
t�1

��tDt � �tRt� �8�

and

di����� � min
u�x�p

�T
t�1

�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1�

� �tpituit � �tri�pit�uit� �9�

3.1. Two-firm model with fixed SRR

Each unit subproblem di can be interpreted as a profit
maximization problem for unit i [8,9], where unit i is an
endogenously priced resource and � t and � t are the prices
paid to the resource.
We interpret the dual optimization using the following

two-firm model: Firm P, a power utility, facing demand Dt
needs to purchase fuel from firm Q for generation. Fuel for
different generating units may vary and fuel cost is
described by Ci(·). Firm Q also sells power and spinning
reserves. It offers firm P the prices � t and � t for power
and spinning reserves at hour t respectively. Firm P’s objec-
tive is to minimize its total cost given two options: buy fuel
and self-generate or directly buy power from firm Q. Firm
Q’s problem is to adjust the prices of � t and � t so as to
achieve its maximum revenue, considering that customer
firm P will minimize its cost.

Remarks:

1. In Fig. 1 the dual objective function is divided into two
optimization problems of two firms. If firm P decides to
purchase fuel, its spending is captured by the two terms
in the first bracket in the objective function. If firm P
purchases either power or spinning capacity from firm
Q, it pays the corresponding amounts in the second
bracket. No matter what option firm P chooses, firm Q
collects the money.

2. At iteration k, firm Q offers �k
t and �k

t , and firm P obtains

pk
it� uk

it. If the subgradient �Dt �
�I

i�1 pk
ituk

it� � 0, �k
t

should be increased at the next iteration. From firm Q’s
perspective if �Dt �

�I
i�1 pk

ituk
it� � 0 there is an excess

demand for power, and firm Q could raise the price.
3. Raising � t would stimulate the system to increase total

generation at hour t and vice versa. Increasing � t would
at some point make more units turn on. Changing either
� t or � t would affect spinning reserves, but it can be
shown that the amount of spinning reserves only depends
on � t � � t.

This two-firm model can be treated as a 2-player game.
Consider a sequential bargaining game of complete and
perfect information in which firm Q (player 1) moves first
and decides on prices � t and � t (t � 1,…,T); firm P (player
2) observes � t and � t (t � 1,…,T), and then chooses its
optimal generating policy, (uit,xit,pit), �i,t. We have the
following proposition.

Proposition 1 If ���
���� u�

� p�� is the solution to (D), it is a
Nash equilibrium (Ref. [10]) of the above game.

Proof. The solution to (D) is a Nash equilibrium because
given the other player’s strategy, each player has no incen-
tive to deviate: given firm P’s strategy �u�

� p��, firm Q has no
incentive to deviate from ���

����, because these prices
maximize its revenue d which is a concave function. Simi-
larly, given firm Q’s strategy ���

����, �u�
� p�� is the best

strategy for firm P, because �u�
� p�� minimizes d���

����.
Note that the result of Proposition 1 holds if the game is a

simultaneous-move game. However, a sequential game with
no need to assume that firm P, a spinning reserve provider,
has market power, fits reality better than the model of a
simultaneous-move game. The subgradient algorithm there-
fore can be regarded as an interpretation of how each firm
adjusts its decision in the face of the other firm’s choice. The
sequences {��k

��k�} and {�uk
� pk�}, describe a process of

adjustment to equilibrium.

3.2. Price-based adaptive SRR

In a deregulated electricity market such as the one
proposed in California, spinning reserve is obtained and
priced as an ancillary service. The ISO has ultimate
responsibility for meeting the reserve requirements based
on predetermined operating guidelines. Scheduling
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coordinators have the option to provide some or all of their
reserve requirements. If they do not self-provide, the ISO
will do so at the spot price. A coordinator thus faces the
problems of estimating the value (or opportunity cost) of
reserves, and then of deciding on its levels of self-provision
of reserves, and whether to bid into the reserve auction,
based on this value. In this paper, we propose a scheme
for obtaining an optimal level of spinning reserves at or
above a minimum requirement, on the assumption that
additional reserves have value in at least some hours. The
flexible SRR avoids uneconomic solutions in which expen-
sive units are unnecessarily committed, and also avoids
cases in which requiring desired higher levels of reserves
would result in the program not finding a feasible unit
commitment. These phenomena both tend to be indicated
by high values of the multipliers on spinning reserves. A
flexible SRR which is formulated as a function of an itera-
tively determined value of reserves can therefore also be
used to improve trade-offs between optimality and feasibil-
ity in the unit commitment solution.
We now modify the two-firm model defined in Section

3.1. Let firm P now also select its SRR. Firm Q, as in the
original model, offers prices � and �. After observing the
prices � and �, firm P defines its SRR first, then solves the
corresponding optimal generating policy, {uit,pit} for all i,t.
We assume that Rt is selected based on a function of � t in
the form �(� t)Dt, where � :R� � [at,bt] is a monotone non-
increasing function. For simplicity, we denote it as Rt(� t).
Rt(·) is called the response function of firm P. This means
that when � t, the price of spinning capacity offered by Q, is
high, firm P not only tends to commit more units (as in the
original model) but also wants to lower its SRR, and vice
versa. An example of Rt(� t) is depicted in Fig. 2, where
Rt(� t) � [(bt � at)/2 � (bt � at)/2·tanh( � �(� t � �))]
Dt, � � 0, � � 0.
In this extended two-firm model, the SRR is driven by

price through a response function. This corresponds to a
variation of the dual problem (D). We will present the
formulation along with the solution procedure in the
following section.

4. The solution procedure

Despite the efficiency of solving (D) due to its separabil-
ity, the solution of (D) does not necessarily yield a feasible
solution to (P), i.e. satisfying Eqs. (2) and (3). Lagrangian
relaxation algorithms for solving unit commitment have
often been implemented with two phases: a dual optimiza-
tion phase and a feasibility phase. In Ref. [11], a three-phase
structure of an algorithm for solving unit commitment
problems is proposed as follows.

Phase 1: Dual optimization, i.e. solving (D).
Phase 2: Feasibility phase: to obtain a feasible schedule.
Phase 3: Unit decommitment phase.

In the following sections, we will first briefly review the
three-phase algorithm for solving the unit commitment with
fixed SRR. With little modification, the three-phase
algorithm is extended to handle the case with flexible SRR.

4.1. Three-phase algorithm with fixed SRR

It is well known that the dual objective function d is
concave and continuous but not necessarily differentiable
at all points. A subgradient algorithm is applied to solve
the dual problem (D). It can be shown that the vector of
the mismatches in the demand constraints and the spinning
reserve constraints is a subgradient of the dual objective
function d [12].

Phase 1: The subgradient algorithm

Step 0: k ← 0; �0 and �0 are given.

Step 1: If stopping criteria are met, stop. Otherwise solve
d��k

��k�R� to obtain �uk
� pk�.

Step 2: �k�1
t � �k

t � sk�Dt �
�I

i�1 pk
ituk

it���k�1
t �max�0��k

t
� sk�Rt �

�I
i�1 ri�pit�uk

it����t.

Step 3: k ← k � 1, go to Step 1.
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In Ref. [13], it is shown that under some conditions on the
step size sk, the subgradient algorithm converges. The stop-
ping criteria used in our implementation include the maxi-
mum number of iterations, the change of norm of sub-
gradients at two consecutive iterations and the number of
iterations without improvement in the dual objective value.
In the Phase 2 proposed in Ref. [14], the hour of the most-

violated SRR is determined, and the corresponding � t is
enhanced. A method is proposed to calculate the exact
amount of the increase in the value of the corresponding
� t to satisfy SRR at the corresponding hour. However,
this method seems to take a long time to locate a feasible
solution because only one � t is updated at a time. A natural
extension is to simultaneously update at each iteration the � t
corresponding to all the hours that the SRR is violated [3,2].
This speeds up the feasibility phase at a cost of possible
overcommitment in the generating units [2]. Under the
structure of the three-phase algorithm, this overcommitment
can be corrected in the unit decommitment phase to be
discussed later. Although these Phase II methods were all
designed for the case where spinning capacity constraints
are of the form below:
�I

i�1
pmaxi uit � Dt � Rt��t �10�

the basic idea behind them can actually be applied to the
reserve constraints of the form in Eq. (3).
The purpose of a Phase 2 algorithm is to obtain a feasible

solution, or equivalently, a dispatchable commitment. We
first examine the conditions of existence of a dispatchable
commitment. Given a commitment { �uit}, it is dispatchable if
and only if the following conditions hold �t.

�I

i�1
pmini �uit � Dt �

�I

i�1
pmaxi �uit �11a�

�I

i�1
rmaxi �uit � Rt �11b�

and

�I

i�1
pmaxi �uit � Dt � Rt �11c�

The proof of the existence conditions above is straightforward
and is omitted here. It can be seen that the existence of a
solution requires the satisfaction of sufficiency of both
(system) spinning capability, Eqs. (11a) and (11b), and reserve
capability Eq. (11c).We now introduce our Phase 2 algorithm.

Phase 2: Feasibility algorithm

Step 0: k ← 0; �0 and �0 are from Phase 1.

Step 1: Given �k and �k, solve d��k
��k�R� to obtain

�uk
� pk�.

Step 2: If the existence conditions Eqs. (11a), (11b) and
(11c), applied to {uk

it}, are satisfied, stop and {uk
it}

is dispatchable.

Step 3: �k�1
t � �k

t ��
k�1
t � �k

t � sk·��k
t ���

k
t � 0 �t

violating the existence conditions Eqs. (11a),
(11b) and (11c), applied to {uk

it}.

Step 4: k ← k � 1, go to Step 1.

In Step 2 of the algorithm above, for the hours with insuffi-
cient (system) spinning or reserve capability, the correspond-
ing � t are enhanced by ��k

t . This, based on our two-firm
interpretation, will induce more unit commitment.
A unit decommitmentmethodhas been developed as a post-

processing phase (Phase 3) for the algorithms for solving the
unit commitment problem. Given a feasible unit commitment
� �u� �p�, the unit decommitment method improves the solution
while maintaining feasibility. In Ref. [15] it is shown that the
unit decommitmentmethodnot only improves solutionquality
generally, but alsomitigates unpredictable effects due to heur-
istics in the first two phases. The interested reader can refer to
Refs [11,15] for detailed discussion.

4.2. Three-phase algorithm with adaptive SRR

In Section 3.2, the concept of price-based adaptive SRR
was introduced. This flexible SRR of firm P is captured by a
response function Rt(·) at time t. Depending on whether firm
Q knows the response function of firm P, firm Q’s decision
for price adjustment varies. This creates two variations of
the dual problem (D), Nash-type and Stackelberg-type two-
firm models, to be discussed next.

4.2.1. Sequential bargaining game model
Consider a sequential bargaining game of complete and

perfect information in which firm Q moves first and firm P
moves second. The timing of the game is as follows: (1) firm
Q chooses the prices � t and � t, for all t; (2) firm P observes
� t and � t, and then chooses its SRR and the corresponding
optimal generating policy, uit and pit. Assume the scenario is
common knowledge to both firms P and Q, but firm Q does
not know the response function of firm P. In the following,
we use the notation R��� � �R1��1�� ����RT ��T ��.

Proposition 2 If ���
���� u�

� p�� is a solution to the following
problem (D*), then ���

����R����� u�
� p�� is a Nash

equilibrium of the sequential bargaining game.

�D�� max
����0

	
minu�x�p

�T
t�1

�I

i�1
�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1��

�
�T
t�1

��t�Dt �
�I

i�1
pituit� � �t�R�

t �
�I

i�1
ri�pit�uit��

� subject to R�
t � Rt���

t �



�12�
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To find a Nash equilibrium, we construct an algorithm to
simulate the process of adjustment toward equilibrium. At
each iteration, as in the subgradient algorithm, firm Q
adjusts prices based on the law of supply and firm P mini-
mizes its cost. Also firm P updates its SRR in response to
firm Q’s price, i.e. Rk�1

t � Rt��k
t �. This means that in order

to achieve R�
t � Rt���

t �, firm P approximates ��
t by �k

t .

Nash-type Phase 1 Algorithm

Step 0: k ← 0; {�0t } and {�0
t } are given.

Step 1: Given �k
��k, solve d��k

��k�R��k�� to obtain
�uk

� pk�.
Step 2: �k�1

t � �k
t � sk�Dt �

�I
i�1 pk

ituk
it���k�1

t �
max�0��k

t � sk�Rt �
�I

i�1 ri�pk
it�uk

it����t.
Step 3: k ← k � 1, go to Step 1.

The convergence of the Nash algorithm has not yet been
established theoretically, but it converges in all observed
cases.

4.2.2. Stackelberg game
As in the sequential bargaining game defined in Section

4.2 we now consider the case in which firm Q knows the
response function of firm P so that firm Q expects firm P’s
response in its revenue maximization problem. This game is
commonly known as a Stackelberg game [10].

Proposition 3 If � �� � �� � �u� �p� is a solution to the following
problem ( �D), then � �� � �� �R� �u�� �u� �p� is a Stackelberg
equilibrium of the Stackelberg game.

� �D� max
����0

min
u�x�p

	�T
t�1

�I

i�1
�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1��

�
�T
t�1

��t�Dt �
�I

i�1
pituit� � �t�Rt��t� �

�I

i�1
ri�pit�uit��



�13�

We assume that Rt(·) is continuously differentiable for all t.
We can then apply the subgradient algorithm to solve ( �D) to
obtain a Stackelberg equilibrium.

Stackelberg-type Phase 1 Algorithm

Step 0: k ← 0; �0 and �0 are given.
Step 1: Given �k and �k, solve d��k

��k�R��k�� to
obtain �uk

� pk� �i,t.
Step 2: �k�1

t � �k
t � sk�Dt �

�I
i�1 pk

ituk
it���k�1

t �
max�0��k

t � sk�Rt��k
t � �

�I
i�1 ri�pk

it�uk
it

��kt Rt
	��k

t �����t.
Step 3: k ← k � 1, go to Step 1.

(Note that the objective of ( �D) is not necessarily concave
because

�T
t�1 �tRt

	��t� may not be concave.)
The feasibility algorithm for the case with flexible SRR is

basically the same as the Phase 2 algorithm presented in
Section 4.1 with the fixed SRR Rt replaced by the flexible
one Rt(·), as a function of appropriate � t. For simplicity, we
will not restate the Phase 2 algorithm here. After Phase 2, a
feasible schedule corresponding to an SRR will be obtained.
The SRR determined from the final iteration of Phase 2 can
therefore be regarded as the system SRR. A unit decommit-
ment method can then be applied to improve the solution
quality with this system SRR fixed.

4.3. Discussion

Let L be the Lagrangian of the unit commitment problem
(P):

L�x� u� p� ����R� �
�T
t�1

�I

i�1
�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1��

�
�T
t�1

��t�Dt �
�I

i�1
pituit� � �t�Rt �

�I

i�1
ri�pit�uit�� �14�

Suppose 0�05Dt � Rmin
t � Rt��t� � Rmax

t � 0�07Dt for all
� t � 0, �t, and ���

���� and � �� � ��� solve (D*) and ( �D)
respectively. We have

max����0minx�u�pL�x� u� p�����Rmin� �15�

� �D��max����0minx�u�pL�x� u� p�����R����� �16�

� � �D�max����0minx�u�pL�x� u� p� ����R���� �17�

� max����0minx�u�pL�x� u� p� ����R� ���� �18�

� max����0minx�u�pL�x� u� p� ����Rmax� �19�
To see the inequality between Eqs. (16) and (17), note that
the optimal solution ���

���� of (D*) is feasible to ( �D). This
shows that the revenue of the leader (firm Q) in the Stack-
elberg game exceeds that in the sequential bargaining game
defined in Section 4.2. This is because in the Stackelberg
game firm Q has more information about firm P than in the
sequential bargaining game.
Both the Nash algorithm and the Stackelberg algorithm

can be applied to obtain a price-based adaptive SRR. For
example, if we solve ( �D) and obtain � �� � ���, we can use
R� ��� as SRR to define a unit commitment ( �P) as below.

� �P�min
u�x�p

�T
t�1

�I

i�1
�Ci�pit�uit � Si�xi�t�1� uit� ui�t�1��

s�t�
�I

i�1
pituit � Dt�

�I

i�1
ri�pit�uitRt� �� t���t
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The corresponding dual problem ( �D) of ( �P) is as follows.

� �D� max
����0

min
x�u�p

L�x� u� p� ����R� ���� �20�

Without really solving ( �D), we approximate the duality gap
between ( �P) and ( �D) by the ‘duality’ gap between ( �P) and
( �D). Note that this approximation is more restrictive (with a
larger value) than the value of the actual duality gap. In our
experiments, the ‘duality’ gap between ( �D) and ( �P) is within
1.5% for 10-unit-168-hour cases, and within 0.3% for 30-
unit-168-hour cases. The real duality gaps between
( �P� ∧ � �D) for both cases are actually smaller.

5. Numerical results

The algorithms are implemented in FORTRAN on an HP
700 workstation. A 30-unit thermal model problem over a
one week planning horizon is tested. The total system capa-
city is 15 515 MWwhich is much higher than the peak load.
We apply the three-phase algorithm to solve the unit

commitment problem. In this test problem, we let the inter-
val of SSR [atDt, btDt] be [0.05 Dt, 0.07 Dt], for all t. The
conventional fixed SRR method (Rt � 0.07 Dt, for all t) is
compared with the adaptive SRR method. We have also
tested both Nash and Stackelberg algorithms in Phase 1 in
the adaptive SRR case. The response function used in this
test problem has the form:

Rt��t� � 0�06 � 0�01 tanh��4��t � 0�5����t �21�
The algorithm performances are summarized in Table 1.
Both adaptive SRR algorithms have lower total generat-

ing cost due to the relaxation of SRR, and achieve better
solutions in terms of the duality gap. Also the Stackelberg
model outperforms the sequential bargaining model (Nash
algorithm) in terms of cost saving because of having more
information, as explained in Section 4.
The system spinning capacity profiles obtained by fixed

SRR and adaptive SRR (Stackelberg model) methods are
depicted in Fig. 3, in which only one day is shown. The
corresponding data can be found in Tables 2 and 3. In
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Table 1
Comparison of methods

Methods Total cost ($) CPU time (s) Duality gap (%)

Phase 1 Phase 2 Phase 3

Fixed SRR* 9333747 11.53 10.1 0.13 0.70
Adaptive SRR1† 9296353 10.17 7.64 0.29 0.40
Adaptive SRR2‡ 9291727 11.56 7.22 0.12 0.35

* Fixed SRR: 7% × load.
† Adaptive SRR1: Nash algorithm in Phase 1.
‡ Adaptive SRR2: Stackelberg algorithm in Phase 1.

Fig. 3. System spinning capacities and SRR.



Table 2 the multipliers � t corresponding to fixed (7%) SRR
in selected hours are listed. The value of � t in an hour
reflects the shadow price of the SRR in the hour. Note
that the value of � in hour 12 is much higher than that of
� t in other hours. In Table 3, the proposed adaptive SRR is
applied to the same test problem. It can be seen that the SRR
in an hour responds to the corresponding � t based on the
response function Eq. (21).
In Fig. 3 it can be seen that at hour 12, the SRR has been

relaxed down to 5% of the load and yields an actual reserve
of 5.8% of the load. Slight relaxation of the SRR at hour 12
affects the commitment in the following hours (due to mini-
mum up time or down time constraints). In Fig. 3 it can be
seen that during the period between hours 15 and 19, a
commitment with adequate but more economic spinning
reserve is achieved with adaptive SRR. At the same time
higher spinning reserve which increases reliability is main-
tained when it is inexpensive.

6. Conclusion

In this paper we have interpreted the Lagrangian
relaxation method for solving the unit commitment as a
two-player game: one player chooses unit commitment to
minimize cost based on prices; the other adjusts prices to
maximize revenue. The optimum solution of the Lagrangian
relaxation method is shown to be a Nash equilibrium of this
game. We have also shown that the subgradient rule
captures the responses of the players. Throughout this
interpretation, the game model can include other system
parameters as decision variables to the game. For example,
‘soft’ spinning reserve requirements are made adaptive and
respond to a price signal according to a non-increasing

response function at each iteration in the dual optimization.
The numerical test results show that this method avoids
uneconomic unit commitment solutions while enhancing
system security. This approach can yield both cost savings
and improved algorithm performance. In the context of
deregulation, we believe that scheduling coordinators such
as the Power Exchange who have the option of self-
providing spinning reserves will find an adaptive represen-
tation of their reserve requirements to be the appropriate one
in finding their most profitable reserve levels.
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