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Chapter 1

Introduction

1.1 Summary

This report applies sensitivity methods to a model of the Southwest of Eng-
land electric power system to determine their effectiveness in operating the
system sufficiently far from voltage collapse blackouts. The sensitivity meth-
ods were developed at the University of Wisconsin and are described in detail
in [12, 13]. The system data was graciously provided by the National Grid
Company.

The two main uses of the sensitivity methods are

1. Quickly quantify the effect of varying power system controls or param-
eters on the proximity to voltage collapse

2. Quickly rank the severity of contingencies with respect to voltage col-
lapse

The results confirm that the sensitivity methods perform well on the South-
west of England model for these uses.

The Southwest of England model used in this report has 40 buses. We
anticipate no difficulty in applying the sensitivity methods to systems rep-
resented with more buses; the largest model we have tested was a 1390 bus
model in [13]. In this report, the only system change considered as load in-
creased was generator VAR limits. We believe that changes in other devices
and operator actions as load is increased could be handled with our methods
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as long as the underlying continuation method took proper account of these
effects.

The report also examines the effect of generator VAR limits and presents
a sensitivity computation for cases in which instability is directly precipitated
by a VAR limit. However, we found no cases in which the loading margin
error in neglecting the instabilities precipitated by the VAR limit exceeded
11 MW.

The results were obtained using software developed at the University of
Wisconsin. The hardest part of the computation is locating the voltage col-
lapse as load is increased; the sensitivity computations themselves are quick
and relatively simple. The National Grid Company has software to locate
voltage collapse [14] and our impression is that this software could readily
be modified to additionally perform the sensitivity computations described
in this report. We suggest that the National Grid Company consider this
modification. It would be interesting to explore the possibility of including
the margin sensitivity computations from this report with the on-line power
management methods described in [14].

We invite comments from the National Grid Company staff about the
advantages and limitations of the sensitivity methods for the National Grid
Company power system. Such feedback is very valuable in directing research
at the University of Wisconsin along productive lines.

Funding for this work in part from the National Science Foundation,
USA under Presidential Young Investigator grant ECS-9157192 is gratefully
acknowledged.

1.2 Background

Voltage collapse is an instability of heavily loaded electric power systems
characterized by monotonically decreasing voltages and blackout [5, 3, 4].
Secure operation of a power system requires appropriate planning and control
actions to avoid voltage collapse.

For a particular operating point, the amount of additional load in a spe-
cific pattern of load increase that would cause a voltage collapse is called
the loading margin. Loading margin is an accurate measure of proximity
to voltage collapse which takes account of system limits and nonlinearities.
(Every paper on other voltage collapse indices implicitly acknowledges the
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significance of loading margin by using it as the horizontal scale when the
performance of the proposed index is graphed.) The loading margin can be
found by computing a continuation of equilibrium solutions corresponding
to increasing loads. We are interested in how the loading margin of a power
system changes as system parameters or controls are altered.

This report describes computing and exploiting the sensitivity of the load-
ing margin to voltage collapse with respect to various parameters. The main
idea of this report is that after the loading margin has been computed for
nominal parameters, the effect on the loading margin of altering the param-
eters can be predicted by Taylor series estimates. The linear Taylor series
estimates are extremely quick and easy and allow many variations on the
nominal case to be quickly explored. Exhaustively recomputing the point of
voltage collapse instability for each parameter change is avoided. For more
details and a review of previous work see [12, 13]. [12] describes the use of
loading margin sensitivities with respect to general parameter and controls
while [13] describes the use of loading margin sensitivities to quickly rank
the severity of contingencies.
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Chapter 2

Nominal Voltage Collapse
Margin

2.1 Computing the nominal voltage collapse

The nominal point of voltage collapse is the theoretical limit of the steady
state model of the power system and is not a reasonable point at which
to operate the actual power system. However, by computing the nominal
point of collapse, and thus the loading margin to collapse, one can assess the
security of the actual system operated at a nominal stable operating point.
In addition, the effects of contingencies and events on the security of the
actual system can be analysed by computing the effects of the contingencies
and events on the loading margin to collapse.

The test system consists of 40 buses representing a portion of the South
West Peninsula power grid and is described in [15]. For this study, trans-
former taps and switched compensation devices were assumed fixed.

The derivations and application of the sensitivity formulas [12] require the
choice of a nominal stable operating point at which parameters or controls
are to be adjusted, and a projected pattern of load increase. The nominal
stable operating point is shown in Table 2.1. Bus types are differentiated as:

• ‘PQ’, bus voltage and angle vary to maintain specified real and reactive
power injections.

• ‘PV’, reactive power output and bus angle vary to maintain specified
real power injection and voltage.
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• ‘VA’, real and reactive power output vary to maintain specified bus
voltage and angle.

The pattern of load increase is a direction in loading space along which the
loading margin is measured. The direction of load increase is shown in Table
2.3. Note that the sum of the real power components of the load direction is
unity. Thus the direction of load increase is a unit vector using the L1 norm.
The nominal point of collapse must be computed by a method that takes

into account system limits such as generator reactive power limits as they
are encountered. In general, the limits enforced at the point of collapse are
different than those at the stable operating point.

The nominal voltage collapse was established as follows: From the base
case equilibrium point (Table 2.1) representing a total load of 3575 MW,
the loading was gradually increased at the specified buses in the proportions
shown in Table 2.3. The effect of generators reaching VAR limits listed
in Table 2.2 was modeled by replacing ‘PV’ buses with ‘PQ’ buses at the
loading at which VAR limits were reached. Transformer taps were held fixed
at the starting ratios. No other changes to the network parameters were
implemented. In particular, no shunts were adjusted as the loading was
increased. The base case system encountered a voltage collapse at a total
load of 5380 MW, and thus the nominal margin is 1805 MW. Prior to voltage
collapse, the PV buses at EXET0, FAWL0, and LOVE0 encountered VAR
limits, and the PV bus at HINP0 was very close to reaching its VAR limit.
Table 2.4 shows the solution at the nominal point of collapse. Generators
that have reached reactive power limits are indicated in bold face as is the
VAR output at HINP0 which is precariously close to a VAR limit.

The Jacobian of the equilibrium equations with respect to the state vari-
ables at the nominal point of collapse is singular (fold bifurcation). The
left eigenvector corresponding to the zero eigenvalue of the system Jacobian
matrix evaluated at the nominal point of collapse is shown in Table 2.5, nor-
malized so that the largest component is unity. This left eigenvector is the
normal vector to the set of real and reactive power injections that correspond
to a fold bifurcation of the equilibrium equations [Dobson,Greene1]. The left
eigenvector indicates that the bus with the greatest influence on the loading
margin is the Indian Queens 132kV bus.
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Table 2.1: Nominal stable operating point

Bus Bus Bus Voltage Angle Load Generation
No. Name Type (p.u.) (degrees) (MW) (VAR) (MW) (VAR)

1 INDQ4 PQ 1.014 -1.437 - - - -
2 LAND4 PQ 1.007 -1.648 - - - -
3 ABHA4T PQ 1.011 -0.852 - - - -
4 ABHA4U PQ 1.008 -1.097 - - - -

5 EXET4 PQ 1.016 -0.142 - - - -
6 EXET0 PV 1.020 -0.142 - - - 12.9
7 TAUN4J PQ 1.016 0.956 - - - -
8 TAUN4K PQ 1.018 0.865 - - - -
9 AXMI4 PQ 1.014 -0.317 - - - -

10 CHIC4 PQ 1.013 -0.201 - - - -
11 MANN4 PQ 1.008 -0.033 - - - -
12 LOVE4 PQ 1.006 0.721 422.0 -63.8 - -
13 LOVE0 PV 1.010 0.721 - - - 11.1
14 NURS4 PQ 1.005 1.212 200.4 48.4 - -

15 FLEE4 PQ 1.006 -0.416 469.1 96.5 - -60.0
16 BRLE4 PQ 1.009 -0.478 - - -108.8 86.3
17 HINP4 PQ 1.014 2.109 - - - -
18 HINP0 PV 1.000 8.683 - - 1099.1 -77.7
19 HINP2J PQ 0.994 3.476 - - - -

20 HINP0J PV 1.000 13.140 - - 207.8 19.6
21 HINP2K PQ 0.994 3.488 - - - -
22 HINP0K PV 1.000 13.153 - - 207.8 19.7
23 MELK4 PQ 1.015 -0.140 - - -392.6 42.5
24 DIDC4 PV 1.005 -0.541 - - -38.6 -177.0

25 BOLN4 PQ 0.998 0.573 518.5 117.3 - -
26 NINF4 PQ 0.994 1.710 358.4 153.1 - -
27 BRWA2Q PQ 0.987 3.036 - - - -
28 BRWA2R PQ 0.987 3.054 - - - -
29 INDQ1 PQ 0.898 -8.621 294.8 63.7 - -

30 LAND1 PQ 0.969 -5.284 131.6 39.1 - -
31 ABHA1 PQ 0.984 -4.412 157.9 46.9 - -
32 EXET1 PQ 0.951 -3.881 142.2 22.4 - -
33 CHIC1 PQ 0.956 -1.228 40.0 5.6 - -
34 MANN1 PQ 0.960 -4.609 368.5 91.6 - -

35 AXMI1 PQ 0.967 -2.289 84.2 22.4 - -
36 TAUN1 PQ 0.962 -1.860 31.6 6.7 - -
37 BRWA1 PQ 0.992 -1.658 200.1 - - -
38 FAWL4 PQ 1.005 1.841 156.0 57.4 - -
39 FAWL0 PV 1.000 8.420 - - 1806.5 -9.5

40 DUNG4 VA 0.996 3.400 - - 819.1 -26.4
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Table 2.2: Reactive power limits

Bus Bus Maximum Minimum
No. Name (VAR) (VAR)

6 EXET0 150 -75
13 LOVE0 150 -75
18 HINP0 660 -9999
20 HINP0J 150 -9999

22 HINP0K 150 -90
24 DIDC4 9999 -9999
39 FAWL0 470 -9999

Table 2.3: Direction of load increase

Bus Bus Real Reactive
No. Name Power Power

29 INDQ1 0.2032 0.0439
30 LAND1 0.0907 0.0270
31 ABHA1 0.1089 0.0324
32 EXET1 0.0980 0.0154

33 CHIC1 0.0276 0.0039
34 MANN1 0.2540 0.0632
35 AXMI1 0.0581 0.0154
36 TAUN1 0.0218 0.0046
37 BRWA1 0.1379 0.0000
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Table 2.4: Nominal point of collapse

Bus Bus Bus Voltage Angle Load Generation
No. Name Type (p.u.) (degrees) (MW) (VAR) (MW) (VAR)

1 INDQ4 PQ 0.832 -29.32 - - - -
2 LAND4 PQ 0.826 -29.88 - - - -
3 ABHA4T PQ 0.863 -27.28 - - - -
4 ABHA4U PQ 0.851 -28.03 - - - -

5 EXET4 PQ 0.895 -25.03 - - - -
6 EXET0 PQ 0.948 -25.03 - - - 150.0
7 TAUN4J PQ 0.914 -23.43 - - - -
8 TAUN4K PQ 0.915 -23.71 - - - -
9 AXMI4 PQ 0.899 -24.20 - - - -

10 CHIC4 PQ 0.907 -22.47 - - - -
11 MANN4 PQ 0.916 -20.09 - - - -
12 LOVE4 PQ 0.958 -14.54 422.0 -63.8 - -
13 LOVE0 PQ 1.008 -14.54 - - - 150.0
14 NURS4 PQ 0.957 -14.44 200.4 48.4 - -

15 FLEE4 PQ 0.972 -17.45 469.1 96.5 - -60.0
16 BRLE4 PQ 0.982 -18.12 - - -108.8 86.3
17 HINP4 PQ 0.937 -21.56 - - - -
18 HINP0 PV 1.000 -14.50 - - 1099.1 650.0
19 HINP2J PQ 0.924 -21.67 - - - -

20 HINP0J PV 1.000 -11.38 - - 207.8 107.7
21 HINP2K PQ 0.924 -21.65 - - - -
22 HINP0K PV 1.000 -11.35 - - 207.8 107.6
23 MELK4 PQ 0.963 -20.77 - - -392.6 42.5
24 DIDC4 PV 1.005 -18.30 - - -38.6 582.1

25 BOLN4 PQ 0.958 -8.433 518.5 117.3 - -
26 NINF4 PQ 0.971 -2.317 358.4 153.1 - -
27 BRWA2Q PQ 0.912 -22.70 - - - -
28 BRWA2R PQ 0.912 -22.66 - - - -
29 INDQ1 PQ 0.569 -61.26 661.6 142.9 - -

30 LAND1 PQ 0.717 -43.48 295.4 87.8 - -
31 ABHA1 PQ 0.786 -39.44 354.4 105.3 - -
32 EXET1 PQ 0.787 -37.56 319.0 50.2 - -
33 CHIC1 PQ 0.852 -25.36 89.8 12.5 - -
34 MANN1 PQ 0.821 -33.42 827.0 205.7 - -

35 AXMI1 PQ 0.839 -29.97 189.0 50.2 - -
36 TAUN1 PQ 0.845 -33.64 70.9 15.1 - -
37 BRWA1 PQ 0.883 -34.07 449.0 - - -
38 FAWL4 PQ 0.957 -13.97 156.0 57.4 - -
39 FAWL0 PQ 0.983 -6.965 - - 1806.5 470.0

40 DUNG4 AV 0.996 3.400 - - 2748.7 601.2

11



Table 2.5: Left eigenvector corresponding to the zero eigenvalue of the system
Jacobian at the nominal point of collapse.

Bus Bus Real Reactive

No. Name Power Power

1 INDQ4 0.1172 0.3041

2 LAND4 0.1227 0.2936
3 ABHA4T 0.0899 0.2240
4 ABHA4U 0.0984 0.2386
5 EXET4 0.0683 0.1710
6 EXET0 0.0683 0.1530

7 TAUN4J 0.0552 0.1439
8 TAUN4K 0.0568 0.1445
9 AXMI4 0.0625 0.1545
10 CHIC4 0.0522 0.1337
11 MANN4 0.0404 0.1056

12 LOVE4 0.0206 0.0542
13 LOVE0 0.0206 0.0491
14 NURS4 0.0207 0.0593
15 FLEE4 0.0238 0.0373
16 BRLE4 0.0242 0.0307
17 HINP4 0.0421 0.1031

18 HINP0 0.0281 0.0000
19 HINP2J 0.0450 0.0916
20 HINP0J 0.0258 0.0000
21 HINP2K 0.0449 0.0915
22 HINP0K 0.0257 0.0000

23 MELK4 0.0341 0.0651
24 DIDC4 0.0221 0.0000
25 BOLN4 0.0094 0.0337
26 NINF4 0.0027 0.0157
27 BRWA2Q 0.0502 0.0967

28 BRWA2R 0.0500 0.0966
29 INDQ1 0.9086 1.0000
30 LAND1 0.3177 0.4820
31 ABHA1 0.2107 0.3091
32 EXET1 0.1730 0.2479

33 CHIC1 0.0660 0.1364
34 MANN1 0.0988 0.1357
35 AXMI1 0.0955 0.1670
36 TAUN1 0.1122 0.1572
37 BRWA1 0.1085 0.1385

38 FAWL4 0.0198 0.0617
39 FAWL0 0.0048 0.0597
40 DUNG4 0.0000 0.0000
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Chapter 3

Loading Margin Sensitivity

3.1 Introduction

This chapter describes and illustrates the use of loading margin sensitivi-
ties to avoid voltage collapse. The nominal stable operating point and the
nominal point of collapse are described in chapter 2.

The derivation of the sensitivity formulas assumes that the system equa-
tions remain fixed as parameters are varied. In particular, the limits enforced
at the point of collapse are assumed to stay the same as parameters are var-
ied. (A change in the system limits corresponds to a change in the system
equations and the sensitivity based estimates using the equations valid at the
nominal nose can become inaccurate when the parameters change sufficiently
so that the equations change.)

For this study, when a generator represented by a ‘PV’ bus reaches a
reactive power limit, it is converted to a ‘PQ’ bus, effectively changing the
equilibrium equations modeling the system. In [12] and [13], the major cause
for inaccuracies of the sensitivity based estimates is shown to be generator
reactive power limits changing as parameters are varied.

The case studied here is challenging since the generator at HINP0 is very
close to a limit at the nominal point of collapse. It is likely that for changes
in some parameters, the maximum VAR limit at HINP0 will be reached prior
to the new collapse point.
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3.2 Computation of linear sensitivity

The linear estimate of the change in loading margin (∆L) resulting from a
change to an arbitrary parameter (∆p) is:

∆L = Lp∆p =
−wFp∆p

wFλk̂
(3.1)

where :

• Lp is the sensitivity of the loading margin with respect to the parame-
ter.

• F , are the power system equilibrium equations (real and reactive power
balance at each bus) that apply at the nose. In particular, F accounts
for the power system limits enforced at the nose.

• Fλ, the derivative of F with respect to the load parameters. For con-
stant power load models Fλ is a diagonal matrix with ones in the rows
corresponding to buses with loads.

• Fp, the derivative of the equilibrium equations with respect to the pa-
rameter p at the nominal nose point. The parameter can be a vector
and then Fp is a matrix.

• w, the left eigenvector corresponding to the zero eigenvalue of the sys-
tem Jacobian Fx (Fx evaluated at a fold bifurcation is singular).

• k̂, the unit vector in the direction of load increase. k̂ also defines the
direction in which the loading margin is measured. The direction of
load increase is shown in Table 2.3.

The denominator of (3.1) is a scaling factor that is the same for all pa-
rameter changes. The linear sensitivity can be improved with a quadratic
estimate, derived and explained in [12].

3.3 Sensitivity with respect to load variation

Table 2.5 shows the left eigenvector corresponding to the zero eigenvalue of
the system Jacobian evaluated at the nominal fold point. This left eigenvector
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indicates that the voltage collapse is most affected by the load at the 132 KV
Indian Queens bus. There are several situations in which the sensitivity of
the margin to voltage collapse with respect to the load would be of interest.

There is usually uncertainty in the metering or forecast of loads. By com-
puting the sensitivity to the load, one can estimate the effects of inaccuracy
in the nominal values used. Secondly, it might be possible to shed load at
a bus, and it would be useful to know how much margin can be gained for
each MW of load shed. Finally, the sensitivity computation identifies buses
that are good candidates for planned improvements. For example, load mar-
gin sensitivity can specify good locations for VAR support or areas where
interruptible contracts would contribute the most to system security.

Methods

The loading margin corresponding to various loads of the same power fac-
tor at the 132KV Indian Queens Bus is computed by the same continuation
method used to obtain the nominal fold bifurcation. The results are com-
pared to those obtained using the linear sensitivity formulas evaluated at the
nominal fold bifurcation.

There is 294 MW of 0.98 power factor load at the Indian Queens 132KV
bus at the nominal stable operating point. Results are obtained for a varia-
tion of ±50MW, which is ±17% of the base load.

Results

The solid lines in Figures 3.1 and 3.2 are the linear estimates for the loading
margin variation as a function of the load shed. The dots in Figures 3.1 and
3.2 represent the actual values of the loading margin as computed by the
continuation method.

Figure 3.1 shows the effects on the loading margin for increasing the load
at INDQ0 by 10 MW increments at power factor 0.98. The dots represent
the collapse points as computed by continuation, and the line represents
the linear estimate. Figure 3.2 shows the effects on the loading margin for
decreasing the load at INDQ0 by 10 MW increments at power factor of 0.98.

The agreement between the linear estimates and the actual margins is
excellent over the entire range, but better for the increase in load than the
reduction of load. Closer inspection showed that a reduction of any more than
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3 MW caused the generator at HINP0 to reach its reactive power limit prior
to voltage collapse. The nearby VAR limit at HINPO affected the accuracy of
the estimates as expected. Although the effect is recognizable as a deviation
from the linear estimate, the magnitude of the error is insignificant. (In fact,
the HINP0 VAR limit causes an immediate instability (see Chapter 5). The
immediate instability occurs before the fold point and is shown by the circles
in Figure 3.3.)

3.4 Sensitivity with respect to VAR limits

Computation of the nominal voltage collapse point showed that Buses EXET0,
FAWL0, and LOVE0 all encounter VAR limits. We find out from sensitivi-
ties how the loading margin to voltage collapse would change if these limits
were different.

Methods

The magnitude of the components of the left eigenvector (Table 2.5) corre-
sponding to reactive power injections indicates that of the three generators
that encounter VAR limits between the nominal stable operating point and
the point of collapse, the generator at the 132 KV bus at Exeter has the great-
est influence on the margin to collapse. The loading margin corresponding to
various maximum reactive power limits at the 132KV Exeter bus is computed
by the same continuation method used to obtain the nominal fold bifurca-
tion. The results are compared to those obtained using the linear sensitivity
formula evaluated at the nominal fold bifurcation.

The nominal maximum reactive power limit at the Exeter 132KV bus is
150 MVARs. Results are obtained for a variation of 30 MVARs, which is
±20% of the nominal reactive loading.

Results

The solid lines in Figure 3.4 shows the linear estimate for the loading margin
variation as a function of the maximum reactive power limit at the 132 KV
Exeter bus. The dots in Figure 3.4 represent the actual values of the loading

16



1650

1700

1750

1800

0 10 20 30 40 50

Actual

LinearLo
ad

in
g 

m
ar

gi
n 

(M
W

)

Load Increase
(MW)

Figure 3.1: Effect of load increase at Indian Queens on the loading margin
to voltage collapse
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Figure 3.2: Effect of load decrease at Indian Queens on the loading margin
to voltage collapse
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Figure 3.3: Effect of load decrease at Indian Queens on the loading margin
to voltage collapse and critical VAR limit
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margin as computed by the continuation method. The agreement between
the linear estimates and the actual margins is excellent over the entire range.
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Chapter 4

Contingency Ranking for
Voltage Collapse

The sensitivity formulas of the previous chapter can be used to rank the
effects of contingencies on the margin to voltage collapse. In this case the
parameter p is a vector representing the line admittance, and instead of
looking at the effect of small deviations, the admittance parameter is changed
from its nominal value to zero.

4.1 Method

The estimates for the effects of contingencies were computed as described in
[13]. The actual margins resulting from the contingencies were computed by
first identifying a stable post contingency equilibrium at the base case loading
and then gradually increasing the load and accounting for VAR limits until
a voltage collapse due to fold bifurcation of the equilibrium equations was
found.

Radial line outages are a special case in which the derived formulas do
not strictly apply since the post outage network will not be connected. We
suggest that the contingency list be first screened to identify radial lines,
and that these outages be analysed and ranked separately from the other
contingencies. 1

1For the system used for this report, all radial line outages result in isolation of a
single bus. The estimates were then obtained by assuming a reduced system in which
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4.2 Results

Table 4.1 compares the estimates to the actual margins for all non-radial
line outages resulting in at least a 75 MW reduction in loading margin. The
ranks correspond to the rank of each outage among all other non-radial line
outages. Table 4.2 compares the estimates to the actual margins for all radial
line outages, with ranking shown among only radial lines. The two most
critical radial line outages are among the most critical line outages and are
identified as so. However, the estimates for the radial line outages tend to be
better than the estimates for non-radial outages, and so the moderate radial
outages tend to be ranked too high when included with all line outages. Table
4.3 shows the remaining line outages. Outages mis-grouped by the estimates
are shown in bold face. The radial outages were all ranked correctly.

For the four outages causing less than a 10 MW change in margin, the
mean error for the linear estimate was 3.0 MW and the maximum error was
4 MW. For the ten outages causing between a 10 MW and 20 MW change
in margin, the mean error was 3.9 MW and the maximum error was 13 MW.
For the thirteen outages causing between a 20 MW and 45 MW change in
margin, the mean error was 10.4 MW and the maximum error was 26 MW.
The estimates captured the thirteen worst non-radial line outages, all causing
greater than 60 MW change in the margin. The worst results pertained to
the outages between BRWA2Q and HINP2J (27.19.1) and BRWA2R and
HINP2K (28.21.1).

As noted in [13], the major cause for inaccuracy was due to changes in
the set of limits that apply at the point of collapse. This system proved to
be a challenging case, since all but nine outages forced a change in the limits
applied at the nose.

As expected, often the change in VAR limits involved the HINP0 bus pre-
cariously close to a limit at the nominal point of collapse. In many instances,
encountering this limit caused an immediate instability and this is addressed
in chapter 5.

the flows on the outaged line appear as loads at the bus still connected to the network
following the outage, and the left eigenvector components for that bus adjusted to include
the components corresponding to the isolated bus. The outage estimates then correspond
to the case of adding load at a bus.
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Table 4.1: Non-radial Line Outages causing at least 75 MW reduction in
loading margin

(nominal loading margin = 1805 MW)

Line Generators
Outage Margin Change Linear Quad at VAR

MW MW (rank) MW (rank) MW(rank) Limits

29.30.1 1464 -341 (1) -172 (1) -266 (1) EXET0
4.5.1 1555 -250 (2) -82 (4) -133 (4) EXET0,FAWL0

7.17.1 1635 -170 (3) -52 (9) -87 (7) EXET0,FAWL0,LOVE0
8.17.1 1637 -168 (4) -54 (8) -89 (6) EXET0,FAWL0,LOVE0
1.7.1 1643 -162 (5) -129 (2) -154 (2) EXET0,FAWL0
1.8.1 1643 -162 (6) -129 (3) -154 (3) EXET0,FAWL0

11.38.1 1650 -155 (7) -70 (5) -101 (5) EXET0,FAWL0,HINP0
2.4.1 1653 -152 (8) -48 (11) -75 (10) EXET0,FAWL0
3.5.1 1653 -152 (9) -51 (10) -80 (9) EXET0,FAWL0

11.12.1 1700 -105 (10) -61 (6) -83 (8) EXET0,FAWL0,HINP0
1.3.1 1718 -87 (11) -56 (7) -71 (11) EXET0,FAWL0

Table 4.2: Radial Line Outages
(nominal loading margin = 1805 MW)

Line Generators
Outage Margin Change Linear Quad at VAR

MW MW (rank) MW (rank) MW(rank) Limits

18.17.1 1367 -438 (1) -265 (1) -366 (1)
39.38.1 1568 -237 (2) -167 (2) -203 (2) EXET0,LOVE0,HINP0

6.5.1 1738 -67 (3) -60 (3) -62 (3)
20.19.1 1752 -53 (4) -46 (4) -57 (4) EXET0,FAWL0,LOVE0,HINP0
22.21.1 1752 -53 (5) -46 (5) -57 (5) EXET0,FAWL0,LOVE0,HINP0

13.12.1 1792 -13 (6) -19 (6) -20 (6)
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Table 4.3: Non-radial Line Outages causing less than 75 MW reduction in
loading margin

(nominal loading margin = 1805 MW)

Line Generators
Outage Margin Change Linear Quad at VAR

MW MW MW MW Limits

31.30.1 1735 -70 -33 -51 EXET0,FAWL0
9.11.1 1739 -66 -39 -51 EXET0,FAWL0,HINP0

27.19.1 1747 -58 -6 -8 EXET0,FAWL0,LOVE0,HINP0
28.21.1 1748 -57 -5 -8 EXET0,FAWL0,LOVE0,HINP0
5.7.1 1752 -53 -27 -37 EXET0,FAWL0,LOVE0
5.8.1 1755 -50 -26 -36 EXET0,FAWL0,LOVE0

10.11.1 1757 -48 -21 -29 EXET0,FAWL0,HINP0
5.10.1 1759 -46 -29 -37 EXET0,FAWL0,HINP0

16.24.1 1764 -41 -28 -39 EXET0,FAWL0,LOVE0,HINP0
16.24.2 1764 -41 -28 -39 EXET0,FAWL0,LOVE0,HINP0
12.38.1 1767 -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
12.38.2 1767 -3 -12 -12 EXET0,FAWL0,LOVE0,HINP0
17.23.1 1771 -34 -24 -29 EXET0,FAWL0,HINP0

17.23.2 1771 -34 -24 -29 EXET0,FAWL0,HINP0
26.40.2 1775 -30 -17 -27 EXET0,FAWL0,LOVE0,HINP0
26.40.1 1775 -30 -17 -27 EXET0,FAWL0,LOVE0,HINP0
37.36.1 1777 -28 -4 -8 EXET0,FAWL0,LOVE0
25.26.1 1778 -27 -17 -25 EXET0,FAWL0,LOVE0,HINP0

25.26.2 1778 -27 -17 -25 EXET0,FAWL0,LOVE0,HINP0
5.9.1 1778 -27 -12 -14 EXET0,FAWL0,HINP0
32.36.1 1779 -26 -14 -21 EXET0,FAWL0,LOVE0

16.23.1 1785 -20 -18 -23 EXET0,FAWL0,LOVE0,HINP0
16.23.2 1785 -20 -18 -23 EXET0,FAWL0,LOVE0,HINP0
12.25.1 1787 -18 -16 -22 EXET0,FAWL0,LOVE0,HINP0
12.25.2 1787 -18 -16 -22 EXET0,FAWL0,LOVE0,HINP0

31.32.1 1787 -18 -5 -8 EXET0,FAWL0,LOVE0
1.2.1 1791 -14 -14 -13 EXET0,FAWL0,LOVE0,HINP0
15.16.1 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
15.16.2 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
12.15.1 1793 -12 -14 -20 EXET0,FAWL0,LOVE0,HINP0

12.15.2 1793 -12 -14 -20 EXET0,FAWL0,LOVE0,HINP0

12.14.1 1800 -5 -4 -4 EXET0,FAWL0,LOVE0,HINP0

14.38.1 1800 -5 -2 -2 EXET0,FAWL0,LOVE0,HINP0

17.19.1 1809 4 0 2 EXET0,FAWL0,LOVE0

17.21.1 1809 4 0 2 EXET0,FAWL0,LOVE0
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Chapter 5

Voltage Collapse due to VAR
limits

The previous sections and the theory presented in [12, 13] associate voltage
collapse of the electric power system with a fold bifurcation of the equilibrium
equations used to model the system. Experience [4, 3, 10, 11, 14, 15] has
shown that the VAR limitations of generators are associated with voltage
instability, and computational experience shows that the effect of changing
PV buses in the equilibrium model of the power system to PQ buses often
reduces the loading margin to voltage collapse.

In some cases, when the system loading is high, the effect of changing a
PV bus to a PQ bus causes the margin to the fold bifurcation to increase.
Upon application of the limit, the equilibrium point appears on the bottom
half of the nose curve, and voltages increase upon increase in load [7, 14].

The points at which changing a PV bus to a PQ bus alter the system nose
curve so that the equilibrium solution is on the lower voltage branch of the
new nose curve are points at which the power system becomes immediately
unstable [7, 2]. We refer to these points as points of immediate instability,
to distinguish them from fold bifurcation points. However, either a fold
bifurcation point or point of immediate instability can lead to a dynamic
voltage collapse.

Tables 5.1,5.2, and 5.3 show the same results as in chapter 4 except that
the actual margins are adjusted to reflect the cases in which an immediate
instability was encountered before the fold bifurcation at the nose of the
curve. In all cases, the VAR limit was caused by the generator at HINP0.
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Those cases for which a change in margin occurs are highlighted in bold. The
immediate instability caused only minor changes in ranking between outages
within 5 MW of each other. The outages are listed in the same order as in
chapter 4.

For nearly half of the outages, instability was due to fold bifurcation,
not immediate instability. All of the most serious outages were due to fold
bifurcation. When the actual margin represents the distance to immediate
instability and not to fold bifurcation, the margin to fold bifurcation is noted
in parentheses. In all cases, fold bifurcation occurs within 11 MW of imme-
diate instability. Table 5.4 compares the loading margins to fold bifurcation
with the loading margins to immediate instability for each outage at which
an immediate instability occurred before fold bifurcation.

Since all cases of immediate instability resulted from the generator at
HINP0 hitting a VAR limit (although this did not always result in an imme-
diate instability) it is natural to ask how the contingencies affect the loading
margin to the HINP0 VAR limit, as opposed to the loading margin to the
fold bifurcation. This topic is addressed in section 5.1.

5.1 Contingency ranking for voltage collapse

due to VAR limits

The sensitivity computations can be easily extended to the case in which the
voltage collapse is an immediate instability due to a VAR limit rather than a
fold bifurcation. The derivation of the sensitivity formula in [12] required the
description of a hypersurface of fold bifurcation points. The normal vector
to this hypersurface is defined by the zero left eigenvector of the system
Jacobian. Similarly we can construct a hypersurface in which each point
corresponds to the point at which a particular generator is at a VAR limit.
The normal vector to this hypersurface can then be used in the sensitivity
formulas to compute the sensitivity of the margin to encountering the VAR
limit.
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Table 5.1: Non-radial Line Outages causing at least 75 MW reduction in
loading margin

(nominal loading margin = 1805 MW)

Line Generators
Outage Margin Change Linear Quad at VAR

MW MW (rank) MW (rank) MW(rank) Limits

29.30.1 1464 -341 (1) -172 (1) -266 (1) EXET0
4.5.1 1555 -250 (2) -82 (4) -133 (4) EXET0,FAWL0

7.17.1 1635 -170 (3) -52 (9) -87 (7) EXET0,FAWL0,LOVE0
8.17.1 1637 -168 (4) -54 (8) -89 (6) EXET0,FAWL0,LOVE0

1.7.1 1643 -162 (5) -129 (2) -154 (2) EXET0,FAWL0
1.8.1 1643 -162 (6) -129 (3) -154 (3) EXET0,FAWL0
11.38.1 1650 -155 (7) -70 (5) -101 (5) EXET0,FAWL0,HINP0
2.4.1 1653 -152 (8) -48 (11) -75 (10) EXET0,FAWL0
3.5.1 1653 -152 (9) -51 (10) -80 (9) EXET0,FAWL0

11.12.1 1699 (1700) -106 (10) -61 (6) -83 (8) EXET0,FAWL0,HINP0
1.3.1 1718 -87 (11) -56 (7) -71 (11) EXET0,FAWL0

Table 5.2: Radial Line Outages
(nominal loading margin = 1805 MW)

Line Generators
Outage Margin Change Linear Quad at VAR

MW MW (rank) MW (rank) MW(rank) Limits

18.17.1 1367 -438 (1) -265 (1) -366 (1)
39.38.1 1568 -237 (2) -167 (2) -203 (2) EXET0,LOVE0,HINP0

6.5.1 1738 -67 (3) -60 (3) -62 (3)
20.19.1 1750 (1752) -55 (4) -46 (4) -57 (4) EXET0,FAWL0,LOVE0,HINP0
22.21.1 1750 (1752) -55 (5) -46 (5) -57 (5) EXET0,FAWL0,LOVE0,HINP0

13.12.1 1792 -13 (6) -19 (6) -20 (6)
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Table 5.3: Non-radial Line Outages causing less than 75 MW reduction in
loading margin

(nominal loading margin = 1805 MW)

Line Generators

Outage Margin Change Linear Quad at VAR
MW MW MW MW Limits

31.30.1 1735 -70 -33 -51 EXET0,FAWL0

9.11.1 1735 (1739) -66 -39 -51 EXET0,FAWL0,HINP0

27.19.1 1741 (1747) -64 -6 -8 EXET0,FAWL0,LOVE0,HINP0

28.21.1 1742 (1748) -63 -5 -8 EXET0,FAWL0,LOVE0,HINP0
5.7.1 1752 -53 -27 -37 EXET0,FAWL0,LOVE0
5.8.1 1755 -50 -26 -36 EXET0,FAWL0,LOVE0
10.11.1 1750 (1757) -55 -21 -29 EXET0,FAWL0,HINP0
5.10.1 1753 (1759) -52 -29 -37 EXET0,FAWL0,HINP0

16.24.1 1757 (1764) -48 -28 -39 EXET0,FAWL0,LOVE0,HINP0
16.24.2 1757 (1764) -48 -28 -39 EXET0,FAWL0,LOVE0,HINP0

12.38.1 1767 (1767) -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
12.38.2 1767 (1767) -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
17.23.1 1769 (1771) -36 -24 -29 EXET0,FAWL0,HINP0
17.23.2 1769 (1771) -36 -24 -29 EXET0,FAWL0,HINP0
26.40.2 1769 (1775) -36 -17 -27 EXET0,FAWL0,LOVE0,HINP0

26.40.1 1770 (1775) -35 -17 -27 EXET0,FAWL0,LOVE0,HINP0
37.36.1 1777 -28 -4 -8 EXET0,FAWL0,LOVE0
25.26.1 1771 (1778) -34 -17 -25 EXET0,FAWL0,LOVE0,HINP0
25.26.2 1771 (1778) -34 -17 -25 EXET0,FAWL0,LOVE0,HINP0
5.9.1 1780 (1778) -29 -12 -14 EXET0,FAWL0,HINP0

32.36.1 1779 -26 -14 -21 EXET0,FAWL0,LOVE0

16.23.1 1778 (1785) -27 -18 -23 EXET0,FAWL0,LOVE0,HINP0

16.23.2 1778 (1785) -27 -18 -23 EXET0,FAWL0,LOVE0,HINP0
12.25.1 1779 (1787) -26 -16 -22 EXET0,FAWL0,LOVE0,HINP0
12.25.2 1779 (1787) -26 -16 -22 EXET0,FAWL0,LOVE0,HINP0
31.32.1 1787 -18 -5 -8 EXET0,FAWL0,LOVE0
1.2.1 1791 -14 -14 -13 EXET0,FAWL0,LOVE0,HINP0

15.16.1 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
15.16.2 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
12.15.1 1782 (1793) -23 -14 -20 EXET0,FAWL0,LOVE0,HINP0
12.15.2 1782 (1793) -23 -14 -20 EXET0,FAWL0,LOVE0,HINP0

12.14.1 1800 -5 -4 -4 EXET0,FAWL0,LOVE0,HINP0
14.38.1 1800 -5 -2 -2 EXET0,FAWL0,LOVE0,HINP0

17.19.1 1809 4 0 2 EXET0,FAWL0,LOVE0
17.21.1 1809 4 0 2 EXET0,FAWL0,LOVE0
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Table 5.4: All line outages causing an immediate instability prior to fold
bifurcation

(nominal loading margin = 1805 MW)
Line Margin to Margin to
Outage Immediate Fold

Instability bifurcation
(MW) (MW)

11.12.1 1699 1700

9.11.1 1735 1739
27.19.1 1741 1747

28.21.1 1742 1748

10.11.1 1750 1757

20.19.1 1750 1752
22.21.1 1750 1752
5.10.1 1753 1759
16.24.1 1757 1764
16.24.2 1757 1764

12.38.1 1767 1767
12.38.2 1767 1767

17.23.1 1769 1771
17.23.2 1769 1771
26.40.2 1769 1775
26.40.1 1770 1775
25.26.1 1771 1778

25.26.2 1771 1778

5.9.1 1778 1780

16.23.1 1778 1785
16.23.2 1778 1785
12.25.1 1779 1787
12.25.2 1779 1787
12.15.1 1782 1793

12.15.2 1782 1793
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Computation of nominal point of instability

Computation of the point of immediate instability is similar to computation
of a fold bifurcation point. The same continuation method can be used,
and the point of collapse is the point at which a VAR limit is encountered
and upon further increase in load the system voltages increase. Thus, the
immediate instability can be detected by computing the sensitivity of the
bus voltages to the loading factor after application of the limit. (Note that
the software described in [14] performs this check to detect voltage collapse
due to fold bifurcation or immediate instability.)

For this study, the maximum VAR limit at HINP0 was changed from
660 MVAR to 630 MVAR. The continuation program was run as before, and
again, VAR limits were reached at EXET0, FAWL0, and LOVE0. However,
at a loading 5379 MW, HINP0 reaches its VAR limit of 630 MVARS, and
the system becomes unstable once the PV bus is converted to a PQ bus. (A
fold bifurcation of the post limit system occurs at 5385 MW. Note that the
point of collapse for the original system occurred at a loading of 5380 MW
due to fold bifurcation.)

Computation of sensitivity

When the voltage collapse is identified with the fold bifurcation of the equi-
librium model, the left zero eigenvector can be used to compute the normal
vector to the surface of bifurcation points in parameter space. Similarly,
when the voltage collapse is identified with the immediate instability due to
application of a VAR limit, there is a normal vector in parameter space to the
surface of points at which the critical Q limit is reached. Table 5.5 compares
the normal vector W to the zero left eigenvector N. The angle between N
and W is 4.6 degrees. When the sensitivity computations and contingency
rankings were repeated using W in place of N, no significant changes were
observed.
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Table 5.5: VAR normal vector W and left eigenvector N
Bus Bus Real Power Reactive Power

No. Name W N W N

1 INDQ4 0.1172 0.1357 0.3041 0.3351

2 LAND4 0.1227 0.1417 0.2936 0.3253
3 ABHA4T 0.0899 0.1061 0.224 0.2555
4 ABHA4U 0.0984 0.1153 0.2386 0.2703
5 EXET4 0.0683 0.0819 0.171 0.2018
6 EXET0 0.0683 0.0819 0.153 0.1806

7 TAUN4J 0.0552 0.0674 0.1439 0.1769
8 TAUN4K 0.0568 0.0693 0.1445 0.1776
9 AXMI4 0.0625 0.0749 0.1545 0.1826
10 CHIC4 0.0522 0.0627 0.1337 0.1584
11 MANN4 0.0404 0.0486 0.1056 0.1257

12 LOVE4 0.0206 0.0249 0.0542 0.0655
13 LOVE0 0.0206 0.0249 0.0491 0.0594
14 NURS4 0.0207 0.025 0.0593 0.0715
15 FLEE4 0.0238 0.0287 0.0373 0.0462
16 BRLE4 0.0242 0.0293 0.0307 0.0387

17 HINP4 0.0421 0.0522 0.1031 0.1376
18 HINP0 0.0281 0.0268 0 0.0608
19 HINP2J 0.045 0.0552 0.0916 0.1197
20 HINP0J 0.0258 0.0301 0 0
21 HINP2K 0.0449 0.0551 0.0915 0.1196

22 HINP0K 0.0257 0.03 0 0
23 MELK4 0.0341 0.0419 0.0651 0.0857
24 DIDC4 0.0221 0.0266 0 0
25 BOLN4 0.0094 0.0114 0.0337 0.0408
26 NINF4 0.0027 0.0033 0.0157 0.019

27 BRWA2Q 0.0502 0.0615 0.0967 0.1256
28 BRWA2R 0.05 0.0613 0.0966 0.1254
29 INDQ1 0.9086 0.9176 1 1
30 LAND1 0.3177 0.3473 0.482 0.5128
31 ABHA1 0.2107 0.2394 0.3091 0.3449

32 EXET1 0.173 0.2002 0.2479 0.2835
33 CHIC1 0.066 0.0789 0.1364 0.1615
34 MANN1 0.0988 0.1176 0.1357 0.1611
35 AXMI1 0.0955 0.1137 0.167 0.1971
36 TAUN1 0.1122 0.1355 0.1572 0.191

37 BRWA1 0.1085 0.1323 0.1385 0.1713
38 FAWL4 0.0198 0.0239 0.0617 0.0743
39 FAWL0 0.0048 0.0059 0.0597 0.0719
40 DUNG4 0 0 0 0
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Appendix A

Derivation of VAR Limit
Sensitivity Formulas

This appendix derives the sensitivity of the margin to a immediate instability
caused by a VAR limit. The derivation is similar to that in [12] and consulting
[12] first may be helpful.

Assume that (z0, λ0) is the present stable operating point, and that the
continuation program determines that for a forecast parameter change in
the direction k̂, at the point (z∗, λ∗) a critical VAR limit is reached. The
security margin is M = ‖λ∗−λ0‖. The equilibrium equations valid at (z∗, λ∗)
are F (z, λ). E(z, λ) are the critical event equations at (z∗, λ∗). That is,
E(z, λ) = 0 is the condition for the VAR limit to be encountered. At the

nominal critical event

(
F |(z∗,λ∗,p0)

E|(z∗,λ∗,p0)

)
= 0. The boundary that we wish to

estimate is a subset of the set E−1(0) ∩ F−1(0), the set of equilibria that
satisfy the VAR limit being reached in state and parameter space around the
nominal point (z∗, λ∗, u∗).

Consider a curve parameterized by p, (Z(p),Λ(p)) on E−1(0) ∩ F−1(0)
and passing through the point (z∗, λ∗, p0)

(
F (Z(p),Λ(p), p)
E(Z(p),Λ(p), p)

)
= 0 (A.1)

where Λ(p) = λ∗ + L(p)k̂∗ and L(p) is the load change in the k̂∗ direction as
a function of p. Since k̂∗ is a unit vector in the norm used for the margin,
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the margin as a function of p is M (p) = M |p0 + L(p) and the sensitivity of
the margin with respect to p is Mp = Lp. Differentiating (A.1) at (z∗, λ∗)
with respect to p yields a linear system

(
Fz Fλk̂∗
Ez Eλk̂∗

)∣∣∣∣∣
(z∗,λ∗,p0)

(
Zp

Lp

)
= −

(
Fp
Ep

)∣∣∣∣∣
(z∗,λ∗,p0)

(A.2)

By the inverse function theorem, if

(
Fz Fλk̂∗
Ez Eλk̂∗

)∣∣∣∣∣
(z∗,λ∗,p0)

is nonsingular,

the map (Z(p),Λ(p)) is bijective in a neighborhood about (z∗, λ∗, p0). The
sensitivities can then be computed. Solution of (A.2) yields:

• Zp, the tangent vector at (z∗, λ∗, p0) to the curve in state space that
describes how the state variables change to satisfy the equilibrium and
event conditions as p varies1. Zp∆p is the first order Taylor series
estimate of how the state changes on E−1(0)∩ F−1(0) for a parameter
change of ∆p.

• Lp (a scalar), the sensitivity with respect to p of the load change in the

k̂∗ direction.

The first order estimate of the change in margin corresponding to the change
in p of ∆p is

∆M = Lp∆p (A.3)

Since the matrix

(
Fz Fλk̂∗
Ez Eλk̂∗

)∣∣∣∣∣
(z∗,λ∗,p0)

is the same for any2 parameter

p, once the matrix is factored and the sensitivities obtained for one param-
eter, computing the sensitivities for any additional parameters only requires

obtaining the derivatives

(
Fp
Ep

)∣∣∣∣∣
(z∗,λ∗,p0)

and one forward and backward

substitution.

1thus Zp∆p can be used to screen for cases where new limits would be violated
(Zp∆p[i] > Zlim[i])

2The presentation assumes that k̂ does not explicitly depend on p and that p is not a
component of λ. The appropriate formulas for these special cases are simply obtained by
applying the chain rule for derivatives similarly to the appendix in [12].
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If obtaining Mp for many parameters is of primary interest, and there is
no desire to obtain Zp, then full solution of the linear system (A.2) is not

necessary. The matrix

(
Fz
Ez

)∣∣∣∣∣
(z∗,λ∗,p0)

has n columns and n+ 1 rows. Since

every set of n+1 vectors in Rn is linearly dependent there is a nonzero vector
w such that

w

(
Fz
Ez

)∣∣∣∣∣
(z∗,λ∗,p0)

= 0 (A.4)

wT is a vector in the null space of (F T
z , E

T
z )|(z∗,λ∗,p0) and can be found with

less computational expense than required for solution of equation (A.2). If(
Fz
Ez

)∣∣∣∣∣
(z∗,λ∗,p0)

has full rank then w is unique up to a scalar multiplication.

Premultiplying (A.2) by w yields

Lp = −
w

(
Fp
Ep

)∣∣∣∣∣
(z∗,λ∗,p0)

w

(
Fλk̂

Eλk̂

)∣∣∣∣∣
(z∗,λ∗,p0)

(A.5)

Note that regardless of the number of parameters under consideration, w
needs to be computed only once.
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