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Abstract

Reliable operation of large scale electric power networks requires that system voltages

and currents stay within design limits. Operation beyond those limits can lead to

equipment failures and blackouts. Security margins measure the amount by which

system loads or power transfers can change before a security violation, such as an

overloaded transmission line, is encountered.

This thesis shows how to efficiently compute security margins defined by limiting

events and instabilities, and the sensitivity of those margins with respect to assump-

tions, system parameters, operating policy, and transactions. Security margins to

voltage collapse blackouts, oscillatory instability, generator limits, voltage constraints

and line overloads are considered. The usefulness of computing the sensitivities of

these margins with respect to interarea transfers, loading parameters, generator dis-

patch, transmission line parameters, and VAR support is established for networks as

large as 1500 buses.

The sensitivity formulas presented apply to a range of power system models.

Conventional sensitivity formulas such as line distribution factors, outage distribution

factors, participation factors and penalty factors are shown to be special cases of the

general sensitivity formulas derived in this thesis. The sensitivity formulas readily

accommodate sparse matrix techniques.

Margin sensitivity methods are shown to work effectively for avoiding voltage

collapse blackouts caused by either saddle node bifurcation of equilibria or immediate

instability due to generator reactive power limits. Extremely fast contingency analysis

for voltage collapse can be implemented with margin sensitivity based rankings.

Interarea transfer can be limited by voltage limits, line limits, or voltage stability.

The sensitivity formulas presented in this thesis apply to security margins defined

by any limit criteria. A method to compute transfer margins by directly locating

intermediate events reduces the total number of loadflow iterations required by each

margin computation and provides sensitivity information at minimal additional cost.

Estimates of the effect of simultaneous transfers on the transfer margins agree well

with the exact computations for a network model derived from a portion of the U.S

grid. The accuracy of the estimates over a useful range of conditions and the ease of

obtaining the estimates suggest that the sensitivity computations will be of practical

value.
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Chapter 1

Introduction

This thesis concerns the stability and security of large electric power systems with

an emphasis on static or longer term stability. One contribution of this thesis is the

establishment of a coherent, consistent, and general framework for margin and sen-

sitivity analysis applicable to a variety of security criteria. This thesis shows how

to efficiently compute the security margins defined by limiting events and instabili-

ties, and the sensitivity of those margins with respect to any model parameter. This

chapter introduces the important concepts and includes an explanation of the most

relevant previous work and a brief summary of the thesis. Chapter 2 states assump-

tions defining admissible power system models. Chapters 3 and 4 detail computational

methods for computing margins and their sensitivities. Chapters 5, 6, and 7 describe

applications regarding voltage collapse. Chapter 8 describes applications regarding

transfer capability. Chapter 9 describes applications regarding oscillatory instabili-

ties. Chapter 10 contains a summary of the thesis and outlines possible avenues for

future work.

1.1 Motivation

Power systems are affected by events that depend upon the state (voltages and cur-

rents) of the power system. The state of the power system is influenced by both

controllable and uncontrollable factors.

For instance, as loads increase, the system generation must increase to keep power

balance and maintain reserve and security margins. Often, at high load levels, gen-

erators reach real and reactive power limitations and the flows on lines exceed limits.

Any of these events can initiate a change in the operation of the power system. The

change in operation is reflected by a change in the equations that model the power

system, or the nature of the solutions that the equations yield. Fundamental questions

of system security, and the questions addressed by this thesis, are:

“How close is the system to the next event?”

“Will the system remain stable after the next event?”

“How can the margin to the next event be increased?”

1



2 CHAPTER 1. INTRODUCTION

1.2 Margins and sensitivity

Some parameters can be set or controlled and others, like loads, are mostly uncon-

trolled. The uncontrolled parameters can vary with time and affect the behavior of

the power system. The difference between the parameter values corresponding to an

event and the current or nominal parameters defines the margin to the event. For

instance, when an increase in loading causes the flow on a line to exceed its rating,

the distance to the line overload can be measured by a suitable norm of the vector

difference in loads, a loading margin. Depending on the application, security margins

can be measured in parameter space with respect to load levels, load model param-

eters, import levels, temperature, or time. When the security margin measures the

distance to an event that causes the system to become unstable, it is called a stability

margin.

In some instances, it may be practical to measure the security margin with a state

variable or a function of state. For example, the amount of additional real power flow

on a line that would cause overload is an easily understood measure of closeness to

overload of that line. Examples of margins measured in state space are increments in

line flows, generator VAR outputs, and voltage levels.

The system equilibrium, and thus margins to events, is affected by both control-

lable and uncontrollable parameters. The sensitivity of margins with respect to un-

controllable parameters quantifies the effects of different assumptions, forecasts, and

measured data. System operation also requires knowledge of how the controllable

parameters can be adjusted to keep the system secure as the uncontrollable parame-

ters change. One way of quantifying the effectiveness of controls is by computing the

sensitivity of the security margin with respect to the control parameter.

Consider the case of a line approaching overload. By computing the sensitivity of

the line flow with respect to different loading patterns, one can estimate the worst

case loading pattern — the one that increases the line flow most rapidly. The loading

margin for this load pattern can then be computed by solving for a continuation of

equilibria as the loading level is gradually increased. 1

Once the loading level at which the line reaches overload is located and hence

the loading margin found, the sensitivity of the loading margin with respect to any

parameters can be calculated. For example, computing the sensitivity of the margin

with respect to the area export set points can be used to assess the possibility of

avoiding the overload by changing the export schedules.

1The continuation neglects the transients and dynamics of the power system. However, the locus
of equilibria approximates the trajectory of the system state for sufficiently stable dynamics and
slowly varying load level.



1.3. LITERATURE REVIEW 3

This thesis describes how to compute margins to several events, compute the sen-

sitivity of the margins with respect to any parameters, and investigates applications

for the margin and sensitivity computations.

1.3 Literature review

This section contains a brief review of literature helpful for understanding the material

presented in this thesis. The references in this section are relevant to the thesis as a

whole and to the material presented in Chapters 2,3, and 4 in particular.

Several textbooks outside the field of power engineering were particularly useful

for this thesis. The derivations and computational methods presented in Chapters 3

and 4 require an understanding of multivariable calculus. The first two chapters of

[Spivak] and the first chapter of [GP] are recommended. [GV] is an excellent reference

for matrix computations and [HJ] for matrix theory. [BN] is an accessible and clear

reference for differential equations. [GH] is a popular reference for bifurcations but is

not as accessible to the engineer as [Seydel]. [Seydel] is a valuable reference concerning

computations and bifurcations and is most frequently cited in power systems papers

concerning voltage collapse computations. [GZ] presents an exceptional explanation

of the path following, or continuation methods, that form the backbone of the methods

in this report.

The fundamentals of modeling electric power systems are covered in [Bergen],

[WW], [Kundur], and [SauPai]. [Bergen] is the most understandable. [Kundur] is

the most comprehensive and contains a good analysis of generator reactive power

limits. [WW] best describes utility interconnections and economics. [SauPai] has

the clearest explanation of small signal stability, the effects of load models, and Hopf

bifurcations. [Heydt] is the most complete text describing power system computations

but is becoming outdated.

Supplemental to these texts, two survey papers provide good explanation of static

[Sto74] and dynamic [Sto79] power system models and computations. [PPTT], [SM79],

and [DT68] are landmark papers concerning sensitivity, optimization, and computa-

tion in power systems.

Van Cutsem [VC91, VC95, VC293, VC96] has forwarded an approach to steady

state stability analysis influential to this thesis. Specifically, Van Cutsem embraces

the use of loading margins that are path dependent and account for discrete events,

utilizes sensitivities and promotes the use of path following methods as static simula-

tion tools. Van Cutsem also provided the useful interpretation of margin sensitivities

in terms of the Lagrange multipliers of an optimization problem. The new text [VCK]

contains the aggregate of Van Cutsem’s work and a complete description of voltage
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stability theory and application.

[WF93] and the discussion by Wu, Fischl, and Nwankpa in [GDA97] has also

influenced this thesis, suggesting the use of continuation and sensitivity methods to

assess interarea transfer margins, proposing the use of first and second order Taylor

series estimates for contingency analysis [GDA98], and presenting the transfer margin

computation as an optimization problem.

Chapters 5, 6, and 7 concern voltage collapse in electric power systems. [DCL,

Davos, IEEE1] cover the full breadth of case studies, research and opinions on voltage

collapse. [GDA97] is a concise version of Chapter 5 and computes Taylor series

estimates of the bifurcation set for a practical power system model accounting for

generator reactive power limits. Chapter 9 concerns oscillatory instability in power

systems. [IEEE1] contains a broad range of ideas and experiences concerning interarea

oscillations in power systems.

The research contained in this thesis builds upon earlier work conducted at the

University of Wisconsin. [AJ89] presents a direct method to locate a saddle node

bifurcation point of a power system model and [CA93] compares a continuation

method with a direct method. A more tutorial and detailed presentation is found

in [CañPhD] and [CA91] incorporating models for HVDC systems. Several papers

[Dob93, DL93, ADH94] concern locating the closest saddle node bifurcation to an

operating point or optimizing the distance in parameter space to a bifurcation point

[DL192, Cañ98]. [DL192] first demonstrates computation of the voltage collapse load-

ing margin sensitivity from the components of the normal vector to the bifurcation set

in parameter space. Derivation of the normal vector to the saddle-node bifurcation

set in parameter space is presented in [Dob92]. Analysis of the immediate instability

precipitated by a generator reactive power limit is contained in [DL292]. [DAD92]

concerns the sensitivity of Hopf bifurcations in power systems.

1.4 Summary

This thesis demonstrates that the sensitivity of the security margin to an event can

be computed with respect to any system parameter, and that the sensitivities are

practical and useful for control, computation, and contingency analysis.

This thesis considers security margins to events defined by voltage collapse and fold

bifurcations, oscillatory instability and Hopf bifurcations, immediate instability due

to generator reactive power limits, voltage limits and line flow limits. The usefulness

of computing the sensitivities of these margins with respect to interarea transfers, load

change and load model parameters, generator dispatch, transmission line parameters

and line compensation, and VAR support is established for systems as large as 1500
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buses.

Chapter 2 motivates and states the basic steady state modeling assumptions used

in this thesis. Chapter 3 presents a thorough explanation of path following methods

for power system security margin computations and improves and extends earlier

work specific to voltage collapse. Established continuation methods for computing

security margins can be improved to directly locate intermediate events of practical

interest. The intermediate events are often points at which the equations that model

the system change. Correct computation of security margins requires that these

intermediate events be accounted for.

Chapter 4 describes how the sensitivity of security margins with respect to system

parameters can be computed and used to estimate an operational boundary in param-

eter space. Sensitivity based estimates can be used to quickly assess the quantitative

effectiveness of various control actions to maintain a sufficient security margin. The

estimates are also useful in determining the importance of uncertainties in data or

model assumptions. The evaluation of the estimates for large power system models

is very efficient. Chapter 4 contains a rigorous and general derivation. It is also

shown that the general sensitivity formulas can, in special cases, be reduced to yield

established sensitivity formulas such as line distribution factors, outage distribution

factors, participation factors and penalty factors.

Chapter 5 demonstrates the practical use of the sensitivity computations for a

range of system parameters on a voltage collapse of the IEEE 118 bus system. The

closeness of the estimates over a useful range of parameter variations and the ease

of obtaining the linear estimate suggest that the sensitivity computations will be of

practical value in avoiding voltage collapse. Chapter 5 contains a rigorous derivation

of the linear and quadratic sensitivity of the loading margin to voltage collapse with

respect to arbitrary parameters and includes material published in [GDA97] and noted

in [VCK].

Chapter 6 extends the work of Chapter 5 to contingency analysis. Chapter 6 shows

that effective contingency ranking for voltage collapse can be obtained by computing

the loading margin sensitivities with respect to each line outage. This approach

can take into account some of the effects of reactive power limits and easily handles

multiple contingencies. The results show that the linear estimates are extremely fast

and provide acceptable contingency ranking. Chapter 6 includes material published

in [GDA98].

Chapter 7 tests the methods of Chapters 5 and 6 on a 40 bus model of the National

Grid Company of the United Kingdom and introduces several new applications. It is

shown that the methods applied to voltage collapse precipitated by fold bifurcation

can be successfully adapted to voltage collapse precipitated by a generator VAR
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limit. In addition, computation of the sensitivity of the loading margin to voltage

collapse with respect to changes in generator VAR limits is demonstrated. Finally,

the contingency computations of Chapter 6 that model a line outage as a change in

the sparse bus admittance matrix are recomputed instead using changes in the dense

bus impedance matrix (analogous to large deviation outage distribution factors). The

results suggest that this approach is of questionable benefit.

Chapter 8 demonstrates how margin and sensitivity computations can be used to

determine transfer capability margins. The methods are tested on a 1500 bus power

system model. The sensitivity of the transfer margin with respect to area exports is

used to obtain estimates of the effect of simultaneous transfers on transfers limited

by both line flow limits and voltage limits. The results indicate that the methods

should be useful in determining available transfer capabilities.

Chapter 9 describes applications concerning oscillatory instability margins and

eigenvalue sensitivity. Chapter 9 demonstrates the computation of the transfer mar-

gins to oscillatory instability and the sensitivity of these margins with respect to

import set points. If the difficulties attributable to very large system models can be

addressed, the computation would be of practical value in assessing interarea transfer

policies in a deregulated environment.

The conclusions of this thesis are discussed in Chapter 10 together with suggestions

for future work.



Chapter 2

Assumptions

This chapter contains the basic assumptions that provide the foundation for the meth-

ods presented in this report. The mathematical model of a power system presented in

this chapter is general and provides the basis for the computational methods presented

in later chapters for computing security margins and sensitivities of margins.

A useful model accurately recreates some phenomena of the actual system and

specifies which phenomena are ignored and the conditions for which the model is

valid. The simplifying assumptions used to derive a model determine the phenomena

that will be accurately portrayed and those that will be missed.

It is poor engineering practice to assume that an actual system will behave ideally.

However, it is worse practice to operate an actual system in conditions in which even

an ideal system could not properly function. The purpose of steady state stability

analysis in power systems is to identify the operational limits of an ideal system.

One objective of this chapter is to show how to locate the points at which the power

system could not effectively operate subject even to small disturbances. Experience

and judgment can be employed to determine a sufficient safety margin for the actual

system. In the next section we describe the characteristics of the power system to be

included in our model, and distinguish those that will be neglected.

2.1 Power system operation

The methods and assumptions of this thesis are motivated here by a brief description

of power system operation. Power systems interconnect millions of electrical and

mechanical devices. The variety of phenomena exhibited by an actual power system

is immense. The following description includes only the relevant characteristics of

which only a subset will be retained by our model.

One can view the power system as an enormous nonlinear electric circuit1. The

1Modeling a power system as an electric circuit may seem obvious to electrical engineers. However,
models of power systems that greatly simplify or ignore the underlying circuit are common and
useful for economic analysis. For modeling gross behavior like emissions or expenditures on a daily
or monthly time scale, circuit descriptions of the system are not useful.

7
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model should retain the fundamental characteristics of electric circuits and the de-

pendence of state variables (voltages and currents) on circuit parameters.

Many power system phenomena are initiated by the aggregate effect of changing

loads. The model should have the ability to partially account for the response of

interconnected generators to fluctuating demands. As loads increase the rotational

speed and hence frequency of individual generators decreases. A control system using

frequency as a feedback increases the mechanical input to the generators which in turn

results in increased electrical output and restoration of frequency. Another control

system implements a dispatch among generators so that increased output is provided

by those generators at which it is most economical to do so and so that interchange

agreements for the transfer of power between areas and utilities are maintained.

With a cumulative increase in demand, system voltages can decline, initiating

several activities. On load tap changing transformers adjust tap positions to main-

tain load side voltages. Shunt capacitors are switched in to provide reactive power

support. Fast starting back-up generation may be brought on-line. The characteristic

of changing system equipment and structure as a function of system state is a feature

we wish to incorporate in our model.

While the demand and then generation increase, so do the flows and losses on

the transmission lines, as well as the flows and losses in the circuits and devices that

make up each generating unit.

When the flows on transmission lines increase, the temperature of the conductors

increases resulting in a loss of mechanical strength and increased sag. The increased

sag can cause a line to become dangerously close to ground increasing the possibility of

flash over and faults. A faulted line can lead to momentary or prolonged outage of the

line. Extended operation of a line beyond its thermal rating can permanently reduce

the strength of the line. Once lines become overloaded, generation is redispatched to

relieve the overloads, and in some cases the lines are interrupted to prevent permanent

damage.

Generators can be damaged by overheating and over or under voltage conditions.

Protective devices range from controls that remove the generator from the network

(severe over or under voltage), to those that limit the output of the generator by

controlling its operation. The latter include mechanical limits on the prime mover to

fix the maximum power output, and control devices that limit the voltage or current

in control circuits or generator windings to prevent overheating, shorting, and unit

failure.

The model should account for the operation of protective devices and changes in

system operation policy resulting from the condition of the system.

Every change in load or generation, switching of a device, or tap change at a
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transformer is a disturbance to the power system. Disturbances may also be caused

by random events like lightning strikes and short circuits. If the system is stable, the

controls and dynamics will behave in such a way as to move the system state toward

a new equilibrium after the disturbance. As the system becomes less stable, the rate

at which the system approaches equilibrium after every disturbance decreases. The

duration of time for which the transient effects of a disturbance dominate increases

as the stability of the system decreases. Significantly large disturbances can cause

the system state to diverge from the equilibrium or for the equilibrium to disappear.

When conditions are severe, several generators may reach operational limits and

lines may trip due to shorts caused by steady overload, in turn further compromising

the system security. The security of a system thus depends upon the accumulated

effects of slow events (gradual demand increase and generation response) and discrete

events (protective device operation), as well as the immediate effects of transients.

When the system is unstable or marginally stable, a small disturbance may prop-

agate and grow, eventually causing cascading operation of protective devices. Even

when the system is stable, large random disturbances such as lightning can propa-

gate and trip protective devices. These phenomena, although of importance to power

system operation, are not exhibited by our model.

We wish to include in our model as many of the operational parameters and

characteristics that can reasonably be controlled or forecast, and neglect those that are

beyond control or prediction. For instance, we account for the steady state evolution

of a power system due to protective device and system operation including generator

limits, but we ignore the transient effects caused by operation of the protective devices.

We account for the long term effects of generator dispatch and interarea agreements

but ignore the short time frame effects initiated by the systems that implement those

policies.

We do not account for transient behavior, protective device coordination, or in-

stantaneous limits. Hence we do not model power systems during periods when we

know that transient effects are dominant. For example, we do not model the large

disturbance response of a stable power system, or the dynamic evolution of an unsta-

ble power system. For this reason, the type of analysis emphasized in this thesis is

classified as “steady-state” or “static” as opposed to “transient” or “dynamic”.

The purpose of the next section is to specify the assumptions for a model of a

stable power system so that an unstable system can be detected from the model as a

condition at which the assumptions are violated or become contradictory.
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2.2 Assumptions

In this section we state the primary assumptions underlying the methods presented

in this report for computing security margins and their sensitivities with respect to

parameters. Our primary assumptions are qualitative and not dependent upon spe-

cific equations for the power system. However, secondary assumptions concerning

the quantitative behavior of the power system are necessary for computation and

simulation for any particular application. In this section we state primary assump-

tions essential to motivate the following chapters. In later sections that detail specific

applications, the assumptions necessary for that application will be stated.

We assume that the dynamic behavior of the power system can be represented by

parameterized differential equations,

ż = f(z, λ, u) (1)

and difference equations

uk+1 = h(z, λ, uk) (2)

where

z ∈ IRn is the vector of state variables.

λ ∈ IRm is a vector of parameters.

u is a vector of discrete states.

f is continuously differentiable with respect to z,λ and p for every u.

The differential equations (1) account for the circuit behavior and evolution of

state resulting from fluctuating demands. The difference equations (2) account for

the evolution of state due to operation of protective devices, tap changes and other

discrete events.

The distinction between variables and parameters is crucial. Parameters are ac-

tive; they are directly set or assumed. Variables are passive; they assume the values

imposed by solution of the equations. Perhaps the most important aspect of modeling

is determining or assuming what is a parameter and what is a variable. The choice

of variables and parameters can vary for each application.

Our primary assumptions are:

1. At every moment the power system has a state corresponding to a particular

exponentially stable equilibrium solution of equation (1). This state is referred

to as the equilibrium state.
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2. The operation of state dependent devices can be considered to be dependent

upon the equilibrium state.

3. The system state remains in the basin of attraction of the equilibrium solution

of equation (1).

Fundamental to these assumptions is the distinction between the equilibrium state

and the system state. The system state consists of the instantaneous values of the

state variables. The equilibrium state however, is a theoretical point in state space

that represents the fixed point of the differential equations that model the system at

that moment. The equilibrium (z0, λ0, u0) satisfies

0 = f(z0, λ0, u0) (3)

We do not require that the power system state be at equilibrium, only that the

equations that model the system have an equilibrium.

One characteristic of power systems is that they include devices that reach partic-

ular states at which the equations that model the system change. This characteristic

is independent of many of the other assumptions used to model the power system.

For instance, the removal of a transmission line will require a change in the equations

regardless of the assumptions concerning loads, or balanced three phase operation or

sinusoidal currents. Assumption (2) means that the operation of a circuit breaker

or relay is considered dependent upon the power system equilibrium, not the imme-

diate system state. This assumption frees analysis from complicated time domain

simulation.

Specifically, assumption (2) means that equation (2) has the characteristic that k

is incremented only when the equilibrium solution of (1) violates a limit. In short, the

equations that model the system change when the equilibrium solution of the system

would violate a limit, not when the actual state violates a limit. The word “event”

is used in this thesis to refer to a point at which the assumptions are violated or the

difference equations (2) force a change in the differential equations (1).

The assumptions imply that the dynamic behavior of the power system is qualita-

tively the same as that of a linearized system at the equilibrium solution of equation

(1). The stability of the power system with equilibrium state (z0, λ0) can thus be

determined by the stability of the linear differential equation

ż = A∆z (4)

where A = fz|(z0,λ0). Since the power system equilibrium is assumed exponentially

stable, all the eigenvalues of A have negative real parts.
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Figure 1: Phase portraits and equilibrium trajectory as parameter changes and state
remains within each basin of attraction

One aspect of these assumptions is that transients and the events initiated by

transients are ignored. A transient instability would result, for example, if a parameter

change moved the system equilibrium so that the system state did not remain in the

basin of attraction of the new stable equilibrium. However, since a system close to

a steady state instability is usually more vulnerable to transient instability than a

system farther from steady state instability, the distance to a steady state instability

is an important indicator of relative system security.

Figures 1 and 2 present one way of visualizing these assumptions. The dark-

est curves represent the trajectory of the system state and the dots represent the

equilibrium states corresponding to different parameter values. The evolution of the

equilibrium state is shown by the broken curve joining the dots. A portion of a stable

phase portrait is drawn about each equilibrium point. Each parameter change or

event that moves the equilibrium of the differential equations (1) or causes the differ-

ential equations (1) to change as a result of the difference equations (2) incrementing

u, alters the phase portrait and the trajectory of the system state. As the system pa-

rameters change smoothly or discontinuously, the system equilibrium state and phase

portrait also change, but the system state changes continuously. The system state
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Figure 2: Phase portraits and equilibrium trajectory as parameter changes and state
does not remain within each basin of attraction
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in both figures initially spirals inward towards the top left equilibrium state. As the

parameters of the system change the equilibrium state of the power system moves

and the trajectory of the system state is altered. The trajectory of the system state

is the transient response of the system to the parameter disturbances. In Figure 1,

the system state remains in the basin of attraction of each equilibrium and traces a

portion of the phase portrait corresponding to each equilibrium. The behavior illus-

trated in Figure 2 does not satisfy the assumptions since the system state does not

remain in the basin of attraction of each equilibrium.

The main assumption required by the methods of this thesis is that the qualitative

behavior of the system state can be determined by analysis of the equilibrium state.
2 The complicated trajectory of the system state is not modeled. The analysis of

stability based on the equilibrium state is classified as static stability or steady-state

stability analysis to distinguish it from transient or dynamic stability analysis. This

classification has sometimes led to confusion since some researchers assume that if

a dynamic phenomena is observed, a transient model must be required for analysis.

However, the consequence of a static instability is dynamic. The distinction between

static and dynamic analysis does not concern the consequences of the instability or

phenomena observed but rather the nature of the assumptions employed for analysis.

By locating the parameters λ at which the assumptions break down, we identify

not only the limits of the model but also a boundary at which reliable operation of

the actual power system is unlikely. The model breaks down by only four generic

mechanisms:

1. The stable equilibrium solution disappears as parameters change.

2. The stable equilibrium solution disappears as the difference equations change

the differential equations.

3. The stable equilibrium solution becomes unstable as parameters change.

4. The stable equilibrium solution becomes unstable as the difference equations

change the differential equations.

2These assumptions differ slightly from the often cited quasi-static steady state assumption
[VC94, LöfPhD, DC89]. One common description of the quasi-static steady state assumption is
that the parameter vector changes slowly compared to the dynamics of the system, so that the
system state approximately traces a locus of stable equilibria. The quasi-static steady state assump-
tions satisfy our assumptions but are stronger. We also allow parameters to occupy discrete states
and hence they change discretely, not necessarily slowly. However, we assume that the state remains
in the basin of attraction of the new stable equilibrium. The term “quasi-static steady state” is also
sometimes cited as justification for the standard load flow equations which assume that the power
system voltages and currents are sinusoidal of constant frequency.
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Mechanisms (1) and (2), characterized by the disappearance of the equilibrium solu-

tion, require only static equations for sensitivity and margin computations. In other

words, any equilibrium equations with the same zero set as the correct differential

equations will suffice.

Suppose that the power system is operating stably near an equilibrium (z0, λ0, u0).

The parameters λ are forecast to change and occupy discrete values on a curve in pa-

rameter space Λ(t). One objective is to compute the λ∗ on Λ at which the system

equilibrium (z∗, λ∗, u∗) first violates the assumptions. For instance, if the Jacobian

matrix fz|(z∗,λ∗,u∗) becomes singular the equilibrium solution is no longer exponen-

tially stable violating assumption (1) and further change along Λ(t) generally will

lead to the disappearance of the equilibrium solution. Another possibility is that at

(z∗, λ∗, u∗) equation (2) forces a change in u to u∗∗ so that f(z, λ∗, u∗∗) has no equi-

librium solution. The assumptions are also violated if the parameters change so that

fz|(z∗,λ∗,u∗) has a complex pair of eigenvalues in the left half plane.

Security and stability margins can be path dependent due to the discrete state

variables and difference equations. For example, assume that from current parameters

λ0, there are two different scenarios for progression to the eventual parameter values

λ2. One forecast is λ0 to λ1 to λ2 the other is λ0 to λ1
′ to λ2. Assume that the system

encounters an irreversible limit as λ changes to λ1 that does not occur as λ changes

to λ1
′. The first forecast leads to a final equilibrium (z2, λ2, u2) while the second to

(z2
′, λ2, u2

′) where z2 6= z2
′ and u2 6= u2

′. The equations that model the system at

the two points can be different, f(z, λ, u2) 6= f(z, λ, u2
′). This characteristic poses an

obstacle for any computational methods aimed at determining security margins.

Modeling the system after the equilibrium has disappeared or is no longer stable

is not an objective of this work. The emphasis of this thesis is preventative action.
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Chapter 3

Margin Computations

This chapter contains a comprehensive explanation of methods to compute margins in

electric power systems. Path following methods have found widespread use in power

systems analysis; this chapter represents a synthesis of several different perspectives

and suggests improvements and extensions to previous implementations. The presen-

tation of the material in this chapter is original and is intended to give insight into

the relation between the computational methods and the power system model.

3.1 Previous work

The practical use of path-following or continuation methods for tracing equilibrium

solutions for power systems analysis most likely predates the first publication of such a

method in the power systems literature. Continuation methods for locating the point

of voltage collapse of power systems have been presented in [Iba, AC92, CA93, CFSB]

and utilized in [GDA97, GDA98, RHSC, VC91]. [Seydel] includes a direct method

for locating a saddle node bifurcation. Similar methods for computing the margin to

voltage collapse are demonstrated in [AJ89, DL192].

The use of steady state continuation programs is now well established and expla-

nation of the “continuation power flow” method appears in the recent power systems

text [Kundur]. Continuation methods can be implemented with any set of power

system equilibrium equations although common descriptions of the programs often

assume the standard power flow equations. [VC94, VC96] use a continuation program

with elaborate equilibrium equations. [DV93] and [LAH95] present other examples of

more detailed equilibrium equations that could also be used in continuation methods.

(See the discussion by Cañizares in [LAH95].)

The main ingredients of the material in this chapter are fundamental and well

explained in the texts [Seydel] and [GZ].
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3.2 Anatomy of margin computations

This section describes methods for computing security margins given a model that

satisfies the assumptions stated in Chapter 2. The problem of computing a security

margin to an event involves finding an equilibrium that satisfies a specific condition.

For example, the condition can be that the equilibrium have a particular variable at a

threshold value, or that the system Jacobian matrix be singular at that equilibrium.

The fundamental problem en route to establishing a security margin is the solution

for a new equilibrium resulting from a specific change in the parameters. Typically,

a forecast of the parameter values at a future time is available without an exact

description of how the parameters progressed to those values. Ideally, the solution

obtained is an equilibrium corresponding to the forecast parameter values that is

connected by a curve of equilibria to the known solution for some reasonable pattern

of parameter variation connecting the current and forecast parameter values. The

solution must satisfy the equilibrium equations, not violate any limits, and lie on a

curve that satisfies the equilibrium and limit conditions for some curve connecting

the current and future parameter values. Unfortunately, even given two equilibrium

points that satisfy the same limit constraints, it is not possible to verify that they are

indeed solutions that satisfy these conditions without very specific restrictions on the

equilibrium equations. See [GZ] for illustrations of what can go wrong. The situation

is complicated even more by the inclusion of limits that can change the form of the

equilibrium equations. We instead first address the solution to a simpler problem

that ignores any limits.

Problem 1 (Simple)

Given : Find : z1 such that


(z0, λ0)

F (z0, λ0) = 0

λ1




(
F (z1, λ1) = 0

)

An effective and time-tested method for solving Problem (1) is Newton’s method.

Method 1 (Newton) 1

Begin: z1 → z0

1Notation: Several concepts in this chapter are illustrated with pseudo-code. Superscripts refer
to iterations, so that zk is the value stored for z after k iterations. Subscripts refer to either initial
or final values corresponding to the problem statements. The → should be read as “gets the value”
so that a → b means a gets the value b. The expression x → Ax = b means that x gets the value
that solves Ax = b.
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While: (|F (zk, λ1)| > tolerance) and (iterations < max)

Do:
∆z → Fz|(zk,λ1)∆z = −F (zk, λ1)

zk+1 → zk + ∆z

If ( |F (zk, λ1)| < tolerance ) then z1 → zk, else warning

Many variants exist. For example, the elements of Fz can be updated only every

few iterations (Very Dishonest Newton). In some cases Fz is approximated. There

are many ways to solve the linear system in the iterative step [GV], some invented

specifically for power systems applications [Sto74], like the popular fast decoupled load

flow.

In general there is no guarantee that a solution exists or that the initial guess will be

sufficiently close to it to get convergence within a reasonable number of iterations.

The method may fail for several possible reasons:

1. A solution exists but the initial guess z0 was not close enough to the solution

for the method to converge, or converge fast enough.

2. There is no solution of F (z, λ1) = 0 (previous fold bifurcation for λ < λ1).

3. A solution exists but the method converged to the wrong solution, a solution

on another branch of equilibria.

However, if a solution exists and F is continuously differentiable and regular in a

neighborhood about the solution, the algorithm is guaranteed to converge to the

solution for an initial guess in some neighborhood of that solution(see [GZ] for proof).

Thus, it is prudent to modify Method (1) to improve the initial guess.

Method 2 (Newton with predictor) This method uses a tangent linear approx-

imation to start the Newton iteration. The initial step is often referred to as the

predictor step. Variants exist that use quadratic predictors and predictors that require

more than one previous solution [GZ].

Begin:
Zλ → Fz|(z0,λ0)Zλ = −Fλ|(z0,λ0)

z1 → z0 + Zλ(λ1 − λ0)

While: (|F (zk, λ1)| > tolerance) and (iterations < max)

Do:
∆z → Fz|(zk,λ1)∆z = −F (zk, λ1)

zk+1 → zk + ∆z

If ( |F (zk, λ1)| < tolerance ) then z1 → zk, else warning
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Note that for the case when λ appears linearly in F , this method is exactly equivalent

to Method (1) except that the first iteration is performed outside of the loop.

As before, convergence is still not guaranteed and Method (2) can fail for all the

same reasons as Method (1). If the method fails to converge we may restart it for

a different choice of λ1 closer to λ0. However, what if the method converged to the

wrong solution? Can a wrong solution be detected?

In practice, power systems engineers believe that by inspecting the voltage magni-

tudes they can tell if a solution is reasonable2. This suggests a simple way to improve

the method so that convergence to a reasonable solution is more likely. Instead of

solving F (z, λ1) = 0, we solve an augmented set of equations

(
F (z, λ)

C(z, λ)

)
= 0. The

zero set of the map C specifies a desired characteristic of the solution. For example,

if it was expected that the voltage at a particular bus would drop due to increases in

loading, C can specify a voltage at that bus lower than its present voltage. Rather

than solve for the state corresponding to a specified loading, the loading that corre-

sponds to the specified characteristic of the state is found. Instead of being a fixed

parameter of the solution method, λ is an unknown and λ1 is an initial guess for λ.

Hence, C(z, λ) must include enough equations to allow for the solution of λ. When

λ is multidimensional, λ1 can define a direction from λ0 and the step size in that

direction then is an unknown.

Method 3 (Newton with predictor and corrector) This example uses a par-

ticular corrector so that the state variable with the largest predicted change is fixed at

its linearly predicted value. This method is the basic step employed by [AC92].

Begin:
∆λ→ (λ1 − λ0)

k̂ → ∆λ/|λ|
Zλ → Fz|(z0,λ0)Zλ = −Fλ|(z0,λ0)

z1 → z0 + Zλ∆λ

i→ Zλ∆λ(i) = Max
i (Zλ∆λ)

2The following discussion is from “Sparseness in Power Systems Equations” in [Reid]:

Larcombe: Power flow equations are nonlinear and so will in general have several
solutions. How do you ensure that you have the correct solution?

Baumann: This is a difficulty and the analysis that is available is rarely helpful.
We usually start with a solution having the same voltage value at each node in the
hope of finding a solution with small voltage differences, a feature that the engineers
regard as desirable.
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While: ( |F (zk, λk)| > tolerance ) and (iterations < max)

Do:
(

∆z

∆s

)
→

(
Fz|(zk,λk) Fλ|(zk,λk)k̂
e(i) 0

) (
∆z

∆s

)
=

(
−F (zk, λk)

zk(i)− z1(i)

)

sk+1 → sk + ∆s

λk+1 → λk + ∆sk̂

If( |F (zk, λk)| < tolerance ) then (z∗, λ∗) → (zk, λk) else warning

Note that since zk(i) − z1(i) = 0 ∀ k ≥ 1, the corrector fixes the i − th variable for

all iterations. Essentially, the selected variable is treated as a parameter, and the

original parameter is treated as a variable. This process of selecting a variable to fix

is sometimes referred to as the parameterization step.

Since the predictor-corrector will converge to a solution for a λ∗ different than the

desired λ1, to solve problem (1) the method needs to be repeatedly run until λ∗ is

within tolerance of the desired λ1. However, most often the goal is to find the λ that

corresponds to some particular event anyway, and λ1 represents the first estimate of

the parameters at that event.

When Fz is nearly singular evaluated at any point during the iteration, Methods

(1) and (2) require solution of an ill conditioned linear system and are thus unstable

and prone to generate numerical errors. However, the Jacobian matrix

(
Fz Fλ
Cz Cλ

)
,

not Fz, determines the condition of the predictor-corrector method. For a properly

chosen (Cz, Cλ) numerical instabilities caused by a singular Fz are avoided.

Thus, the appended corrector equation has two beneficial effects. Not only does

it decrease the chances of convergence to an unacceptable solution, but the appended

row improves the conditioning of the Jacobian matrix used in the iterative step.

To find equilibrium solutions very close to or at fold bifurcations of F (z, λ) = 0, a

corrector should be used so that the linear system remains well conditioned even for

Fz singular. It is possible then to avoid numerical instability associated with the

singularity of Fz, and the trajectory of the equilibrium as a parameter is varied can

be traced right around a fold bifurcation.

The process of selecting a corrector equation can be thought of as appending rows

to the Jacobian matrix, not necessarily appending equations to be solved. For exam-

ple, one popular option [CA93, DeM96] is to choose (Cz, Cλ) as the vector orthogonal

to the initial tangent prediction, which is equivalent to selecting C so that (Cz , Cλ)

is a vector in the null space of (Fz, Fλ)
T . Note that frequently it is advantageous

to expand the number of state variables to improve sparsity [Alv97] or to locate a

solution with a particular condition such as a bifurcation.
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Sometimes the process of selecting the corrector equations is referred to as the pa-

rameterization step [CA93], and it can be performed after the predictor step [AC92]

or after the corrector if another equilibrium is to be found [CA93]. The entire method

is then the “predictor-corrector-parameterization” method. 3 The predictor-corrector

or predictor-corrector-parameterization method is the building block of path follow-

ing methods for power systems. If the continuation parameter reflects the actual

time evolving system parameters, the continuation method can be used as a “static

simulator” of the power system, tracing the progression of the system equilibrium.

Alternatively, continuation methods may also be used to trace a set of equilibria that

satisfy some other characteristics such as an operational boundary. In either case,

discrete device operation and limits, realistic parameter forecasts, and interarea and

generator dispatch policy must be accounted for.

It is frequently the case that solution for an equilibrium after a discrete parameter

change will force several limits to be violated. The most common solution then is

to fix one limit at a time and resolve, starting with the most severely violated limit.

Although this method is simple and well accepted, there is no guarantee that the solu-

tion obtained represents a realistic power system equilibrium. For some applications

it is important to identify the order in which the limits are encountered.

The process of applying limits as the system equilibrium evolves needs careful

attention. The operation of the power system changes in response to approaching

and encountering limits. The response to one limit may affect which limits will occur

next. The limits encountered and thus the equations that model the system at any

point are dependent upon the path the system followed to reach that point. Thus,

security margins are path dependent.

For some parameters and applications, it is reasonable to assume that λ evolves in

a piecewise linear manner. For example, from λ0 the parameters are forecast to change

to λ1, and λ may successively occupy discrete values that lie on a ray connecting λ0

to λ1. If the discrete values are close enough together, or if λ changes continuously,

the order that limits are encountered under the assumptions is well defined4.

The repeated objective of a program to trace the equilibrium state of the system as

parameters change in a quasi-continuous piecewise linear pattern is to find the relevant

equilibrium corresponding to the next limit event. Method (3) requires adjustment

for use in a continuation method that accounts for limit events. Essentially, the core

problem to be solved is to find each λ that forces the equilibrium equations to change

3The term “corrector” is usually used to refer to the iterative loop itself, so that methods (1)
and (2) are technically predictor-corrector methods as well.

4Of course, the assumptions may not reflect reality. Although we can compute a precise order of
events under our assumptions, the actual timing may depend on transient effects.



3.2. ANATOMY OF MARGIN COMPUTATIONS 23

due to a limit en route to finding a solution at some maximum forecast parameters.

Problem 2 (Find the next event) Zlim is a vector of limits.

Given : Find : (z∗, λ∗) such that



(z0, λ0, u0)

f(z0, λ0, u0) = 0

F (z, λ) = f(z, λ, u0)

z0 < Zlim

λ1







z∗
<
= Zlim

z∗[i] = Zlim[i]

F (z∗, λ∗) = 0




OR(
z∗ < Zlim

F (z∗, λ1) = 0

)

One possible solution to problem (2) is to use method (3) with the orthogonal

corrector or parameterization step in an interval halving approach. For an initial

guess of λ1, method (3) is used to find another equilibrium. If a limit is not violated

λ is increased and the process repeated until a solution that violates a limit is found

or a solution at λ1 is obtained. If a limit is violated before that, we can then decrease

λ to the midpoint between the last no-limit solution and the first post-limit solution,

eventually finding a point within tolerance of the exact point where the first limit is

reached. The idea is that if you take small enough steps and find a pre-limit point

that is reasonably similar to an acceptable starting point, and then a point with only

one limit violated reasonably close to the pre-limit point, that one limit is likely to

be the next limit. However, the interval halving approach may require an excessive

number of solutions.

An improvement is made by modifying the predictor step of method (3) to predict

the next limit, and then select a corrector to solve directly for the point at which that

limit is reached. The resulting method will exactly locate the parameter and state

corresponding to the next predicted event such as a line flow or bus voltage reaching

an operational limit. For example, if I is the magnitude of a line current of interest

and Imax the limit, the corrector equation would be E(z, λ) = I − Imax.

Method 4 (Direct method to locate the next event) Zlim is a vector of the

maximum limits of the z variables. The corrector is selected to be the linearly predicted

next limit event. E(z, λ, i) = z[i]− Zlim[i]
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Begin:
∆λ→ (λ1 − λ0)

k̂ → ∆λ/|λ|
Zs → Fz|(z0,λ0)Zs = −Fλ|(z0,λ0)k̂

i→ Max
i Zs[i]/(Zlim[i]− z0[i])

∆s→ z0[i] + Zs[i]∆s = Zlim

s1 → ∆s

z1 → z0 + Zs∆s

λ1 → λ0 + ∆sk̂

While: (

∣∣∣∣∣
F (zk, λk)

E(zk, λk, i)

∣∣∣∣∣ > tolerance ) and (iterations < max)

Do:
(

∆z

∆s

)
→

(
Fz |(zk,λk) Fλ|(zk,λk)k̂

Ez|(zk,λk,i) Eλ|(zk,λk,i)k̂

) (
∆z

∆s

)
= −

(
F (zk, λk)

E(zk, λk, i)

)

sk+1 → sk + ∆s

λk+1 → λk + ∆sk̂

zk+1 → zk + ∆z

If(

∣∣∣∣∣
F (zk, λk)

E(zk, λk, i)

∣∣∣∣∣ < tolerance ) then (z∗, λ∗) → (zk, λk) else warning

The output of this method is a solution at the point where the next predicted limit is

reached. Note that Ez = e(i), so that the corrector forces the solution to have z[i] at

its limit value. [AJYB] and [RHSC] implement the predictor portion of this method,

but use the corrector of Method (3). The results presented in Chapter 8 were computed

using an implementation of this method that predicted voltage, line flow, and real or

reactive power limits.

It is possible to revise the predictor so that it can select not only for limit events,

but also fold bifurcations (Chapter 5) or Hopf bifurcations (Chapter 9). E(z, λ) can

be defined by the conditions for the fold bifurcation or a Hopf bifurcation or some

other constraint. The following chapters make use of a direct method to locate a fold

bifurcation once a continuation method locates a very near point and has determined

the limits and equations that apply at the fold bifurcation.

Method 5 (Direct method to find a fold bifurcation point) The corrector is

the condition for the fold bifurcation. k̂ is the unit vector in the direction of parameter

variation and (z0, λ0) is an equilibrium solution close to the exact bifurcation. µ is

the real eigenvalue with smallest magnitude of Fz|z0,λ0 and can be initially computed

by inverse iteration, along with the corresponding left eigenvector w. Similar methods

are demonstrated in [Seydel, AJ89]
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Begin:
z1 → z0
λ1 → λ0

(w1, µ1) → w1(Fz − µ1I) = 0

C(w, z, λ) →
(

wFz
w ·wT − 1

)
= 0

While: (
∣∣∣F (zk, λk)

∣∣∣ > tolerance ) and (iterations < max)

Do:



0 Fz|(zk,λk) Fλ|(zk,λk)
Fz

T |(zk,λk) wkFzz|(zk,λk) wkFzλ|(zk,λk)
wk 0 0







∆w

∆z

∆λ


 =

(
−F (zk, λk)

−C(wk, zk, λk)

)

λk+1 → λk + ∆λ

zk+1 → zk + ∆z

wk+1 → wk + ∆w

If(

∣∣∣∣∣
−F (zk, λk)

−C(wk, zk, λk)

∣∣∣∣∣ < tolerance ) then




z∗ → zk

λ∗ → λk

w∗ → wk


 else warning

Note that a linear predictor can be used to improve the initial guess. Alternatively,

if equilibrium solutions are obtained for points on both sides of the fold, a point in

between can be used as an initial guess. The method can also be modified to locate a

Hopf bifurcation [Alv90].

3.2.1 Description of margin computation program

The previous methods can be included in a continuation program to locate the param-

eter values at an event and thus determine the margins to events. The basic idea is to

successively find the equilibrium as the parameters vary, locate each equilibrium at

which a limit event occurs and check the stability at each equilibrium. For example,

assume that from the current operating equilibrium (z0, λ0, u0) a forecast is made so

that the demand on the system requires the parameter vector to successively assume

the values λ1, λ2, ....λj. The λ parameter vector could include individual load and gen-

erator constant powers, generator participation factors, interchange set points, load

model parameters or any system parameter that can be forecast or deduced. Each

λk+1 can depend on the solution corresponding to λk. For example, if at each λ it

is assumed that the generation is re-dispatched according to an optimum power flow

or the outcome of a bidding process, then the subsequent λ reflects the next forecast

loading along with the transfers and participation factors derived from solution at

the previous loading.
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Assume that the forecast provides a piecewise linear estimate of the projected

actual parameter change. In other words, the actual parameter change is forecast to

successively occupy the discrete values λi as well as intermediate values that lie on

lines connecting the λi. Each increment defines a direction of parameter change. The

first direction is k̂1 = (λ1 − λ0)/|(λ1 − λ0|. The first objective of the program is to

find the equilibrium corresponding to λ1 – the problem we have already addressed.

Several intermediate equilibria corresponding to λ = λ0 + sk̂1 for s < 1 may be

found as well, especially when those parameter values correspond to limit events.

The process is repeated to find the equilibrium corresponding to λ2 and so on, until

equilibria corresponding to each forecast λ are found, or until an equilibrium at which

the system loses stability is found.

Method 6 (Generic power systems continuation method) Continuation method

to find steady state instability or security limits.

Begin: Obtain state including limits, and forecast parameter changes,

(λ1, λ2, ..., λn).

While (stable and secure) and (λ 6= λn)

Do:

While (stable and secure) and (λ 6= λj)

Do:

1. Call predictor-corrector (corrector determined by

the linear estimate of the next event), return new

equilibrium and at most one limit.

2. Check stability.

3. If stable, apply limit, check stability.

increment j

The output of the program is either the final state at the last forecast parameter values,

or the state and parameters at which the system loses stability or violates a security

constraint.

When the parameter forecast is based on a realistic time evolution of the actual

parameters, the program can be viewed as a static simulator of the power system.

However, there are good uses for parameter forecasts that do not reflect the time

evolution of parameters. Chapter 6 uses this method to determine a theoretical post-

contingency steady state, where λ represents line admittance. Similarly, λ may rep-

resent interchange set points and Method (6) can be used to determine the interarea

transfer boundary at a specific loading level. Thus Method (6) is both a simulation

tool and a computational tool.
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This method has now been successfully implemented with a 1500 bus model for a

major US utility, and used to determine the loading and transfer margins to events at

which system costs increase discretely. The model predicts and finds real and reactive

power output limits, line flow limits, and voltage limits initiating switching operation

or violating security constraints. At each limit event, generation is redispatched

according to a Constrained Economic Dispatch (CED) to determine the next direction

of parameter variation.

Once method (6) has determined the point of instability or security limit violation,

a nominal margin to that event can be defined by the norm of the difference in

the parameter values at the current operating point and those at the event point.

The choice of norm is arbitrary and should be based on convenience and ease of

interpretation. If the current operating point is (z0, λ0, u0) and the point of instability

is (z∗, λ∗, u∗), λ∗−λ0 is a vector in parameter space. The length of the vector can be

measured in any norm.

In some instances, the margin is best measured in state space, not parameter space.

For example, assume that the instability is a Hopf bifurcation and that a detailed load

model was employed so that expressions for the real and reactive power at a bus were

dependent upon state variables (such as voltages and/or time derivatives of voltages).

In this case, the real and reactive powers are state variables, not parameters, but

operators may still wish to measure a margin to instability in real power since it is

easily monitored. In this case the margin can be defined by a norm of z∗ − z0. Note

that it may even be advantageous to measure norms in state and parameter space -

the norm of (z∗, λ∗)−(z0, λ0). One may even choose a measure in a discrete parameter

space; for example, the number of discrete events encountered between the current

operating point and loss of stability.

3.3 Summary

A conceptual continuation program for computing margins to events has been ex-

plained. The continuation program serves two purposes. On one hand, it is a com-

putational tool for locating specific equilibrium solutions, such as fold bifurcations or

limit violations. On the other hand, it is a system simulator, showing the evolution

of the system equilibrium as conditions are altered. The program uses a predictor-

corrector method to trace a curve of equilibria. The corrector serves two roles. First,

it improves the likelihood of convergence to an acceptable solution or a specific type

of solution. Second, it avoids problems due to a poorly conditioned or singular system

Jacobian matrix. The predictor also has two roles. First, it improves the initial guess

of the Newton step so that convergence to a correct solution is more likely. Second,
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it determines which corrector to use by indicating what the likely next event is.

Suppose that the margin to some event has been computed. How would the

margin change if some parameter was different than forecast? Will it be necessary to

recompute another continuation to find the new margin? This question is answered

in Chapter 4.



Chapter 4

Sensitivity Computations

Chapter 3 described how the security margin to an event boundary could be efficiently

computed by using a corrector that specified the event condition. Once the solution

at an event is obtained in this manner the sensitivity of the margin to that boundary

with respect to almost every power system parameter can be obtained for very little

additional computational cost. This chapter explains and derives the formula for the

sensitivity of a margin with respect to an arbitrary parameter vector.

Suppose that we are interested in locating the point where the power system volt-

ages become unacceptably low due to the gradual increase in demand along some

forecast pattern. The continuation program can trace a curve of equilibria as de-

mand increases, locating intermediate limits that initiate tap changing or generator

protection, until the point where the first low voltage limit occurs is found. The

continuation program may have assumed a particular interarea transfer or pattern

of transfers. How much can the transfer be adjusted without significantly impacting

the margin to a low voltage event? By how much will the load at which that limit is

encountered change for a different transfer?

4.1 Methods of sensitivity analysis

The brute force way to answer the previous questions is as follows. At the initial

operating point, we alter the interarea transfers as proposed and find the correspond-

ing equilibrium. Next, the continuation method is used as before to locate the new

first voltage limit. If several possible changes to the interarea transfer are under

consideration, several continuations are run. This method is outlined below.

Method 7 (Multiple Continuations)

Brute force method to compute points on an event boundary.

Begin: Obtain initial state, parameters, forecast, and control

parameter values (p0, p1, ..., pn).

While (p 6= pn)

Do:

29
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Figure 3: Equilibria trajectories for different values of the parameter p

• Call continuation method, trace equilibrium trajectory, re-

turn boundary point

• update p.

This program returns the boundary points and equilibrium trajectories approaching

the boundary for each desired value of p.

Figure 3 shows a picture of several of the resulting curves. The dots represent points

at which the equilibrium solutions are computed.

One alternative to Method (7) also uses the continuation Method (6). However,

after locating a nominal point on the boundary, the continuation is used to trace
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a portion of the boundary starting from the nominal boundary point. The control

parameter becomes the continuation parameter and a locus of equilibria at which

the limit voltage is encountered is traced. The method is outlined below. [HD95]

implements this method for a small power system. (This method was also suggested

by Cañizares in the discussion to [GDA97]).

Method 8 (Boundary Trace) Use the continuation method to find points on a

curve situated on the boundary around a nominal boundary point.

Begin: Obtain initial state, parameters, forecast, and control

parameter p.

Call continuation method to locate nominal boundary point and

condition.

While ( step change > min ) and (p 6= pmax)

Do:

1. Call predictor-corrector routine (corrector is the event

condition at the nominal point), return new equilibrium on

boundary.

2. Check limits.

3. If limits, reduce step change, else increase step

The program ends with either the control parameter at its maximum value and the

resulting change in the margin, or the maximum control parameter change and margin

corresponding to a point on the boundary where the limits in effect change.

Figure 4 shows the sequence of equilibria computed by Method (8) and the initial

continuation to find the nominal point on the boundary. This curve includes all the

boundary points computed by the previous method.

There is an alternative to either Method (7) or (8). Instead of computing addi-

tional points on the boundary, a Taylor series evaluated at the nominal boundary

point can be used to approximate the boundary. The first order Taylor series esti-

mate is equivalent to the initial predictor step that would be implemented by Method

(8). Second order and higher Taylor series approximations are possible, with the

higher order derivatives computed explicitly at the nominal point, or approximated

by computing one or more additional points on the curve. The Taylor series method

is outlined below.

Method 9 (Taylor series approximation) Compute one nominal boundary point,

estimate curve on the boundary.
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Figure 4: Nominal trajectory and boundary as function of the parameter p
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Begin: Obtain initial state, parameters, forecast, and control

parameter p.

1. call continuation method to locate nominal boundary point.

2. compute derivatives of equilibrium and condition equations

with respect to p at boundary point.

3. Evaluate Taylor series estimates.

The output of this program is a Taylor series approximation of a curve on the boundary

evaluated for any value of p.

Figure 5 shows the Taylor series approximations to the boundary obtained from com-

putation of the nominal boundary point.

The advantage of Method (7) is that events that occur that differ from those of

the nominal continuation can be found en route to establishing the new margins. For

example, if for a given change to the control parameter, a different limit is reached

than for the nominal case, this will be detected. The disadvantage is that each

continuation is time consuming. The advantage of the Method (8) is time savings;

one computes exactly the equilibria of interest. The drawback is that if the change in

parameters changes the events encountered en route to the boundary, the results will

be incorrect and the computation a waste of time. Method (8) partially screens for

this by examining the solutions for limit violations on the boundary1. Method (9) is

less accurate than either continuation approach, but offers the greatest time savings

by many orders of magnitude. Approximate curves for many different parameters can

be computed faster than the exact computation of one curve for one parameter. The

first order Taylor series estimate is always much faster than the other methods since

the first order term is essentially the same as one predictor step. The second order

Taylor series is only worth computing if it is faster than computing a second point

on the boundary (since it is simple to fit a quadratic with two points and a tangent

vector).

Another advantage of Method (9) is that the sensitivity formulas are similar for

any parameter. Thus, if the formulas are evaluated for one parameter they can be

reevaluated for a different parameter at only a fraction of the cost to compute the

first sensitivity. The greater the number of parameters of interest, the greater the

computational savings of Method (9) over Method (8). In addition, the sensitivity

formulas are also useful for determining immediate control action.

1Note that this screening could only detect new limits violated on the boundary, not changes
in the order of the limits encountered or limits that should no longer be enforced. For example, a
change in the parameter p may cause a previous limit to not be encountered, and thus the equations
used to trace the boundary may not be valid yet the solutions would appear to satisfy the limit
conditions.
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Figure 5: Nominal trajectory and estimated boundary
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4.2 Sensitivity formulas

This section presents derivations of the formulas for the sensitivity of margins to

events with respect to arbitrary parameters.

4.2.1 Derivation

Assume that (z0, λ0, u0) is a stable operating point where z ∈ IRn and λ ∈ IRm. The

continuation program determines that the point (z∗, λ∗, u∗) corresponds to an event

for variation of the λ parameters in the direction k. Let k̂ be a unit vector in the

norm used to measure the margin.

k̂ = (λ∗ − λ0)/|λ∗ − λ0| (5)

The security margin M to the event is M = |λ∗ − λ0|.
The equilibrium equations valid at (z0, λ0, u0) are F̃ (z, λ) = f(z, λ, u0). The

equilibrium equations valid at (z∗, λ∗, u∗) are F (z, λ) = f(z, λ, u∗). E(z, λ) defines

the event equation at (z∗, λ∗, u∗). For many limits, including voltage, flow, and power

limitations, defining the event equation E is simple. However, two events, the fold

and Hopf bifurcations, require special consideration and are discussed in sections 4.2.4

and 4.2.5 and detailed in Chapters 5 and 9 respectively. In general the selection of

the event equations E is analogous to selecting corrector equations C that allow for

direct solution of a boundary point.

Suppose that it is of interest how changing a selected parameter p changes the

state and remaining parameters at which the event described by E occurs. At the

nominal event point

(
F (z∗, λ∗, p)

E(z∗, λ∗, p)

)
= 0. Define the map H as

H(z, λ, p) =

(
F (z, λ, p)

E(z, λ, p)

)
(6)

The curve (if it exists) that Method (9) estimates is a subset of the set of equilibria

that satisfy the event conditions in state and parameter space around the nominal

boundary point. This set of equilibria, the preimage of the zero set of H, is denoted

H−1(0). Using calculus on H−1(0) is defensible only when H−1(0) is a differentiable

manifold. It turns out that for very general conditions this will indeed be true and

we are justified in the assumption that there are curves on H−1(0) that describe the

sets of interest to us. The conditions are

1. Hz|(z∗,λ∗) has rank n.



36 CHAPTER 4. SENSITIVITY COMPUTATIONS

2.
(
Hz Hλk̂

)∣∣∣
(z∗,λ∗)

has rank n+ 1.

Condition (2) is a transversality condition stating that a vector through (z∗, λ∗) in

the k̂ direction intersects H−1(0) transversally. Condition (1) can be interpreted as

a condition of uniqueness. Simply stated, Condition (1) specifies that only one event

occurs at a time. (Note that Condition 2 implies Condition 1. The redundancy

here is intentional and serves to distinguish between the restrictions on E and the

restrictions on k̂.) The details and implications of these conditions are addressed in

section 4.2.3. For now, assume that H−1(0) is a smooth manifold and a smooth curve

on that manifold parameterized by p is (Z(p),Λ(p)) so that (Z(p0),Λ(p0)) = (z∗, λ∗)

and (
F (Z(p),Λ(p), p)

E(Z(p),Λ(p), p)

)
= 0 (7)

Assume that p is not a component of λ. The more general case in which p is a

component of λ or λ depends on p is addressed in sections (4.2.2) and (4.2.3).

Since the system is assumed stable at the nominal operating point, F̃z is nonsin-

gular as p is varied in a neighborhood about p0. Then as p is adjusted each new

equilibrium (Z̃(p), λ0, p), satisfying F (Z̃(p), λ0, p) = 0, can be associated with one

corresponding point (Z(p),Λ(p), p) satisfying H((Z(p),Λ(p), p)) = 0 that is the clos-

est point on H−1(0) in the direction k̂. The difference in parameter space between the

operating point (Z̃(p), λ0, p) and the corresponding boundary point (Z(p),Λ(p), p) is

Λ(p)− λ0 = L(p)k̂ (8)

where L(p) is a scalar step in the k̂ direction as a function of p. The margin as a

function of p is

M(p) = |Λ(p)− λ0| = |L(p)k̂ + λ0 − λ0| = |L(p)k̂| (9)

Since k̂ is a unit vector in the norm used for the margin, the margin as a function of

p is M(p) = L(p). Write Λ(p) in terms of the margin L(p)

Λ(p) = L(p)k̂ + λ0 (10)

Equation (7) can then be written
(
F (Z(p), L(p)k̂ + λ0, p)

E(Z(p), L(p)k̂ + λ0, p)

)
= 0 (11)

Differentiating (11) at (z∗, λ∗) with respect to p and applying the chain rule for

derivatives yields a linear system
(
Fz Fλk̂

Ez Eλk̂

)∣∣∣∣∣
∗

(
Zp

Lp

)
= −

(
Fp
Ep

)∣∣∣∣∣
∗

(12)
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The matrix

(
Fz Fλk̂

Ez Eλk̂

)∣∣∣∣∣
∗

is nonsingular by Condition 2.

Solution of (12) then yields Lp, the sensitivity of the security margin with respect

to p. The first order estimate of the change in margin corresponding to the change

in p of ∆p is

∆L = Lp∆p (13)

Solution of (12) additionally yields Zp, the tangent vector at (z∗, λ∗, p0) to the curve

in state space that describes how the state variables change to satisfy the equilibrium

and event conditions as p varies2. Thus, Zp∆p is the first order Taylor series estimate

of how the state changes on H−1(0) for a parameter change of ∆p.

Since the matrix

(
Fz Fλk̂

Ez Eλk̂

)∣∣∣∣∣
∗

is the same for any3 parameter p, once the matrix

is factored and the sensitivities obtained for one parameter, computing the sensitiv-

ities for any additional parameters only requires obtaining the derivatives

(
Fp
Ep

)∣∣∣∣∣
∗

and one forward and backward substitution.

If obtaining Lp for many parameters is of primary interest, and there is no desire

to obtain Zp, then full solution of the linear system (12) is not necessary. Since any

set of n + 1 vectors in IRn are linearly dependent there is a non-zero vector w such

that

w

(
Fz
Ez

)∣∣∣∣∣
∗

= 0 (14)

w is a vector orthogonal to the range of

(
Fz
Ez

)∣∣∣∣∣
∗

and w is unique up to a scalar

multiplication when

(
Fz
Ez

)∣∣∣∣∣
∗

is full rank, which is guaranteed by condition (1).

Pre-multiplying (12) by w yields

w

(
Fλk̂

Eλk̂

)∣∣∣∣∣
∗

Lp = −w
(
Fp
Ep

)∣∣∣∣∣
∗

(15)

w

(
Fλk̂

Eλk̂

)∣∣∣∣∣
∗

is not zero since

(
Fz Fλk̂

Ez Eλk̂

)∣∣∣∣∣
∗

is nonsingular, so (15) can be solved

2Zp∆p can thus be used to screen for cases where new limits would be violated (Zp∆p[i] > Zlim[i])

3The presentation assumes that k̂ does not explicitly depend on p and that p is not a component
of λ. The appropriate formulas for these special cases are simply obtained by applying the Chain
Rule for derivatives (see Appendix 5.7.C).
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to obtain the sensitivity with respect to p of the margin to the event.

Lp = −
w

(
Fp
Ep

)∣∣∣∣∣
∗

w

(
Fλk̂

Eλk̂

)∣∣∣∣∣
∗

(16)

Note that regardless of the number of parameters under consideration, w needs to be

computed only once.

Higher order sensitivities

Higher order sensitivities of the security margin with respect to p are computed by

repeatedly differentiating (11) at (z∗, λ∗) with respect to p and solving linear sys-

tems of equations. Chapters 5, 6, and 7 use the quadratic sensitivity of the loading

margin to voltage collapse with respect to transmission line parameters to estimate

the effects of line outages. Quadratic sensitivities have found use in optimization

routines. [OloPhD] uses quadratic sensitivities to improve the rate of convergence of

an optimization process. Quadratic sensitivities are also used by [GSHT] for sensitiv-

ity analysis of optimal power flow solutions, and in [NorPhD] for operation of series

compensators.

4.2.2 Normal vector to the event boundary in parameter

space

The sensitivity of the security margin to changes in many parameters is effectively just

an indexing operation once the scaled normal vector is obtained. The normal vector to

the event boundary in parameter space defines to first order the proportions by which

all the parameters must vary to keep the equilibrium at the security boundary. The

normal vector is useful in determining the relative effectiveness of different parameters

on the security margin. Note that if a point on the security boundary is obtained

using a direct method that uses the E equations as corrector equations, obtaining the

normal vector requires only one additional forward and backward substitution using

the previously factored Jacobian matrix.

The vector w used to obtain the margin sensitivity formulas is used to define the

normal vector to the hypersurface in parameter space that represents the surface on

which parameters must vary so that the resulting equilibrium satisfies the event and

equilibrium conditions.
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Let (Z(p),Λ(p)) represent arbitrary smooth curves in state space and parameter

space parameterized by p which satisfy

H(Z(p),Λ(p), p) =

(
F (Z(p),Λ(p), p)

E(Z(p),Λ(p), p)

)
= 0 (17)

and (Z(p0),Λ(p0)) = (z∗, λ∗). The tangent vector (Ż, Λ̇, Ṗ ) to the curve (Z(p),Λ(p), p)

at (z∗, λ∗, p0) satisfies
(
Fz Fλ Fp
Ez Eλ Ep

)∣∣∣∣∣
∗




Ż

Λ̇

Ṗ


 = 0 (18)

Pre-multiplying (18) by w yields

w

(
Fλ Fp
Eλ Ep

)∣∣∣∣∣
∗

(
Λ̇

Ṗ

)
= 0 (19)

where w is found from (14). Equation (19) shows that the vector N

N = w

(
Fλ Fp
Eλ Ep

)∣∣∣∣∣
∗

(20)

is orthogonal to the tangent vector (Λ̇, Ṗ ) at (λ∗, p0) for an arbitrary curve (Z(p),Λ(p), p)

satisfying (17).

4.2.3 General derivation

Preliminary Assumptions

Assume that (z0, λ0, p0) is a stable operating point, and that ∗ = (z∗, λ∗, p0) is the

nominal event point where z ∈ IRn and λ ∈ IRm. Let p represent the parameters of

interest, with p ∈ IRρ.

The smooth map Q : IRρ → IRm describes the explicit dependence of λ on p by

λ = Q(p). Note that Q(p) can be a constant function. Assume that in a neighborhood

V of (z0, λ0, p0), the map F̃ : V → IRn is smooth and

F̃ (z0, λ0, p0) = 0 (21)

Since λ depends explicitly on p,

F̃ (z,Q(p), p) = 0 (22)

As the p parameters change, the stable equilibrium moves to satisfy the F̃ equilibrium

equations. Since (z0, λ0, p0) is asymptotically stable by the assumptions of Chapter
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2, F̃z is nonsingular in an open neighborhood of (z0, λ0, p0) contained in V . By

the Implicit Function Theorem there is a unique smooth map Z̃(p) defined on a

neighborhood of p0 so that Z̃(p0) = z0 and

F̃ (Z̃(p), Q(p), p) = 0 (23)

We are interested in the point on the event boundary that corresponds to each stable

operating point. The λ parameters at the stable operating point depend explicitly

on the p parameters while the parameters corresponding to boundary points depend

implicitly and explicitly on the parameters p. Defining a direction in which to measure

the margin distinguishes between the proportions of each of the parameters that vary

explicitly and those that vary implicitly.

The margin M to the event is the distance between the stable operating point

and the nominal event point along a direction k̂. It is practical then to represent

λ in coordinates so that the margin to the event is the scalar difference in only

one coordinate. This coordinate then varies implicitly with p while the remaining

coordinates vary explicitly with p.

Let T : IRm → IRm represent a linear isomorphism from λ to (`, s), ` ∈ IR1 and

s ∈ IRm−1 where the columns of T form an orthogonal basis for IRm and ` represents

the projection of λ in the k̂ direction so that

λ = T

(
`

s

)
=

(
k̂ K

) (
`

s

)
(24)

and (
`

s

)
= T−1λ (25)

The nominal margin then is

M = |T−1(λ∗ − λ0)| = `∗ − `0 (26)

To emphasize the dependence on p we write

(L̃(p), S̃(p)) = T−1Q(p) (27)

In addition, assume F and E are smooth maps in a neighborhood U of (z∗, λ∗, p0)

and that at the nominal event point
(
F (z∗, λ∗, p0)

E(z∗, λ∗, p0)

)
= 0 (28)

Define the smooth map H : U → IRn+1

H(z, λ, p) =

(
F (z, λ, p)

E(z, λ, p)

)
(29)

and H(z∗, λ∗, p0) = 0
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Assumptions

1. Hz|∗ has rank n.

2.
(
Hz Hλk̂

)∣∣∣
∗

has rank n+ 1.

Properties

1. H−1(0) is locally an m + ρ − 1 manifold in a neighborhood of (z∗, λ∗, p0) and

there exists a neighborhood U of p0 and unique smooth maps (Z(p),Λ(p)) so

that (Z(p0),Λ(p0)) = (z∗, λ∗) and p ∈ U implies that H(Z(p),Λ(p), p) = 0.

2. The set Σ = {(Λ(p), p) | p ∈ U} is an m + ρ − 1 manifold in IRm+ρ that is

diffeomorphic to H−1(0). The vector N = (wHλ, wHp)|∗, where w is given by

wHz|∗ = 0, is in the direction normal to Σ at (λ∗, p0). N is unique up to scalar

multiple.

3. The sensitivity of the margin M with respect to p is

Mp = Lp − L̃p = −
(
wHp + wHλQp

wHλk̂

)∣∣∣∣∣
∗

(30)

Proof

Assumption (2) implies that H is surjective at (z∗, λ∗) and by the Preimage Theorem

(pages 20 -21 [GP] ) H−1(0) is locally an m+ρ−1 manifold. Assumption (1) implies

that there exists a nonzero row vector w such that wHz |(z∗,λ∗) = 0 and w is unique

up to scalar multiple.

Define the smooth map G : IRn × IR1 × IRρ → IRn+1

G(z, `, p) = H(z,T(`, S̃(p)), p) (31)

The derivative of G with respect to (z, `) is (Hz, Hλk̂) and is nonsingular at (z∗, λ∗, p0)

by Assumption 2. By the Implicit Function Theorem there exists a neighborhood U

of p0 and unique smooth maps (Z(p), L(p)) so that (Z(p0), L(p0)) = (z∗, `∗) and p ∈ U

implies

G(Z(p), L(p), p) = 0 (32)

By the Preimage Theorem G−1(0) is a manifold. Since T is a diffeomorphism from

λ to (l, s) coordinates, H−1(0) is diffeomorphic to G−1(0). Let Λ(p) = T(L(p), S̃(p)).

Then

G(Z(p), L(p), p) = H(Z(p),Λ(p), p) = 0 (33)

and Property 1 is proved.
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Differentiating Equation (33) with respect to p yields

HzZp +HλΛp +Hp = 0 (34)

Pre-multiplying by w and evaluation at (z∗, λ∗, p∗) yields

wHλ|∗Λp + wHp|∗ = 0 (35)

showing that N = (wHλ, wHp)|∗ is normal to the manifold {(Λ(p), p) | p ∈ U} at

(λ∗, p0). N is nonzero by Assumption 2, so we can consider N a map from IRm×IRρ to

IR1 with a kernel spanned by m+ρ−1 basis vectors. Define the map Γ : IRm×IRρ → IR

Γ(λ, p) = wH(Z(p), λ, p) (36)

Assumption 2 implies that (Γλ,Γp)|∗ = (wHλ, wHp)|∗ is surjective. By the Preimage

Theorem, Σ = Γ−1(0) is an m+ρ−1 manifold with codimension 1. In a neighborhood

of (z∗, λ∗, p∗) Σ is diffeomorphic to H−1(0) since the map Π : H−1(0) → Γ−1(0) defined

by

Π(z, λ, p) = (λ, p) (37)

is one to one and onto and the inverse map

Ψ(λ, p) = (Z(p), λ, p) (38)

is smooth. Since Γ is constant on Σ, differentiating (36) with respect to (λ, p), evalu-

ating at (λ∗, p∗), and using wHz|∗ = 0 shows that (wHλ, wHp)|∗ is the normal vector

to Σ at (λ∗, p∗) and Property 2 is proved.

Define the map G̃ : IRn × IRρ → IRn by

G̃(z, p) = F̃ (z,Q(p), p) (39)

Each point on G−1(0) is associated with one point on G̃−1(0) by change in the `

coordinates only. On G̃−1(0), ` and s depend explicitly on p.

On G−1(0), ` depends implicitly on p and s depends explicitly on p. Differentiating

Equation (32) with respect to p yields

GzZp + G`Lp +Gp = 0 (40)

The sensitivities with respect to p are found from the solution of the linear system

(
Gz G`

)∣∣∣
∗

(
Zp

Lp

)
= −Gp|∗ (41)
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Equation (41) can be written in terms of derivatives of H (see (31)) as

(
Hz Hλk̂

)∣∣∣
∗

(
Zp

Lp

)
= −Hλ|∗KS̃p −Hp|∗ (42)

Pre-multiplication of (42) by w yields

wHλk̂|∗Lp = −wHλ|∗KS̃p − wHp|∗ (43)

Note that wHλk̂|∗ 6= 0 by Assumption (2). Rearranging (43) yields

Lp = −
wHλKS̃p + wHp

wHλk̂

∣∣∣∣∣
∗

(44)

The margin to the event as a function of p is

M (p) = L(p)− L̃(p) (45)

The sensitivity of the margin with respect to the p parameters is found by differenti-

ating (45) with respect to p.

Mp = Lp − L̃p = −
wHλKS̃p + wHp

wHλk̂

∣∣∣∣∣
∗
− L̃p (46)

Multiply L̃p by unity as wHλk̂/wHλk̂ and rearranging yields

Mp = −
wHp + wHλ

(
KS̃p + k̂L̃p

)

wHλk̂

∣∣∣∣∣∣
∗

= − wHp + wHλQp

wHλk̂

∣∣∣∣∣
∗

(47)

satisfying Property 3. Note that if the p parameters do not affect the components of

λ, Equation (47) reduces to the previous formula (16)

Mp = Lp = − wHp

wHλk̂

∣∣∣∣∣
∗

(48)

[GP] presents and derives the Implicit Function Theorem and the Preimage The-

orem is Section 4 of Chapter 1 . In particular note the proposition concluding the

section that shows that the kernel of the derivative of the submersion is the tangent

space to the preimage manifold, which is related to the interpretation here of the

normal vector N . A different construction is presented in [AMR] Section 5, Chapter

3. Of note in [AMR] is supplement 3.5A which discusses Lagrange multipliers.
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4.2.4 Fold bifurcation

This section informally specifies the construction of E, the event equation for the fold

bifurcation, so that the assumptions of the previous derivations are met. Chapter

5 presents a general and detailed derivation. The derivation here intends to show

the connection between the assumptions used to derive the general results and the

conditions of a generic fold bifurcation employed in Chapter 5 and 6.

In the previous section, Assumption (1) required that only one constraint occurred

at a time. However, in power systems we are commonly concerned with locating the

points at which the system equations F become singular. If Fz has rank n − 1, Ez

must be orthogonal to the kernel of Fz or the matrix

(
Fz
Ez

)∣∣∣∣∣
∗
will not have maximum

rank. One motivation for this section comes from the analysis of direct methods to

locate fold bifurcations discussed in Chapter 3. The specification of E is analogous

to selecting corrector equations for numerical solution.4

Generically, fold bifurcation of the system equations coincides with singularity of

the system Jacobian matrix Fz|∗ due to a simple zero eigenvalue.5 An expression for

a simple eigenvalue µ of Fz|∗ can be written in terms of its corresponding left and

right eigenvectors.

µ = wFz|∗v (49)

where the vectors w and v are normalized so that |v| = 1 and wv = 1. v and w are

smooth functions of z and λ near (z∗, λ∗). One choice for the E equations is

EFOLD(z, λ) = wFzv (50)

and H is defined as

H(z, λ) =

(
F (z, λ)

E(z, λ)

)
(51)

For this construction to satisfy Assumption (1), the matrix

(
Fz
Ez

)∣∣∣∣∣
∗

(52)

4One requirement of computational methods for power systems is that sparsity be exploited
whenever possible. For the purposes of deriving formulas, the sparsity of the equations is not relevant.
However, practical application of any analytical results eventually requires a sparse implementation.
In short, the computational procedures can differ from the theoretical derivations.

5The general derivation in the appendix of Chapter 5 also applies to certain cases of fold bifurca-
tion corresponding to the system Jacobian matrix dropping rank due to the occurrence of a repeated
zero eigenvalue of algebraic multiplicity two and geometric multiplicity one.
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must have maximal rank which implies that

Ez|∗v 6= 0 (53)

which can be written as

wFzz|∗(v, v) 6= 0 (54)

Not surprisingly, equation (54) is one condition for a generic fold bifurcation. The

other transversality condition can be found be requiring assumption (2). Since w is

the left eigenvector corresponding to the zero eigenvalue of Fz|∗, the vector (w, 0) is

the vector satisfying equation (14) and

(w 0)

(
Fz
Ez

)∣∣∣∣∣
∗

= 0 (55)

Assumption (2) requires that

(w 0)

(
Fλ
Eλ

)∣∣∣∣∣
∗
6= 0 (56)

which is equivalent to the other generic fold bifurcation condition that

wFλ|∗ 6= 0 (57)

Equations (54) and (57) are the transversality conditions for a generic fold bifur-

cation and identify the construction of E that satisfies the assumptions required by

the derivations for the sensitivity formulas.

4.2.5 Hopf bifurcation and eigenvalue sensitivity

The fold bifurcation corresponds to one real eigenvalue of Fz being zero. The Hopf

bifurcation corresponds to one complex eigenvalue pair with zero real part. Event

equations for Hopf bifurcations can also be written in terms of the critical eigenvalue

and corresponding eigenvectors.

Assume that F are differential equations that define the equilibrium and dynamic

response of the system with z state variables.

EHOPF(z, λ) = Re{µ(z, λ)} = Re{w(z, λ)Fz(z, λ)v(z, λ)} (58)

where the eigenvectors w and v corresponding to the critical eigenvalue µ of Fz are

normalized so that |v| = 1 and wv = 1 (µ is assumed simple). Note that obtaining w,

v and µ and locating a Hopf bifurcation point can require considerable computational

effort for very large power systems. A more detailed analysis is presented in Chapter 9.



46 CHAPTER 4. SENSITIVITY COMPUTATIONS

The Hopf condition satisfies assumption (1) when Fz|∗ is nonsingular, which is

equivalent to assuming that we do not have a fold bifurcation at the same point as a

Hopf bifurcation. One should be wary of situations when the two events do approach

each other, and this is discussed in Chapter 9.

The derivatives of E are required for predictor steps for the continuation method,

for the Jacobian matrix of a direct solution method to locate the Hopf point, and to

compute the Taylor series estimates of margin to Hopf instability. The derivatives of

EHOPF are related to eigenvalue sensitivities as follows: Differentiating Equation (49)

with respect to λ yields

µλ = w(FzzZλ + Fzλ)|∗v (59)

Zλ is found by solving the linear system

Fz|∗Zλ = −Fλ|∗ (60)

Evaluated at the equilibrium, Zλ is a linear map which takes changes in the parameter

and gives the corresponding first order change in the equilibrium state. The sensitivity

of the eigenvalue with respect to λ is

µλ = wFzz|∗(Zλ, v) + wFzλ|∗v (61)

This formula is derived differently in [DAD92]. wFzz|∗(Zλ, v) is the portion of the

sensitivity attributable to the implicit dependence of the equilibrium state on λ.

wFzλ|∗v is the portion of the sensitivity due to the explicit dependence of the Jacobian

matrix elements on λ.

Consider a symbolic formula for the system Jacobian matrix Fz. Each matrix

element is a function of the state and parameters. Varying a parameter moves the

equilibrium, and each matrix element can thus change as a result of the state variable

equilibrium values implicitly depending upon the parameters as well as an explicit

dependence on the parameter (i.e. the parameter appears in the symbolic formula for

the matrix element). The eigenvalues of Fz are functions of the elements of Fz . Thus

the eigenvalues can be thought of as affected by two distinct means: the explicit effect

of the parameters on the elements of the Jacobian matrix, wFzλv, and the implicit

effect of the parameters on the equilibrium at which the Jacobian matrix is evaluated,

wFzz(Zλ, v).

The matrix µλ can be thought of as a map from parameter space to the complex

plane giving the tangent approximation to the eigenvalue locus as a function of the

parameter changes. Real{µλ} is a vector of the same dimension as λ, and may be

thought of as a vector normal to a hypersurface in parameter space. If ∆λ is a

vector tangent to that surface, then Real{µλ}∆λ = 0, which shows that Real{µλ} is
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the normal vector to the set of parameters for which Real{µ} remains constant. If

Real{µλ} is evaluated at a Hopf bifurcation, Real{µ} = 0 and Real{µλ} is a normal

vector to the Hopf bifurcation set in parameter space.

We expect that by applying the formulas of section (4.2.1) the same results should

be obtained. Let E(z, λ) = Real{wFzv}. The vector u satisfies

(u 1)

(
Fz

Real{wFzzv}

)∣∣∣∣∣
∗

= 0 (62)

implying that u = (−Real{wFzzv}Fz−1)|∗ and

N = (u 1)

(
Fλ

Real{wFzλv}

)∣∣∣∣∣
∗

(63)

The normal vector to the Hopf bifurcation set in parameter space is

N = −Real{wFzzv}F−1
z Fλ +Real{wFzλv} (64)

evaluated at (z∗, λ∗). Equation (64) agrees with the real part of (61) since Zλ =

−F−1
z Fλ.

Participation factors

Note that the formulas for the eigenvalue sensitivity presented in the previous sec-

tion can be reduced to yield participation factors. Participation factors have found

widespread use in power systems [IEEE1, Kundur, WRPK, PAVS, PPAV].

Consider the case where Fz is a constant matrix and λ represents the (i, j) element

of Fz. Then the formula for the eigenvalue sensitivity reduces to w[i]v[j] which is

referred to in power systems as the participation factor of the j − th variable in

the i − th mode. In other words, participation factors are the first order eigenvalue

sensitivities of the system Jacobian matrix with respect to the elements of the matrix.

Participation factors do not account for either the explicit or implicit dependence of

the Jacobian matrix on parameters. Participation factors have been found useful for a

multitude of power system problems. It is interesting to consider what improvements

can be made by using the complete eigenvalue sensitivity formulas.

4.3 Traditional sensitivity

Approximate sensitivity methods have found widespread use in power systems for

many years. The two most generally accepted methods are termed “Distribution

Factors” and “Outage Distribution Factors”. This section shows the relationship
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between distribution factors or outage distribution factors and the sensitivity formulas

used for this thesis. In short, for a specific set of assumptions, the sensitivity formulas

in this thesis will reduce to the distribution factors calculated by the methods such

as those presented in [Debs, WW] and [Heydt]. That is, the formulas for distribution

factors or linear sensitivity factors presented in most power systems texts are a special

case of the exact sensitivity formulas used in this thesis. However, the formulas used

in this thesis offer several advantages:

• The exact sensitivity formulas account for the dependence on the equilibrium

point at which the linearization is made. The approximate formulas assume a

constant Jacobian.

• The formulas are valid for any choice of equilibrium equations, and can be

applied to find the sensitivity of any state variable or function of state variables

to any parameter.

• The exact sensitivity formulas can be used to obtain the sensitivity of the margin

to an event.

• Quadratic and higher order sensitivities can be obtained by differentiating (68)

and solving additional linear equations as in Chapter 5 and [GDA97].

• The vector formulation of these sensitivity factors leads to efficient computation

using sparse vectorized techniques.

One particular area of application for approximate methods is contingency anal-

ysis. Since many contingencies need to be considered, often in real time, it was

necessary to find a way to predict the effects of contingencies without actually solv-

ing for the post contingency equilibrium. The most common objective of contingency

analysis is to estimate the effects of contingencies on line flows. Overloaded lines

can sag, short, and trip, increasing the flows on other lines and leading to cascading

outages.

• Distribution factors measure the sensitivity of line flows to bus power injections.

They are used for predicting the effects of altering the generation dispatch or

interchanges on line flows.

• Outage distribution factors measure the sensitivity of line flows to line outages.

Distribution factors are essentially the predictions of line flows resulting from

the first iteration of a fast decoupled load flow solution for the predicted generation

pattern. Distribution factors represent the approximate sensitivity of line flows to
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changes in power injections. Since, to first order, a line outage can be represented by

power injections, distribution factors can be used to derive outage distribution factors

that estimate the change in flows resulting from line outages. Outage distribution

factors are often referred to as “non-linear” sensitivities, that exploit the constant

Jacobian assumption of the fast decoupled load flow and the nonlinear dependence

of the bus impedance matrix on the line parameters.

We first derive a formula for the sensitivity of the flow to an arbitrary parameter

for general assumptions, and then show that for specific assumptions the formula

reduces to a standard expression for a distribution factor. The derivation is a special

case of the derivations presented in Section 4.2, and follows that of Section 4.2.1

closely.

Assume an equilibrium model of the power system that yields static equations

0 = F (θ, p) (65)

where θ is the vector of equilibrium states, and p a vector of parameters.

If F represents the loadflow equations then θ is a vector that includes voltages,

angles, and power output at the slack generator or a distributed slack. Alternatively,

F can also include more detail such as equations modeling the voltage regulators at

generators, area interchange, or FACTS devices.

Let G represent the equation for flow γ on some line so that

0 = G(θ, p)− γ (66)

Our derivation is simplified if we let ψ represent the expanded state vector including

the line flow, so that ψ = (θ, γ) and (65) and (66) can be combined as

0 = H(ψ, p ) (67)

Assume that an equilibrium (ψ ∗, p∗) is a solution to (67) and H ψ |(ψ ∗,p∗) is not

singular (true exactly when Fθ is non-singular). By the implicit function theorem

there is a unique curve in state space parameterized by p that passes through (ψ ∗, p∗)

so that every point on the curve in some neighborhood of ( ψ ∗, p∗) is a solution to (67)

and (65) and the curve is differentiable at (ψ ∗, p∗). Denote this curve by the map

Ψ(p). Then differentiating with respect to p at (ψ ∗, p∗) yields

0 = H ψ |(ψ ∗,p∗)Ψp +Hp|(ψ ∗,p∗) (68)

The vector Ψp is the tangent vector at (ψ ∗, p∗) to the curve Ψ(p) in state space.

The elements of Ψp are the sensitivities of the state variables to the parameter p at

(ψ ∗, p∗). (68) is a linear system of equations that can be efficiently solved to obtain
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all the sensitivities of the state variables to the parameter p. However, assume that

we are only interested in obtaining the sensitivity of the line flow, Γp. We rewrite

(68) as

0 =

(
Fθ 0

Gθ −1

)∣∣∣∣∣
(θ∗,p∗)

(
Θp

Γp

)
+

(
Fp
Gp

)∣∣∣∣∣
(θ∗,p∗)

(69)

The matrix

(
Fθ
Gθ

)∣∣∣∣∣
(θ∗,p∗)

has n columns and n+ 1 rows. Since every set of n+ 1

vectors in IRn is linearly dependent, there is always a nonzero vector w so that

0 = w

(
Fθ
Gθ

)∣∣∣∣∣
(θ∗,p∗)

(70)

Normalize w so that the last component is unity. Pre-multiplying (69) by w and

solving (69) for Γp yields:

Γp = w

(
Fp
Gp

)∣∣∣∣∣
(θ∗,p∗)

(71)

Equation (71) is the sensitivity of the line flow with respect to the parameter p.

Note that p can be any parameter, and γ does not need to be a line flow, but could

for example be the sum of tie flows on an interface, or a generator VAR output, or a

voltage. Computing w requires solution of one sparse linear equation and is essentially

equivalent to solving one iteration of the loadflow. Equation (71) can be compared

to another expression for Γp obtained from solving the linear system (69)

Γp = GθΘp = (Gθ[Fθ]
−1Fp)|(θ∗,p∗) (72)

It is much quicker to compute either the row vector w or the column vector [Fθ]
−1Fp

than it is to compute the inverse Jacobian matrix [Fθ]
−1. However, equation (72)

provides a useful insight. When the flow sensitivities are used to compute estimates

of the change in flow by a Taylor series,

∆γ = Γp∆p = GθΘp∆p (73)

the right hand side is the product of the derivative of the flow to the state multi-

plied by the derivative of the state to the parameter, multiplied by the change in

parameter. Θp∆p is then just the estimate for the change in state corresponding to

a change in the parameter. Large deviation sensitivity formulas can be derived from

(73) by replacing Θp∆p with a better estimate for ∆θ. The better estimate results
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from evaluating some of the terms in (72) at the post-event equilibrium. 6 Large de-

viation sensitivity formulas also result from choosing different parameterizations. For

example, let the parameter vector p be the vector of line resistance, reactance , and

charging capacitance of the line to be outaged and write the equilibrium equations

F explicitly in terms of the bus impedance matrix Z. F then corresponds to voltage

balance equations instead of power balance equations. Since the Z matrix does not

vary linearly with changes in a line parameter, large deviation sensitivity formulas

result from replacing [Fθ]
−1Fp∆p in (73) with [Fθ]

−1FZ∆Z where ∆Z is the matrix

Znew − Zold and FZ (a tensor) is the derivative of the equilibrium equations with

respect to the Z matrix. Another way to see this is to think of the impedance matrix

as a function of the parameter, Z(p). The linear sensitivity uses Fp∆p = FZZp∆p

. The large deviation sensitivity uses FZ∆Z(p) where ∆Z(p) is an explicit function

of p. Other large deviation sensitivity formulas can also be derived using higher

order Taylor series estimates. The higher order terms can be exactly computed or

approximated.

Now it remains to show that for the assumptions of [Heydt] or [Debs, WW] the

quantity on the right hand side of (71) is exactly the distribution factor. The deriva-

tion of distribution factors presented in [Debs, WW] assumes that the bus voltage

magnitudes are unity and the line resistances can be ignored (the DC loadflow as-

sumptions). Only the assumption of unity bus voltage magnitudes is required to

derive the formulas in [Heydt].

The approximate real power balance equations for the DC loadflow assumptions

can be written

F (θ, s) = P − Bθ (74)

where B is the susceptance matrix. The θ variables consist of the vector of bus

angles not including the reference bus, and the scalar variable s represents the slack

generation. For a single slack bus, s is one element of the vector P or real power

injections. Note that equilibrium equations can also be written

F̃ (θ, s) = XP − θ (75)

where X is the reactance only portion of the bus impedance matrix Z and X = B−1.

Let the flow of interest be on the line connecting bus i and bus j,

γ = G(θ, s) = −bij(θi − θj) (76)

6The post-event equilibrium point most likely is not known, but some of the derivatives in (72)
might not depend on the equilibrium or the higher order dependence of those derivatives on the
parameter might be known explicitly.
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Since the equilibrium equations are linear, Fθ is a constant complex matrix where

each column corresponding to a bus angle is exactly a column of the B matrix and

the single column corresponding to the slack generation is zero except for a one in

the row (assume the s row) corresponding to the slack power balance equation. Gθ is

a row vector of all zeros except in the columns corresponding to the buses connected

by the line, which contain the line susceptance; denote this vector b where

b = (0, ...,−bij, 0, ..., bij, 0, ..., 0) (77)

and bij = 1/xij. Assume that the parameter p is a complex power injection at bus k,

so that Gp is zero and Fp = e(k) is a column vector of all zeros except a one in the

k-th row corresponding to the bus injection. Equation (69) becomes

0 =

(
B e(s) 0

b 0 −1

)



Θp

Sp
Gp


 +

(
e(k)

0

)
(78)

Equation (70) becomes

0 = w

(
B e(s)

b 0

)
(79)

If neither bus i or j is the slack bus, w = (bX,−1), and equation (71) becomes

Γp = −bXe(k) (80)

The b row vector “hits” only the i and j rows of X and the e(k) column vector “hits”

only the k-th column of X . Equation (80) can be written

Γp =
Xik −Xjk

xij
= ρij,k (81)

which is the commonly accepted formula for the distribution factors. Note that if

Equation (75) was used instead of Equation (74) to define the equilibrium condition

the same result is obtained. The steps follow in the same manner except that Fθ is

an identity matrix and Fp is the X matrix multiplied by e(k).

The [Heydt] assumption implies approximate complex equilibrium equations

0 = diag(θ∗)S∗ − Y ∗θ∗ (82)

where θ is complex and “diag” is the map of a vector to a diagonal matrix with

the vector entries in the same order on the diagonal. To get the distribution factor

formulas in [Heydt] simply use the full impedance and admittance matrices (replace

Y with B and Z with X using common notation). Equation (81) becomes

Γp =
Zik − Zjk

zij
= ρij,k (83)
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The estimates of line flows computed from these distribution factors are equivalent to

the updates of line flows resulting from one iteration of the fast decoupled loadflow.

Outage distribution factors are traditionally obtained by applying the distribution

factor formula for (complex) power injections that cancel the flow on the outaged line

(compensation). This corresponds to selecting p as a vector of power injections at the

connected buses and can also be derived by assuming that the parameter p represents

the outaged line parameter vector as in [GDA98]. Finally, large deviation sensitivity

formulas should be used for outage distribution factors. This is accomplished by

using the post outage Z bus (or X) bus quantities in the formula, which can be

computed from the Y bus (or B bus) changes using the matrix inversion lemma [Debs,

Bergen]. This is justified since the approximations yield linear models with constant

Jacobian matrices. For example, to derive the large sensitivity outage distribution

factors, replace the Θp∆p term from (73) with ∆Θ = P∆X . Note that different large

sensitivity outage distribution factors can be derived from the general formula (71)

without the fast decoupled loadflow assumptions.

4.4 Penalty factors, β coefficients, and normal vec-

tors

The effectiveness of each generator in a power system in servicing load depends upon

the location of that generator relative to the loads in the network. Due to transmission

losses, a generator that produces power inexpensively but is located a great distance

from loads might not be any more economical than an expensive generator located

close to major loads. The penalty factor associated with a generation bus indicates the

extent to which that generator is hindered by transmission losses. The β coefficients

are the reciprocals of the penalty factors. In this section we derive an expression

for the penalty factors and β coefficients based on the normal vector formula. The

formula is general and applies to many possible models of the power system.

If the cost to generate power at two buses is equal, then the bus with the higher

β (or lower penalty factor) will be most economical. Similarly, a load with a higher

β is more costly to service. In the recent jargon of the California ISO, the β coef-

ficients are referred to as “meter-multipliers”. The penalty factors and “betas” are

usually derived in power systems texts in a chapter concerning economic dispatch and

optimum power flow. The product of each generator’s β coefficient and incremental

cost is shown to be equal to the system Lagrange multiplier, referred to as “system

lambda”. In short, total cost is minimized when the product of each generator’s loss
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adjusted incremental cost is the same. [Alv78] shows how to compute the β coeffi-

cients from the loadflow Jacobian matrix.7 Unfortunately, most power system texts

do not correctly reproduce or reference the proof. [Bergen] comes the closest but the

proof is flawed by a typographical error. In [Kusic], the author states

A major problem of economic dispatch is to determine the penalty factors,

or equivalently the loss partial derivatives ∂PL
∂Pi

, as dependent on the output

power of each of the M generation units. A large number of researchers

have contributed to the solution of this problem, usually with assumptions

concerning the behavior of loads on the system and the reactive power

flow.

Let F represent the system equilibrium equations with state variables z = (x, s).

x includes bus voltages and angles and generator reactive power outputs but not

generation real power outputs; the scalar s represents the system losses or slack

generation and can be distributed in any manner so that Fz is non-singular. λ can

be any system parameters. F can include an explicit equation for the total system

line losses in which case the total losses is a variable in x. However, an explicit loss

equation causes a dense row in the Jacobian matrix used for computations and there

is no advantage to including one.

Assume that (x0, s0, λ0) is the present stable operating point satisfying the equi-

librium equations F (x, s, λ) = 0 and assume that Fz|(x0,s0,λ0) is nonsingular. Then

the matrix Fx is a full rank matrix with one more row than column and there exists

a row vector β such that

βFx|(z0,λ0) = 0 (84)

β is unique up to a scalar multiple. The sensitivity of the losses to a change in the

parameter vector in the direction k̂ is found from (16)

Sλ = −
βFs|(z0,λ0)

βFλ|(z0,λ0)k̂
(85)

The components of β are the “betas” or reciprocals of the penalty factors. This can

be seen as follows. Select s to correspond to a single slack generator output so that

Fs is a column vector of all zeros except a one in the row corresponding to real power

balance at the slack bus. Then select λ to represent real or reactive power injection

at each bus so that Fλ is a matrix with a single one in each column, positioned in

7Prior to Alvarado’s publication, these factors were often approximated by means of the B-
coefficient matrix and referred to as “loss factors” or B-factors. Now, the exact coefficients are
commonly referred to as “betas” after the notation adopted in the paper. However, reference to
[Alv78] is sparse.



4.5. EXAMPLE: LINE OVERLOAD 55

the rows corresponding to real or reactive power balance at a bus. If k̂ is a vector

with only one nonzero entry for load increase at one bus, Equation (85) computes

the sensitivity of the required power output of the slack bus with respect to increase

in demand at one bus. If there is one slack generator or marginal generator, it is

convenient to normalize β so that the component corresponding to that generator is

one.

Another interpretation is that the β vector determines the normal vector in pa-

rameter space to the surface on which the parameters must change to maintain an

equilibrium solution. Consider a formulation without a specific slack generator or

slack distribution. Let X(t) represent a curve in state space and Λ(t) a curve in

parameter space as functions of a scalar t so that

F (X(t),Λ(t)) = 0 (86)

Then the tangent vector (Ẋ, Λ̇) to the curve (X(t),Λ(t)) at (x0, λ0) satisfies

(
Fx Fλ

)∣∣∣
(x0,λ0)

(
Ẋ

Λ̇

)
= 0 (87)

Pre-multiply (87) by β to obtain the normal vector, N to Λ(t) at λ0 is

N = βFλ|(x0,λ0) (88)

where β is found from (84).

The concept of penalty factors has been generalized. By appropriate choice of the

vector λ the penalty factor or “beta” corresponding to real or reactive power injection

at any bus can be computed. However, there is no reason to limit the parameters

to bus injections or the equations to the standard loadflow equations. For example,

if interchange equations are appended with additional variables to maintain the set

interchanges, the penalty factor associated with each interchange can be computed

and thus the value of power at each interchange. This allows the optimum interchange

set points to be determined within the economic dispatch solution. In addition, linear

and quadratic estimates of the changes in losses resulting from interarea transactions

could be computed efficiently.

4.5 Example: line overload

We conclude this chapter with a simple illustration that uses the sensitivity formulas.

Assume that the critical event located by the continuation program for the forecast

parameter change was a line overload. It is desired to move away from the overload
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by adjusting the generator dispatch. Let P represent the vector of generator real

power outputs. The state variables z include a slack variable that distributes losses

to all generators on AGC. Let λ represent a vector of area export set points and k̂ the

forecast direction of change in area exports corresponding to a transaction between

multiple areas. k̂ is normalized so that a margin is measured in total real power

exports from one area.

For the line overload (and events such as generator VAR limits and under or over

voltage limits) E takes a particularly simple form

E(z, λ, p) = z[i]− Zlim[i] (89)

where the line current is the ith component of the state variable z. Thus,

Ez = e(i) (90)

Ep = 0 (91)

and Fz|(z∗,λ∗) is non-singular.

Alternatively, one can consider the line flow not an element of z, in which case

Ez|(z∗,λ∗) is the derivative of the flow with respect to the state variables and is an

simple formula to compute. Depending on the rating used, the flow can be measured

in MVA, MW, or Amp; the form of E and Ez is different for each.

The first step is to compute w, a vector in the null space of (Fz|T(z∗,λ∗), e(i)
T ). The

derivative of the equilibrium equations with respect to the generator real power out-

puts is Fp and is a diagonal matrix with non-zero entries only in the rows correspond-

ing to the generator real power balance equations. By formula (88), the direction to

change the dispatch that increases the transfer margin to the line overload the most

is N = w

(
Fp
0

)∣∣∣∣∣
(z∗,λ∗)

.

Now suppose that it is not reasonable to change the dispatch in that manner, but

another dispatch, p1 is proposed so that p0 + ∆p = p1. The linear estimate of the

change in transfer margin then is

∆M =

−w
(
Fp
0

)∣∣∣∣∣
(z∗,λ∗)

w

(
Fλk̂∗

0

)∣∣∣∣∣
(z∗,λ∗)

∆p (92)

Alternatively, or if it is desired to check for other possible limit violations, equation

(12) can be employed to also estimate how the equilibrium state changes at the

projected overload. In this case, the linear system (12) has multiple right hand side
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since Fp is a matrix so it is best to parameterize p by a scalar t so that (12) is

computed using the vector right hand side Fpṗ, yielding Ż so that ∆Z = Ż∆t where

∆p = Fpṗ∆t.

Finally, the most economical direction to dispatch generation and not cause over-

load can be found by solving a linear program minimizing the cost of generation

subject to the constraint that equilibrium is met and the line rating is not exceeded.

If Θ(p) is the generator cost function, and β the reciprocals of the penalty factors,

the linear program minimizes Θp∆p subject to the constraints that

β∆p = 0 (93)

and

N∆p ≤ 0 (94)

The next two chapters detail the case where the critical event is a fold bifurcation

of the equilibrium equations.
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Chapter 5

Margin and Sensitivity Methods

for Voltage Collapse

This chapter concerns computing and exploiting the sensitivity of the loading margin

to voltage collapse with respect to various parameters. The main idea of this chapter

is that after the loading margin has been computed for nominal parameters, the effect

on the loading margin of altering the parameters can be predicted by Taylor series

estimates. [GDA97] is a concise version of this chapter.

Loading margin is a fundamental measure of proximity to voltage collapse. Linear

and quadratic estimates to the variation of the loading margin with respect to any

system parameter or control are derived. Tests with a 118 bus system indicate that the

estimates accurately predict the quantitative effect on the loading margin of altering

the system loading, reactive power support, wheeling, load model parameters, line

susceptance, and generator dispatch. The accuracy of the estimates over a useful

range and the ease of obtaining the linear estimate suggest that this method will be

of practical value in avoiding voltage collapse.

5.1 Introduction

Voltage collapse is an instability of heavily loaded electric power systems characterized

by monotonically decreasing voltages and blackout [DCL, Davos]. Secure operation

of a power system requires appropriate planning and control actions to avoid voltage

collapse. This chapter describes and illustrates the use of loading margin sensitivities

for the avoidance of voltage collapse.

For a particular operating point, the amount of additional load in a specific pattern

of load increase that would cause a voltage collapse is called the loading margin.

We are interested in how the loading margin of a power system changes as system

parameters or controls are altered. This chapter describes how to compute linear

and quadratic Taylor series estimates for the variation of the loading margin with

respect to any power system parameter or control. The effects on the loading margin

of changing the following controls and parameters is estimated:
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• Emergency load shedding

• Reactive power support, shunt capacitance

• Variation in the direction of load increase

• Interarea redispatch, wheeling

• Changes to load model and load composition

• Varying line susceptance, FACTS device

• Generator redispatch

Loading margin sensitivities have a simple geometric meaning. Figure 6 shows

nose curves of a large power system for three values of a power system parameter.

The loading margin is the change in loading between the stable operating point and

the nose of the curve corresponding to each parameter setting. The nose corresponds

to a saddle-node bifurcation point of the power system when it is parameterized by

loading, and is often referred to as the “point of collapse” or “bifurcation point”.

A similar set of curves results for varying any other system parameter, such as the

line impedance or powerfactor of the load. As the parameter increases, the nose

of the curve occurs at a higher loading and the loading margin increases. Figure 7

shows the loading margin as a function of the parameter value. Each nose curve in

Figure 6 contributes one point to Figure 7. The sensitivity of the loading margin

with respect to the parameter at the nominal parameter value is given by the tangent

linear approximation to the curve in Figure 7. Once the loading margin has been

computed for nominal parameters, the effect on the loading margin of altering the

parameters can be predicted by using linear or quadratic estimates. Exhaustively

recomputing the nose for each parameter change is avoided.

Loading margin is an accurate measure of proximity to voltage collapse which takes

full account of system limits and nonlinearities. Moreover, loading margin estimates

can be directly associated with costs, allowing for economic comparison of different

strategies [Alv91]. Methods to compute the nose and hence the loading margin are

presented in [CA93, CFSB, AC92, VC91, Iba] and are discussed in Chapter 2.

Another approach to assessing proximity to voltage collapse uses fast time-domain

simulation to predict whether the system will collapse (e.g. [Kur93, DS93]). This

approach has the advantage of better representing the potentially complex series

of time dependent events which can influence voltage collapse. For example, the

time dependence of generator reactive power limits can be represented. However,

sensitivity information is difficult to obtain from time-domain simulations and requires
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a new simulation for each parameter variation considered. A single computation of

a loading margin uses a power system model with some approximations but can

yield a wealth of useful sensitivity information. The loading margin and time-domain

simulation approaches are complementary. Recent work combines aspects of both

approaches [VC94].

There has been previous work on the sensitivity of various indices for voltage

collapse. Tiranuchit and Thomas [TT88] computed the sensitivity of the minimum

singular value of the system Jacobian and Overbye and DeMarco [OD91] computed

the sensitivity of an energy function index. The first order sensitivity of the loading

margin was derived by Dobson and Lu [DL192]. This chapter is an extension and

application of [DL192].

In a discussion to [GDA97], Wu, Fischl, and Nwankpa reference [WF93] which uses

an optimization formulation (or regularization method) to derive sensitivity formulas

similar to those here and in [GDA97]. The first order sensitivity formula of [WF93]

can be shown to be equivalent to the first order sensitivity formula derived in this

report and in [GDA97]. However, the second order sensitivity formula of [WF93]

does not agree with the second order sensitivity formula of [GDA97] and this report.

The reason for the discrepancy is an error in the derivation of [WF93]. Wu, Fischl,

and Nwankpa raise several topics motivating the work in Chapter 6 and [GDA98].

The complete discussion and closure to [GDA97] appears in the IEEE Transactions

[GDA97].

5.2 Theoretical background and assumptions

One influential theory of voltage collapse [DC89] models the power system as differ-

ential equations with slowly moving parameters and describes voltage collapse as the

dynamic consequence of a saddle node bifurcation. In a saddle node bifurcation, the

stable operating equilibrium coalesces with an unstable equilibrium and disappears.

The dynamic consequence of a generic saddle node bifurcation is a monotonic decline

in system variables.

Although differential equations are the proper setting for understanding voltage

collapse and are necessary for explaining why voltages dynamically decrease as a

consequence of a saddle node bifurcation, it is possible and very advantageous to

compute loading margins to voltage collapse and their sensitivities using static equa-

tions [Dob94]. These static equations are equivalent to equations derived from the

differential equations by setting all the derivatives to zero. Usually the exact dynamic

equations of the power system are poorly known. For example, both the form and

data for dynamic load models for voltage collapse studies are controversial. However,
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static models of the power system are much better known. The idea is to use the

static models for computations, while supposing there to be underlying dynamics of

a sensible form whose equilibrium equations reduce to the static models. Dobson

[Dob94] proves that there is no loss of accuracy in using static models in place of the

underlying dynamic models when computing loading margins and their sensitivities.

The derivations and application of the sensitivity formulas require the choice of

a nominal stable operating point at which parameters or controls are to be adjusted,

and a projected pattern of load increase. The pattern of load increase determines the

nominal bifurcation point (nose) and also defines the direction in which the loading

margin is measured. The bifurcation point should be computed by a method that

takes into account system limits such as generator reactive power limits as they are

encountered. In general, the limits enforced at the bifurcation are different than those

at the stable operating point. The derivation of the sensitivity formulas requires that

the system equations remain the same as parameters are varied. In particular, the

limits enforced at the bifurcation are assumed to stay the same as parameters are

varied.

5.3 Informal derivation

This section informally derives the first order sensitivity of the loading margin L with

respect to any parameter p. See Chapter 4 and the appendices of this chapter for a

rigorous derivation of this and the quadratic sensitivity formulas.

Suppose that the equilibria of the power system satisfy the equations

f(x, λ, p) = 0 (95)

where x is the vector of state variables and λ is the vector of real and reactive load

powers. Let λ0 be the real and reactive powers at the operating equilibrium. We

specify a pattern of load increase with a unit vector k̂. Then the load powers at the

saddle node bifurcation causing voltage collapse are

λ = λ0 + k̂L (96)

where L is the loading margin. The choice of norm is arbitrary, k̂ is a unit vector in

whatever norm is used to measure the loading margin L. Since k̂ is a unit vector, it

also follows that L = |λ− λ0|.
At a saddle node bifurcation, the Jacobian matrix fx is singular. For each (x, λ, p)

corresponding to a bifurcation, there is a left eigenvector w(x, λ, p) (a row vector)

corresponding to the zero eigenvalue of fx such that

w(x, λ, p)fx(x, λ, p) = 0 (97)
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The points (x, λ, p) satisfying (95) and (97) correspond to bifurcations and a curve of

such points can be obtained by varying p about its nominal value p∗. Linearization

of this curve about the bifurcation (x∗, λ∗, p∗) yields

fx|∗∆x + fλ|∗∆λ + fp|∗∆p = 0 (98)

where fλ is the derivative of f with respect to the load powers λ and fp is the

derivative of f with respect to the parameter p. ‘|∗’ means ‘evaluated at (x∗, λ∗, p∗)’.

Pre-multiplication by w = w(x∗, λ∗, p∗) yields

wfλ|∗∆λ + wfp|∗∆p = 0 (99)

since (97) implies that wfx|∗ = 0. Equation (99) can be interpreted as stating that

(wfλ|∗, wfp|∗) is the normal vector at (λ∗, p∗) to the bifurcation set in a load power

and parameter space [DL192].

Using the parameterization of λ by L from (96) yields ∆λ = k̂∆L and substitution

in (99) gives

wfλk̂∆L+ wfp ∆p = 0 (100)

and hence the sensitivity of the loading margin to the change in parameters is

Lp|∗ =
−wfp|∗
wfλ|∗ k̂

(101)

For the linear estimate we use (101) and

∆L = Lp|∗∆p (102)

The same formula holds for multiple parameters p, in which case wfp|∗ is a vector

(see appendices). This is useful when approximating the combined effects of changes

in several parameters or when comparing the effects of various parameters on the

loading margin.

For the quadratic approximation we use (101), (113) and

∆L = Lp|∗∆p+
1

2
Lpp|∗(∆p)2 (103)

5.4 Application to test system

The practical use of the sensitivity formulas derived in the previous section and the

appendices is illustrated using a particular voltage collapse of the 118 bus IEEE

standard test system [wahoo]. (Refer to [wahoo] to reproduce the results. Also area
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numbers and bus numbers correspond to those in [wahoo].) The system loading and

loading margin is measured by the sum of all real load powers (an L1 norm). The

stable operating point at which we test parameter variation has a total system loading

of 5677 MW. Buses critical to the voltage collapse are in area two. The generator

dispatch distributes the slack so that generators in each area provide additional real

power roughly in proportion to their size. The loads increase proportionally from the

base case loading and the voltage collapse occurs for a total load of 7443 MW and a

loading margin of 1766 MW. Seven generators reach reactive power limits between the

stable operating point and the voltage collapse. (Note that the reactive power limit

for generator 4 is increased to avoid complications caused by an immediate instability

that would have occurred just prior to the voltage collapse. An immediate instability

[DL292] can be caused by a generator reaching a reactive power limit.)

The sensitivity formulas evaluated at the voltage collapse yield linear and quadratic

estimates of the loading margin as a function of any parameter. The performance of

these estimates is tested for seven different parameters representative of a range of

control actions or system uncertainties. The solid lines and dotted curves in Figures

8 thru 14 are the respective linear and quadratic estimates for the loading margin

variation as a function of the chosen parameter.

The dots in Figures 8 thru 14 represent the actual values of the loading margin

as computed by combined continuation and direct methods [CA93]. The large dots

represent the loading margin computed assuming that the reactive power limits which

apply at the voltage collapse remain the same when the parameters are varied. (This

assumption was used in deriving our sensitivity formulas.) The small dots represent

the actual loading margin allowing different reactive power limits to apply at the

voltage collapse. The small dots are computed by enforcing generator reactive power

limits as the loading is increased from the stable operating point.

Both the small and large dots take into account limits as the loading is increased

from the base case, but changes in the limits due to parameter variations are only

accounted for by the small dots. The small dots test the practicality of using the

estimates in a setting where the limits can vary. In Figures 8 thru 13, the assumptions

about limits make little difference and the large dots cover the small dots. The effects

of limits will be addressed as future work in later chapters.

5.4.1 Emergency load shedding

Bus 3 is a strong candidate for load shedding based on the magnitude of the compo-

nents of the left zero eigenvector at the bifurcation. At the stable operating point, bus

3 has a load of 60 MW and 15 MVARs and a voltage of .95 p.u. Figure 8 shows the

results for shedding up to 60 MW of base load at constant power factor. Each MW
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Figure 8: Effect of load shedding on voltage collapse margin

of load reduction increases the loading margin by 3.5 MW, and the relation remains

almost linear over the entire range of load shed.

Note that “load shedding” could refer to several distinct situations requiring dif-

ferent use of the Taylor series formulas. For the example shown here, we shed a

specific amount of real and reactive power at the base loading at one bus. However,

the load at that bus still increases from the base case at the same power factor and at

the same rate as assumed for the nominal case. If one wishes instead to estimate the

effect of shedding base load and not increasing the load at this bus, then one must

account for changes to all the system parameters effected. Specifically, the change in

the direction of load increase k̂ , and the change in base load must both be accounted

for. An example of changing the direction of load increase follows.
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5.4.2 Direction of load increase

Computing the loading margin requires a direction of load increase to be assumed.

Variation in the direction of load increase can result from temperature dependence of

the loads or inaccuracies in forecasting. Thus it is useful to estimate the sensitivity

of the loading margin to the direction of load increase.

The direction of load increase is multi-dimensional, so that not every conceivable

variation can be parameterized in such a way that a 2-dimensional graph is compre-

hensible. To ease visualization, we choose to parameterize the change in direction

by a scalar. For this example, the direction of load increase is varied by transferring

load increase from the critical bus 1 to a less critical bus in the same area, bus 23.

For a particular loading factor, the total load remains the same but the proportion of

load at bus 23 increases and the proportion at bus 1 decreases. Figure 9 shows that a

linear estimate for the change in the loading margin performs well over the full range

of variation.

5.4.3 Reactive power support

The largest generator in area two is at bus 10, which is connected by a long transmis-

sion line to the high voltage side of the network. At the stable operating point, the

generator at bus 10 is near its reactive power limit. Bus 9 represents the midpoint of

the transmission line, and is a logical place to consider adding reactive power to alle-

viate the voltage collapse. The addition of shunt capacitance at bus 9 could represent

operation of switched capacitors or SVC. Figure 10 shows that the linear estimate is

accurate and quantifies the effectiveness of reactive power support at bus 9.

5.4.4 Area interchange

Recent trends in deregulation are expected to increase wheeling which can affect

system security.

Figure 11 shows the effects on the loading margin of adjusting the flows between

area 2 and the main area. The nominal interchange between the main area and area 2

is 103 MW. Importing an additional 100 MW results in an increase in loading margin

of over 200 MW, which is well predicted by the linear estimate.

The adjustment of the interarea flows caused the number of generators reaching

reactive power limits to change, yet these changes did not significantly affect the

accuracy of the estimates. Most of the additional generators that reached limits were

not at critical buses. The linear estimates were accurate for varying the interarea

flow by plus or minus 100 percent.
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Figure 9: Effect of assumed loading direction on voltage collapse margin
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Figure 10: Effect of shunt capacitance on voltage collapse margin
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Figure 11: Effect of import into critical area on voltage collapse margin
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5.4.5 Load model

Load models are important in voltage collapse studies. The sensitivity of the loading

margin with respect to parameters of a load model can be used to estimate the effect

on the loading margin of using more detailed models. Figure 12 shows the effect on

the loading margin of an additional reactive load Q at bus 3 linearly dependent upon

the bus voltage V so that Q = KV . K can be interpreted as MVARS at 1 p.u.

voltage.

For this case we add voltage dependent load at bus 3, we do not change the con-

stant power factor base load or change the rate of constant power factor load increase.

If instead we were to assume that the original base load was voltage dependent, then

a different computation would be performed taking account changes to all the pa-

rameters affected. In addition, one must specify how the direction of load increase

and the loading margin measure are affected by any parameter changes. It is cer-

tainly possible to have either or both the direction of load increase or the measure

of the loading margin dependent upon some load model parameters. The formulas

presented in this chapter are general and can be applied to these cases, but care must

be taken in computing the derivatives and applying the chain rule correctly.

5.4.6 Line susceptance

Variations in a line susceptance could represent the operation of a FACTS device or

could reflect uncertainty in the network data. Figure 13 shows the effect of altering

the susceptance of the line connecting bus 9 to bus 10.

For this example, the quadratic estimate is required to obtain accurate results

over the full range of variation and the effects of changing limits are noticeable but

not significant.

5.4.7 Generator dispatch

Generators 10 and 12 together assume 50% of the slack for area 2 with generator 10

alone picking up 42% for the nominal dispatch. Figure 14 shows the effect of shifting

slack from generator 10 to generator 12. The two generators participate equally in the

dispatch when 17% of the total area slack is moved from generator 10 to generator 12.

Figure 14 shows that the distribution of real power can greatly affect the loading

margin and that the quadratic estimate is accurate over a much larger range than

the linear estimate. Moreover, the effects of limits can be significant. In this case,

shifting more than 15% of the total area slack to generator 12 prevents generator 10

from reaching its reactive power limit; additional transfer past this point has little
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effect on the loading margin.

5.5 Discussion

The loading margin sensitivities only depend on quantities evaluated at the nominal

bifurcation point. Evaluation of the linear sensitivity is particularly simple. Once the

nominal bifurcation point is computed, the linear sensitivity requires computation

of the left eigenvector w and the derivative fp|∗ of the power system equations with

respect to the parameter. In many cases fp|∗ has only one or two nonzero entries. w

can be found by inverse power methods or as a byproduct of a direct method used

to refine location of the bifurcation point [DL192]. Since w is the same regardless of

the parameter chosen, it is very quick to compute the sensitivity to any additional

parameters.

The quadratic estimate additionally requires solution of a sparse set of linear

equations (109,111), the right eigenvector v and some second order derivatives. The

second order derivatives include the matrix wfxx|∗, where fxx|∗ is the Hessian tensor.

wfxx|∗ can be obtained as a byproduct of a direct method that uses a Newton iteration.

The other higher order derivatives are more easily obtained and often evaluate to zero.

When the quadratic term is small, it increases confidence in the accuracy of the linear

estimate. When the quadratic term is not small, it serves as a more accurate estimate.

One source of inaccuracy is the neglect of higher order terms in the estimates.

When the computed bifurcation is near a different bifurcation corresponding to volt-

age collapse of another area of the system, movement of the parameter can cause the

voltage collapse to ‘shift’ from one area to the other. Since the set of critical pa-

rameters and loadings could have significant variations in curvature in this case, the

linear and quadratic estimates would be useful only over a small parameter range.

(The area of the power system corresponding to a bifurcation is described by the

right eigenvector v corresponding to the Jacobian singularity since the components of

v specify the relative participation of bus voltages and angles in the voltage collapse

[DC89, Dob92].)

Another source of inaccuracy is that the estimates assume a fixed set of equations

whereas the form of the equations can change discretely whenever a parameter varia-

tion causes power system limits to change. The 118 bus system results are examples

in which this does not significantly impair the usefulness of the estimates. However,

this source of inaccuracy has the potential to be significant and requires awareness

when using the estimates. Future work could address the effect of limits on loading

margin sensitivities, perhaps by representing the effect of the limits using homotopy

methods [GreMS].
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The loading margin and sensitivity computations require only static power systems

equations but accurately reflect the proximity to voltage collapse of the dynamic

power system. In particular, explicit knowledge of load dynamics is not needed.

5.6 Conclusions

In this chapter linear and quadratic Taylor series estimates for the variation of the

loading margin with respect to any power system parameter or control are presented.

These estimates can be used to quickly assess the quantitative effectiveness of various

control actions to maintain a sufficient loading margin to voltage collapse. That is, the

computations approximate the change in loading margin for a given change in each

control. The estimates are also useful in determining the sensitivity of the loading

margin to uncertainties in data. Evaluation of the estimates is efficient; calculation

of any number of estimates requires only computation of a single nose or bifurcation

point of the power system.

The sensitivity formulas are more rigorously derived in the following appendix.

The quadratic estimate is new and the derivation of the linear estimate improves

on previous work in [DL192]. The derivation is independent of the norm chosen to

measure the loading margin.

The practical use of the sensitivity computations is illustrated for a range of system

parameters on a voltage collapse of the IEEE 118 bus system. The likely sources

of inaccuracy discussed in the previous section include variations in the generator

reactive power limits enforced at the nose. The results suggest that the linear estimate

is good for many parameters and can sometimes be improved with the quadratic

estimate. Direct comparison of different control actions can be made in terms of their

effect on the loading margin. The closeness of the estimates over a useful range of

parameter variations and the ease of obtaining the linear estimate suggest that the

sensitivity computations will be of practical value in avoiding voltage collapse.
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5.7 Appendices

Appendix 5.7.A Derivation of sensitivity formulas

Let f : IRn × IRm × IRl → IRn be a smooth function such that the solutions of

0 = f(x, λ, p) (104)

are the equilibria of the power system near (x∗, λ∗, p∗). We assume that f has a fold

bifurcation at (x∗, λ∗, p∗) satisfying:

F(a) f(x∗, λ∗, p∗) = 0

F(b) fx|∗ has rank n− 1

F(c) wfλ|∗ k̂ 6= 0

F(d) wfxx|∗(v, v) 6= 0, where v and w are nonzero

vectors satisfying fx|∗v = 0 and wfx|∗ = 0.

These are the generic conditions for a fold bifurcation [CH]. (They differ slightly

from the conditions for a saddle node bifurcation and the distinction between the two

bifurcations is discussed in [Dob94]. The fold bifurcation is more appropriate when

working with static equations.)

Let λ0 be the base case loading and let the unit vector k̂ ∈ IRm be a given direction

in loading space. The loading is parameterized by ` ∈ IR:

λ(`, k̂, λ0) = λ0 + ` k̂ (105)

The loading may be measured with any norm, but different norms lead to different

unit vectors k̂. Let

g(x, `, p) = f(x, λ0 + `k̂, p) (106)

Since gx = fx, gxx = fxx, and g` = fλk̂, g also has a fold bifurcation at (x∗, `∗, p∗) and

the corresponding conditions F(a)-(d) are satisfied with g written for f except that

F(c) becomes wg`|∗ 6= 0.

Appendix 5.7.B proves that near (x∗, `∗, p∗) there is a smooth surface Ψ param-

eterized by p so that each point on Ψ corresponds to a fold bifurcation. Points on

Ψ are of the form (X(p), L(p), p) where X(p) defines the variation of the bifurcating

equilibrium with parameter p and L(p) defines the variation of the loading margin

with parameter p. In the useful case of one dimensional p, Ψ is a curve. Points of Ψ

satisfy

g(X(p), L(p), p) = 0 (107)

µ(X(p), L(p), p) = 0 (108)
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(107) states that (X(p), L(p), p) is an equilibrium and (108) is the condition for bi-

furcation (µ is defined in Appendix 5.7.B).

Differentiation of (107) with respect to p yields

gxXp + g`Lp + gp = 0 (109)

Evaluation at (x∗, `∗, p∗) and pre-multiplication by w leads to wg`|∗Lp|∗ + wgp|∗ = 0

and the desired first order result

Lp|∗ = −wgp|∗
wg`|∗

= − wfp|∗
wfλ|∗ k̂

(110)

The second order term Lpp|∗ may be found as follows. Differentiation of (108)

(obtained by differentiating (116)) and evaluation at (x∗, `∗, p∗) yields

wgxx|∗(v,Xp|∗) + wgx`|∗vLp|∗ + wgxp|∗v = 0 (111)

which, with (109) evaluated at (x∗, `∗, p∗), is a set of n + 1 linear equations we may

solve for Xp|∗. F(b) and F(d) imply that these n + 1 equations have rank n and are

uniquely solvable for Xp|∗.
Differentiation of (109) gives

gxXpp + 2gx`XpLp + gxx(Xp, Xp) + 2gxpXp

+g``LpLp + g`Lpp + 2g`pLp + gpp = 0
(112)

Evaluation at (x∗, `∗, p∗), pre-multiplication by w, and solving for Lpp|∗ gives

Lpp|∗ = −1
wg`|∗

[
2wgx`XpLp + wgxx(Xp, Xp) + 2wgxpXp

+wg``LpLp + 2wg`pLp + wgpp
]∣∣∣
∗

(113)

All terms on the right hand side are known and can easily be expressed in terms of

f . If the loading λ appears only linearly in (104) then (113) simplifies to

Lpp|∗ =
−1

wg`|∗

[
wgxx(Xp, Xp) + 2wgxpXp + wgpp

]∣∣∣
∗

(114)

If, in addition, the parameters p also appear in (104) as linear terms, then gxp = gpp =

0 and the last two terms of the bracket in (114) vanish.

Appendix 5.7.B Construction of Ψ.

The surface Ψ of bifurcation points is constructed as the zero section of a smooth

function U . Write Bij for the cofactor of the (i, j) element of a matrix B ∈ IRn×n.



5.7. APPENDICES 79

Since condition F(b) states that gx|∗ has rank n − 1, we can find i and j such that

(gx|∗)ij 6= 0. Since the cofactors of a matrix are smooth functions of the entries of the

matrix, there is a neighborhood S ⊂ IRn×n of gx|∗ such that Bij 6= 0 for B ∈ S. De-

fine the smooth functions w̃(B) = (B1j, B2j , ..., Bnj) and ṽ(B) = (Bi1, Bi2, ..., Bin)T .

Then

w̃(B)B = detB eTj and Bṽ(B) = detB ei (115)

where ei is a column vector of all zeros except that the ith position has value one.

w̃(B) and ṽ(B) are non-zero vectors for B ∈ S. Define w = w̃(gx|∗) and v = ṽ(gx|∗).
It follows from (115) and det gx|∗ = 0 that w gx|∗ = 0 and gx|∗ v = 0 so that w and v

are nonzero vectors satisfying the conditions in the definition of the fold bifurcation.

Define the smooth map β : S → IR by β(B) = w̃(B)B ṽ(B) It follows from (115)

that β(B) = BijdetB. Since gx is smooth, there is a neighborhood N about (x∗, `∗, p∗)

such that (x, `, p) ∈ N implies gx|(x,`,p) ∈ S. Define µ : N → IR by

µ(x, `, p) = β(gx(x, `, p))

= w̃(gx(x, `, p))gx(x, `, p)ṽ(gx(x, `, p))
(116)

and define U : N → IRn × IR by U(x, `, p) =

(
g(x, `, p)

µ(x, `, p)

)
. Then Ψ is defined as the

zero section of U : Ψ = U−1(0).

The matrix (Ux, U`)|∗ =

(
gx|∗ g`|∗

wgxx|∗v wgx`|∗v

)
is invertible if a = b = 0 is the

only solution to (Ux, U`)|∗
(
a

b

)
= 0, or, equivalently,

gx|∗a + g`|∗b = 0 (117)

wgxx|∗va+ wgx`|∗vb = 0 (118)

Since F(c) implies that g`|∗ is not in the range of gx|∗, to satisfy (117), b = 0 and

then F(b) implies that a = αv for some scalar α. Then (118) with b = 0 yields

αwgxx|∗(v, v) = 0 and F(d) implies α = 0 and a = 0. Thus (Ux, U`)|∗ is invertible.

It then follows from the implicit function theorem that there is a neighborhood P

of p∗ and smooth functions X : P → IRn and L : P → IR such that {(X(p), L(p), p) |
p ∈ P} ⊂ Ψ and U(X(p), L(p), p) = 0, which can be rewritten as (107) and (108).

Appendix 5.7.C Sensitivity of the margin to the locally closest

fold bifurcation.

In the discussion to [GDA97], Cañizares inquires about sensitivity of the margin when

we do not assume a particular direction of load increase but instead allow the direction
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of load increase to vary. For example, one maybe interested in the sensitivity of the

margin to a locally closest bifurcation [Dob93], and thus k̂ would not be a constant

but must vary to satisfy the conditions of a locally closest bifurcation. Similarly, the

example given in this chapter for changing the direction of load increase requires that

k̂ be considered as a function of the parameter being varied. Specifically, equation

(106) could be written

g(x, `, p) = f(x, λ0 + `k̂(p), p) (119)

to emphasize the dependence of k̂ on p. Equation (110) then becomes

Lp|∗ = −
wgp|∗ + wg`|∗k̂pL0

wg`|∗
= −

wfp|∗ + wfλ|∗k̂pL0

wfλ|∗k̂
(120)

Now we consider the case of the sensitivity of the margin to the locally closest

bifurcation. In this case L0 is the margin from the base loading to the nominal closest

bifurcation in the direction k̂. At a locally closest bifurcation,

wfλ|∗ −
∣∣∣∣wfλ|∗

∣∣∣∣k̂
T = 0 (121)

where |wfλ|∗| is the norm of wfλ|∗. Substituting for wfλ|∗ in the numerator of (120)

yields

Lp|∗ = −
wfp|∗ +

∣∣∣∣wfλ|∗
∣∣∣∣k̂Tk̂pL0

wfλ|∗k̂
(122)

In general, to find kp one must specify the norm for k̂ as well as the normalization

of the eigenvectors. However, for the common case where k̂ is a unit vector in an L2

norm, k̂Tk̂p = 0 and (122) reduces to

Lp|∗ = − wfp|∗
wfλ|∗k̂

(123)

which is exactly the first order sensitivity formula used for the less general param-

eterizations of λ. This result is also obtained in [Dob93]. The derivation of higher

order terms can also be generalized for the case where k̂ changes to identify a locally

closest bifurcation. However, the formulas will be dependent upon the normalizations

assumed and can additionally require computation of the eigenvector sensitivities.



Chapter 6

Contingency Analysis for Voltage

Collapse

This chapter presents a contingency ranking method for voltage collapse. The change

in the loading margin to voltage collapse when line outages occur is estimated. First

a single nose curve is computed by continuation to obtain a nominal loading margin.

Then linear and quadratic sensitivities of the loading margin to each contingency

are computed and used to estimate the resulting change in the loading margin. The

method is tested on a critical area of a 1390 bus system and all the line outages of

the IEEE 118 bus system. The results show the effective ranking of contingencies and

the very fast computation of the linear estimates. This chapter contains the material

presented in [GDA98].

6.1 Introduction

Contingencies such as unexpected line outages often contribute to voltage collapse

blackouts. These contingencies generally reduce or even eliminate the voltage stability

margin. To maintain security against voltage collapse, it is desirable to estimate the

effect of contingencies on the voltage stability margin. Action can then be taken to

increase the margin so that likely contingencies do not cause blackout.

Suppose the power system is operating stably at a certain loading level referred

to as the “base case loading”. By means of a short term load forecast or otherwise,

assume a particular pattern of load increase. The amount of additional load in this

direction that would cause a voltage collapse is called the loading margin to voltage

collapse. The curve marked “nominal” in Figure 15 shows a specific bus voltage as a

function of total system loading. The nose of the curve is associated with voltage col-

lapse [IEEE1, DCL, Davos] and the nominal loading margin is the megawatt distance

between the base case loading and the loading at the nose.

Suppose that a contingency such as loss of a line occurs at the base case loading.

Assuming that the system stabilizes after the transient, the voltage as a function of

loading changes to the curve marked “contingency” in Figure 15. Since the contin-

gency causes the nose to move to a lower loading, the loading margin is reduced. The

81
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Figure 15: Nominal and contingency nose curves

line outage can be modeled by discretely changing the admittance of the line. The

loading margin can then be recomputed. However, the recomputation of the loading

margin can be avoided: if the loading margin is thought of as a smooth function of the

line admittance, then the sensitivity of the loading margin with respect to changes

in the admittance can be calculated and used to estimate the change in the loading

margin due to the line outage.
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The main idea of this chapter is to compute a single nose curve and associated

sensitivities and to use these to quickly estimate the change in the loading margin to

voltage collapse for any line outage. This approach uses the general loading margin

sensitivity formulas derived in the previous chapters and in [GDA97].

The computations are summarized:

1. A pattern of load increase, generator dispatch policy, and area interchange

schedule are forecast or assumed.

2. A continuation method such as [Iba, AC92, CA93, RHSC, CFSB] is used to

locate the nose and hence determine the nominal loading margin.

3. Quantities needed for the sensitivity formulas are evaluated at the nose point.

Then, for each contingency, the change in loading margin is estimated by eval-

uating the sensitivity formulas presented in section 4.5.

The accuracy of the estimate can be significantly improved by using quadratic sensi-

tivities.

This chapter only addresses security with respect to voltage collapse; security

concerns such as under voltages, thermal overloads, oscillations and transient stability

are not addressed.

6.2 Previous work

The overall approach of this chapter is similar to and inspired by [WF93]. [WF93] use

quadratic estimates to approximate the effect of contingencies on interarea transfer

margins for an 11 bus system. An interarea transfer margin can be viewed as a

particular and useful choice of a loading margin and the linear estimate of [WF93] is

then equivalent to the linear estimate of this chapter and [GDA97]. The derivation in

[WF93] uses an optimization formulation while the derivation in [GDA97] is geometric

in nature. However, the formula of [WF93] for the quadratic estimate neglects the

implicit dependence of the Jacobian on the operating equilibrium and is different

than that used in here (see closure of [GDA97]). The idea of treating a discrete

parameter such as line admittance as a continuous parameter has also been presented

in [AlvPhD]. Second order sensitivities have been used for power system optimization

problems in [PPTT] and [OloPhD].

Contingency screening and analysis concerning line flow and voltage limit vio-

lations, as well as transient stability, have been an active research area for several
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decades. References[MTK96, SenPhD, Gal84] describe methods of contingency anal-

ysis for several operating criteria such as line overloads and voltage limits. A com-

prehensive bibliography is contained in the recent work [MTK96]. [SenPhD] provides

an excellent synopsis of earlier work, and serves as a useful resource and introduction

to steady state contingency analysis.

The effect of contingencies on long term voltage stability is addressed in [ABH82,

NTSCO, EVMW, FFOCH, FFHH, RAUPG, EIMORT, Weh95, CWF97]. References

[FFOCH, FFHH, EIMORT, CWF97] specifically address the effect of contingencies

on the margin to voltage collapse. Reference [ZGOY] presents a method of estimating

the loading margin to voltage collapse that is applicable to contingency analysis.

[FFOCH] describes a sensitivity based method to estimate the margin to voltage

instability, and proposes performing contingency selection by computing an index de-

pendent upon the post-contingency sensitivity of voltage to reactive power. [FFHH]

compares the method of [FFOCH] to an optimization method and a curve fit method

to determine the margin to voltage instability. [EIMORT], motivated by [FFHH],

demonstrates computing three load flows per contingency and fitting a curve to de-

termine the loading margin. [CWF97] perform a similar curve fit with only 2 load

flows per contingency. [ZGOY] explains a similar approach and concludes that good

results can be obtained with 5 load flow solutions.

The method presented in this chapter differs from [FFHH, EIMORT, CWF97,

ZGOY] in that no curve fitting is used, and that post-contingency loading margins

are estimated by sensitivity analysis as deviations from a nominal loading margin.

The curve fit methods produce voltage profiles so that contingencies can also be

screened for voltage magnitude problems as well as stability margin. However, it is

difficult to properly account for changes in reactive power limits by fitting curves

to only a few equilibrium solutions. The sensitivity method can take account of

reactive power limits when the initial continuation computes the nominal nose. The

curve fit methods require several load flows to be computed per contingency. The

sensitivity methods require a single continuation to find the nominal nose (10 to

100 loadflow solutions) and then require much less computation per contingency.

The linear estimate for each contingency is at least three orders of magnitude faster

than one load flow solution. The quadratic estimate for each contingency is about

equivalent in computational expense to one load flow solution, and thus is faster than

any method requiring multiple loadflow solutions per contingency.

The next section describes the test results and is followed by a discussion; the

computations are detailed in section 4.5.
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6.3 Results

The contingency analysis is tested on two systems. A 1390 bus system is used to

assess the computation time and practicality of the method. The 118 bus system

tests the effects of encountering generator VAR limits and evaluates all possible line

outages on a system vulnerable in multiple areas.

For each system, a base case operating point at which the outages are assumed

to occur is identified, a given pattern of load increase is assumed, and a nominal

loading margin is obtained by locating the nose point with a continuation method.

The system loading and loading margin are measured by the sum of all real load

powers. The estimates for each contingency are evaluated at the nominal nose point.

To test the accuracy of the estimates, the actual loading margins are computed for

each outage as follows: A post-contingency operating point at the base case loading

is obtained by solving several load flows, each for a gradually decreased line admit-

tance until the line is completely outaged. This procedure does not necessarily reflect

the settling of the actual system transient, but it is a sensible way to identify a

plausible post-contingency operating point [RHSC] (the procedure is needed to avoid

convergence to a nearby unstable equilibrium). Then a continuation starting from

the post-contingency operating point is used to find the nose as the load is increased

in the specified direction. All load flow and continuation computations are performed

using the PFLOW package [PFLOW]. The estimates are computed using [MATLAB]

and the Sparse Matrix Manipulation System [Alv90, SMMS].

6.3.1 1390 bus system

The estimates are tested on all non-radial 500kV line outages in an area of a 1390

bus system thought to be prone to voltage collapse. The 1390 bus system includes

more than 2000 transmission lines and more than 200 transformers.

The base case operating point at which the outages are assumed to occur has a

total system loading of 94097 MW and reflects a very heavily loaded system. Both

real and reactive power increase from the base case loading at 5 critical buses. The

dispatch distributes slack to 25 generators.

For this test, transformer taps are assumed fixed at the base case loading and

generator VAR limits encountered above the base case loading are ignored. The total

system loading at the nominal point of collapse is 95548 MW corresponding to a

loading margin of 1451 MW.

The results ordered by severity are shown in Table 1. The quadratic estimate

selects the top 5 and top 12 of the most severe outages. The linear estimate selects

3 of the top 5 and 11 of the top 12. In general, the magnitude of the error increases
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with the severity of the outages and the actual loading margins are less than the

estimates. The result highlighted with slanted typeface indicates a case for which the

quadratic estimate captures a critical outage that the linear estimate misses.
The following approximate timings were obtained on a Hewlett Packard 9000 series

700 workstation:

• 1000 linear estimates require 1 CPU second.

• One quadratic estimate requires 15 CPU seconds.

• One iteration of a loadflow requires 2 CPU seconds.

• One loadflow solution requires 5 to 25 CPU seconds.

Thus each linear estimate takes negligible time compared to a loadflow iteration

whereas each quadratic estimate takes about the same time as a loadflow solution

(several loadflow iterations).

6.3.2 All single contingencies of the 118 bus system

The contingency analysis is next tested using a particular base case and voltage col-

lapse of the 118 bus IEEE test system [GDA97, wahoo]. The base case operating point

at which the outages are assumed to occur has a total system loading of 5677 MW.

Both real and reactive loads at 91 buses increase proportionally from the base case

loading. 17 generators participate in the dispatch with the slack distributed so that

generators in each area provide additional real power roughly in proportion to their

size. There are 9 fixed tap transformers. A continuation method is used to obtain the

nominal loading margin and generator VAR limits apply as demand increases. The

nominal voltage collapse occurs for a total load of 7443 MW and a loading margin of

1766 MW. The area interchange is enforced for the entire continuation and the appro-

priate area interchange equations are included in the computation of the estimates.

This case is intended to provide a challenging test for the sensitivity based formulas

since the system is stressed in every area, increasing the possibility that some outages

may cause a voltage collapse in a different area than that of the nominal collapse.

Changes in generator VAR limits were computed during both the procedure to find

the post-contingency operating point and the subsequent continuation.

Linear and quadratic estimates for the post-contingency loading margins are eval-

uated for all of the possible line outages (177 outages). Two of the contingencies are

so severe that a post-contingency operating point does not exist.

For the 175 survivable line outages, the mean post-contingency loading margin

is 1738 MW, 28 MW less than the nominal loading margin of 1766 MW. The mean
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Table 1: Estimated loading margins for all 500kV line outages in a critical area of
the 1390 bus system.

nominal loading margin = 1451 MW

Linear Quadratic Exact
estimate estimate
MW (rank) MW (rank) MW (rank)
1124 (3) 791 (2) 323 (1)
1083 (2) 864 (3) 706 (2)
1072 (1) 870 (4) 772 (3)
1258 (11) 1078 (5) 866 (4)
1462 (29) 439 (1) 902 (5)

1197 (6) 1195 (9) 973 (6)
1197 (7) 1195 (10) 974 (7)
1219 (9) 1194 (8) 1018 (8)
1219 (10) 1195 (11) 1020 (9)
1216 (8) 1206 (12) 1024 (10)

1184 (4) 1170 (6) 1047 (11)
1185 (5) 1172 (7) 1051 (12)
1393 (16) 1339 (14) 1172 (13)
1416 (19) 1405 (20) 1209 (14)
1348 (12) 1338 (13) 1306 (15)

1366 (13) 1363 (15) 1310 (16)
1366 (14) 1363 (16) 1311 (17)
1398 (17) 1370 (17) 1330 (18)
1398 (18) 1370 (18) 1331 (19)
1379 (15) 1377 (19) 1369 (20)

1442 (25) 1439 (28) 1382 (21)
1421 (20) 1420 (23) 1392 (22)
1436 (21) 1417 (22) 1393 (23)
1437 (22) 1407 (21) 1394 (24)
1441 (23) 1424 (24) 1407 (25)

1441 (24) 1425 (25) 1407 (26)
1445 (26) 1432 (26) 1408 (27)
1446 (27) 1433 (27) 1409 (28)
1450 (28) 1448 (29) 1428 (29)
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absolute error of the linear estimate is 20 MW and the mean absolute error of the

quadratic estimate is 16 MW. The median error for both the linear and quadratic

estimates is less than 1 MW.

In order to determine how assumptions concerning generator VAR limits affect

the accuracy of the estimates, actual loading margins were also computed enforcing

a fixed set of generator limits, determined by those generators that were at VAR

limits at the nominal nose point. (The formulas assume that a fixed set of equations

model the equilibrium, i.e. that those generators limited at the nominal nose and only

those generators are limited at the post-contingency nose.) The estimates perform

better with the set of generators at VAR limits fixed, although for most outages the

assumption makes little difference: The mean absolute errors reduce to 13 MW and

10 MW for the linear and quadratic estimates respectively; while the mean actual

change in the margin is 21 MW.

The majority of line outages do not significantly affect the loading margin and

these are adequately screened by the estimates. Of the 126 outages causing less than

a 10 MW change in the loading margin, the mean absolute errors of both the linear

and quadratic estimates are less than 1 MW. Only 6 of the 126 outages have an error

greater than 3 MW and the maximum error is 10 MW.

Of the 26 outages that cause between a 10 MW and 50 MW change in margin

(mean change of 22 MW), the mean absolute errors of the linear and quadratic esti-

mates are 14 MW and 11 MW respectively. The median absolute errors of the linear

and quadratic estimates for these outages are 12 MW and 8 MW respectively.

The 25 worst outages resulting in at least a 50 MW change in the margin are

shown in Table 2. Estimates of a negative loading margin indicate that the formulas

predict that no post-contingency solution exists for the base case loading at which

the outage occurs. Both the linear and quadratic estimates select 20 of the 25 most

severe outages and 10 of the worst 12. Fifteen of the 25 most severe outages involve

lines terminating at a transformer bus. Four of the 25 worst cases can be attributed

to the effects of changing generator VAR limits (highlighted with slanted typeface).

Of these four cases, only one could be somewhat anticipated from the quadratic

estimates. With the exception of these four cases, both the quadratic and linear

estimates perform well in ranking and grouping the outages.

6.3.3 Multiple contingencies of 118 bus system

Estimates of the effects of multiple contingencies are easily obtained. Linear esti-

mates of multiple contingencies are simply sums of the linear estimates of the single

contingencies making up the multiple contingency. Quadratic estimates of multiple

contingencies include the sum of the quadratic estimates of the single contingencies
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Table 2: Estimated loading margins for the 25 worst outages of the 118 bus system.

nominal loading margin = 1766 MW

Line Linear Quadratic
Outage Estimate Estimate Exact1 Exact2

Bus No. MW (rank) MW (rank) MW (rank) MW(rank)
9 10 -376 -1635 fatal fatal
8 9 93 -962 fatal fatal

26 30 1502 (1) 1394 (1) 1318 (2) 1029 (1)
4 5 1641 (2) 1545 (2) 1246 (1) 1224 (2)
100 103 1766 (132) 1766 (141) 1766 (139) 1356 (3)
25 27 1646 (3) 1571 (3) 1477 (3) 1468 (4)
23 25 1691 (5) 1636 (5) 1493 (4) 1488 (5)

69 75 1764 (50) 1762 (48) 1768 (163) 1582 (6)
38 65 1664 (4) 1626 (4) 1603 (5) 1591 (7)
22 23 1734 (11) 1710 (10) 1638 (7) 1620 (8)
17 113 1702 (6) 1669 (6) 1633 (6) 1633 (9)
3 5 1731 (8) 1709 (8) 1664 (8) 1664 (10)

11 13 1757 (25) 1750 (19) 1684 (13) 1664 (11)
8 30 1739 (12) 1751 (23) 1668 (9) 1667 (12)
88 89 1766 (113) 1766 (121) 1766 (119) 1669 (13)
17 18 1742 (14) 1724 (12) 1670 (10) 1670 (14)
64 65 1762 (39) 1758 (38) 1740 (26) 1671 (15)

15 17 1731 (10) 1710 (9) 1676 (11) 1676 (16)
30 38 1740 (13) 1742 (17) 1683 (12) 1683 (17)
21 22 1753 (19) 1742 (16) 1689 (16) 1684 (18)
4 11 1716 (7) 1697 (7) 1686 (14) 1686 (19)
23 32 1731 (9) 1712 (11) 1688 (15) 1687 (20)

5 6 1745 (15) 1732 (13) 1704 (17) 1704 (21)
1 3 1760 (31) 1754 (27) 1707 (18) 1707 (22)
2 12 1757 (24) 1750 (18) 1711 (19) 1711 (23)

1. VAR limited generators same as those at nominal nose.
2. VAR limited generators can differ from those at nominal nose.
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together with cross terms accounting for interaction between the contingencies.

The quadratic estimate is tested on the 118 bus system with 21 double line outages

composed of combinations of 7 single line outages involving 8 buses. (The mean

change in the loading margin of these 7 single line outages is 30 MW, and the mean

absolute error in the quadratic estimates for these 7 single outages is 13 MW.) The

mean change in the loading margin for the 21 double outages is 63 MW. The mean

absolute error in the quadratic estimate is 32 MW. If the cross term is neglected, and

the estimate found by simply summing the single line quadratic estimates, the mean

absolute error is unchanged. For these contingencies, including the cross term of the

quadratic estimate has a negligible effect on the accuracy of the estimates.

6.4 Discussion

The 1390 bus results show that the sensitivity formulas are practical for ranking the

severity of line outages in large power systems. In particular, the linear estimate

takes very little time. Once the nominal point of collapse is found and the zero left

eigenvector obtained, 2000 single contingencies could be screened in less time than

it takes to solve an average loadflow. The quadratic estimate could then be used to

refine the estimates for those cases with the largest linear estimates. The computation

time required for the quadratic estimate is approximately equal to the computation

time required for an average loadflow.

The linear estimate identifies most severe contingencies. The quadratic term can

significantly improve the linear estimate, and occasionally identifies a severe con-

tingency missed by the linear estimate. Significant second order effects seem to be

correlated to the outages of lines terminating at transformers, tie lines and their

neighbors. Interarea flows are particularly sensitive to outages of tie lines and the

flows from the high voltage networks to the low voltage networks are particularly

sensitive to outages of lines terminating at transformers. These outages cause large

power disturbances and would also be of concern for security issues other than voltage

collapse.

The test results with both systems suggest that estimates whose quadratic term

is small relative to the linear term are often closer approximations of the actual

post-contingency loading margin than those for which the quadratic estimate is large

compared to the linear estimate. The estimates almost always underestimate the

severity of outages. The 118 bus results demonstrate that although in most cases

assumptions regarding changes in limits have little effect, in some cases changes in

limits are significant.

It might be desirable to establish more than one nominal collapse by running
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continuations from the base case for more than one pattern of loading or different

assumptions concerning system operation. For example, since it may be possible to

temporarily violate interarea agreements in emergencies, one might want to compute

nominal noses both with and without the area interchange enforced. This way, con-

tingencies that cause problems under one set of assumptions but not others could

be identified. Also, the nominal nose might be computed for different generator

dispatches or load models. The parameter sensitivity methods in [GDA97] and the

previous chapters can be used to select scenarios for which the loading margin is likely

to vary significantly.

6.5 Computations

For the computations of this chapter, it is sufficient [Dob94] to model the power

system with static equations

0 = F (x, λ, p) (124)

where x is the vector of equilibrium states, λ a vector of load parameters, and p a

vector of parameters such as line admittances. F should include area interchange,

generator dispatch, and any other static controls. If a differential-algebraic or differ-

ential equation model of the power system is available then F can be chosen as the

right hand side of those equations.

For each single non-radial line outage the parameter vector p is a vector with only

three components – one each for conductance, susceptance, and shunt capacitance of

the outaged line.

The first step in the computation is to obtain the projected direction of load in-

crease from the short term load forecast. For λ0 the current vector of load parameters

and λ1 the forecasted short term load, the vector

k̂ =
λ1 − λ0

|λ1 − λ0|
(125)

defines a unit vector in the direction of load increase.

The second step is to compute the nominal nose by a continuation method. During

the continuation, the system equations will change as limits such as reactive power

limits apply.

The third step is to evaluate quantities at the nose and then, for each contingency,

to evaluate the sensitivity formulas. For the rest of this section, (124) are the power

system equations that apply at the nose. In particular, (124) accounts for the power

system limits enforced at the nose. The linear and quadratic formulas are derived for

general parameter changes in [GDA97] and the previous chapters.
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6.5.1 Linear estimate formula

The linear estimate requires that the following quantities be computed at the nose:

• w, the left eigenvector corresponding to the zero eigenvalue of the system Jaco-

bian Fx (Fx evaluated at the nose is singular). It is practical and time saving

to compute w simultaneously with locating the nose.

• Fλ, the derivative of F with respect to the load parameters. For constant power

load models Fλ is a diagonal matrix with ones in the rows corresponding to load

buses.

• Fp, the derivative of F with respect to the line parameters evaluated at the

nominal nose point. For a single line outage in any size system Fp has three

columns and only four (five for outage of a tie line) nonzero rows in the rows

corresponding to the power balance equations at the buses connected by the

line. Since the p components appear linearly in F , the nonzero elements of Fp
are simply the coefficients of p in F .

Let ∆p be the negative of the admittance vector for the line(s) to be outaged.

From Chapter 3, equations (101,102), the linear estimate for the change in margin

then is:

∆L = Lp∆p =
−wFp∆p

wFλk̂
(126)

The denominator of (126) is a scaling factor that is the same for all contingencies.

The numerator of (126) contains the vector Fp∆p which, since p appears linearly

in F , is just the terms in F that contain p. For F representing real and reactive

power balance, Fp∆p is the vector of the pre-contingency real and reactive power

injections on the outaged line. The linear formula is simply the power injections from

the outaged lines scaled by the normalized left eigenvector w̃ = −w/wFλk̂ :

∆L = w̃PiPi + w̃QiQi + w̃PjPj + w̃QjQj (127)

where P and Q are the pre-contingency real and reactive power injections to the

outaged line, i and j indicate the buses connected by the outaged line, and w̃Pi

represents the scaled left eigenvector component corresponding to real power balance

at bus i. Formula (127) implies that lines with small flows are guaranteed to have

small linear estimates.

Radial line outages that isolate a portion of the network are a special case in which

the power balance equations of the isolated bus should be deleted from F . Thus, for

a radial line outage Fp has only 2 nonzero rows corresponding to power balance at

the connected bus.
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6.5.2 Quadratic estimate formula

The quadratic estimate additionally requires the following quantities evaluated at the

nose:

• v, the right eigenvector corresponding to the zero eigenvalue of Fx.

• wFxx, the matrix formed by product of w with the Hessian tensor Fxx. Fxx does

not need to be found independently since wFxx can be obtained as a by-product

of simultaneously solving for the exact nose point and w with a direct method.

• Fxp, the derivative of the Jacobian with respect to the line parameters. For a

typical single line outage Fxp has at most 34 nonzero elements (16 each for the

matrices corresponding to conductance and susceptance and 2 for the matrix

corresponding to shunt capacitance). Since the line parameters appear linearly

in the equilibrium equations, the nonzero elements are simple expressions of the

voltages and angles at the buses connected by the outaged line.

• Xp, the sensitivity of the nose equilibrium with respect to p. (X is the position

of the nose equilibrium; it varies with line parameters p.)

From Chapter 3, equations (101,102), the quadratic estimate of the change in loading

margin is

∆L = Lp∆p+
1

2
∆pTLpp∆p (128)

where

Lpp = −
XT
p wFxxXp + 2wFxpXp

wFλk̂
(129)

and Xp is found by solving a sparse linear system with multiple right hand side:
(

Fx
wFxxv

)
Xp =

(
−Fp − Fλk̂Lp

−wFxpv

)
(130)

(wFxxv is a row vector). Note that the linear estimate for the resulting change in the

nose equilibrium is

∆X = Xp∆p (131)

and may be used to identify those contingencies likely to violate additional generator

VAR or voltage limits prior to voltage collapse.(Generator reactive power outputs are

components of X .)

When formulas (128) and (129) are applied to a double contingency, the number of

parameters in p and the dimensions of the vectors and matrices Lp, Lpp double. The

quadratic estimate for a double contingency takes into account interaction between

the two contingencies and is different from the sum of the quadratic estimates for the

corresponding two single contingencies.
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6.5.3 Computational efficiency

This section analyzes the computational expense of the contingency analysis. For

comparison, each step of the computations will be likened to one loadflow solution

or one iteration of a loadflow solution. Generally, any technique used to speed the

process of computing a loadflow solution or loadflow iteration could also be used to

speed up the computation of the estimates.

The slowest step in the procedure is the initial continuation to find the nomi-

nal nose. This continuation is only performed once, and any number of linear and

quadratic estimates can be subsequently computed. The computational effort re-

quired for this continuation depends strongly on the system, the loading margin, the

continuation algorithm, the desired accuracy, and assumptions about limits, and can

range from several loadflow solutions to hundreds of loadflow solutions.

Quantities to be computed at the nominal nose only once are the left eigenvector w

and the scaling factor wFλk̂ (the quadratic estimate also requires the right eigenvector

v). The cost of computing each eigenvector is roughly equivalent to one loadflow

iteration.

The only computation required for each linear contingency estimate is finding the

numerator of (126), and this just requires evaluating Fp∆p at the nose and multiplying

it by w. Fp∆p could be obtained directly from the nominal loadflow computation (the

pre-contingency flows on the outaged line), but computing it by sparse multiplying

Fp and ∆p is also very fast. The computational effort to obtain wFp∆p for one

contingency is less than 10 flops if Fp∆p is found directly from the loadflow solution

and at most 25 flops if Fp∆p needs to be recomputed. This expense is independent of

system size since Fp always has only four or five nonzero rows. For an N bus system

with 2 N lines, obtaining all the linear estimates requires less than 20 N flops – less

than one iteration of the loadflow for any system with more than just 20 buses (a

load flow iteration requires approximately N 2 flops). On a practical system, once a

nominal nose and the left eigenvector have been found, linear estimates for all the

line outages can be obtained in less time than needed to obtain one loadflow solution.

The quadratic estimate requires the one time computation of v, wFxx, and the

factoring of the matrix

(
Fx

wFxxv

)
of (130). The quantities v and wFxx are obtained

from solution of the nominal nose at negligible cost. The cost of factoring

(
Fx

wFxxv

)

is less than one iteration of a loadflow, and in practice this may require only a partial

refactoring since Fx must be already factored for solution of the nominal nose.

The dominant step in the evaluation of each quadratic estimate is obtaining Xp,

which is found by solving the sparse linear system (130). The cost of setting up
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(130) for each contingency is just several sparse multiplications, less than N flops.

Solving for Xp is roughly equivalent to three loadflow iterations. The remaining

multiplications to establish the quadratic estimate require less than N flops, so that

each quadratic estimate is roughly as expensive as several iterations of the loadflow

and costs on the order of N2 flops. The additional cost to compute any double

contingency is negligible. The cost to compute one quadratic estimate for any single

or double contingency is about equal to the cost of obtaining one loadflow solution.

6.6 Conclusion

This chapter demonstrates that effective contingency analysis for voltage collapse can

be done by computing the loading margin sensitivities for a single nominal nose curve

computation. This approach can take into account some of the effects of reactive

power limits and easily handles multiple contingencies. The results show that the

linear estimates are extremely fast and provide acceptable contingency ranking. For

example, after the single nose curve and a left eigenvector are computed, the linear

estimates of all single line outages for a practical system are computed in less time

than is typically required for one load flow solution. The quadratic estimates refine

the linear estimates and are more costly but are still faster than previous methods.

The sensitivity calculations in the previous chapters and [GDA97] exploit the same

single nose curve and can be used to quickly select corrective actions to improve the

loading margin to voltage collapse if the contingency analysis indicates a need for

this.
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Chapter 7

Margin sensitivity methods applied

to the power system of Southwest

England

This chapter applies the sensitivity methods developed in the previous two chapters

to a model of the Southwest of England electric power system to determine their

effectiveness in operating the system sufficiently far from voltage collapse blackouts.

The system data was graciously provided by the National Grid Company, plc.

The National Grid Company currently employs path following and sensitivity

techniques for margin determination that are presented in [HSS, HawPhD, ECSW]

based on the methods of [FFOCH]. The margin computation used here is practically

the same, in that a predictor corrector path following method is used to establish the

margin to events. However, the sensitivity computation differs from that presented

in [ECSW]. The computation used in [ECSW] and described in detail in [LöfPhD] is

the sensitivity of the smallest singular value of the system Jacobian matrix to system

parameters, and is computed at a nominal stable operating point. The sensitivity

computation used in this chapter is described in Chapters 4, 5, and 6, and [GDA97,

GDA98] and reflects the sensitivity of the margin to the event with respect to any

system parameters. One key difference is that the sensitivity computations tested

here are evaluated at the event point, not the nominal stable operating point.

The two main uses of the sensitivity methods are

1. Quickly quantify the effect of varying power system controls or parameters on

the proximity to voltage collapse

2. Quickly rank the severity of contingencies with respect to voltage collapse

The results confirm that the sensitivity methods perform well on the Southwest of

England model for these uses. This chapter also examines the effect of generator VAR

limits and presents a sensitivity computation for cases in which instability is directly

precipitated by a VAR limit.
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7.1 Introduction

For a particular operating point, the amount of additional load in a specific pattern

of load increase that would cause a voltage collapse is called the loading margin. This

chapter describes computing and exploiting the sensitivity of the loading margin to

voltage collapse with respect to various parameters. The main idea is that after the

loading margin has been computed for nominal parameters, the effect on the loading

margin of altering the parameters can be predicted by Taylor series estimates. The

linear Taylor series estimates are extremely quick and easy and allow many variations

on the nominal case to be quickly explored. Exhaustively recomputing the point of

voltage collapse instability for each parameter change is avoided.

7.2 Nominal voltage collapse margin

Computing the nominal voltage collapse

The nominal point of voltage collapse is the theoretical limit of the steady state model

of the power system and is not a reasonable point at which to operate the actual power

system. However, by computing the nominal point of collapse, and thus the loading

margin to collapse, one can assess the security of the actual system operated at a

nominal stable operating point. In addition, the effects of contingencies and events

on the security of the actual system can be analyzed by computing the effects of the

contingencies and events on the loading margin to collapse.

The test system consists of 40 buses representing a portion of the South West

Peninsula power grid and is described in [HawPhD]. For this study, transformer taps

and switched compensation devices were assumed fixed. The branch and transformer

parameters are shown in Tables 3 and 4 respectively.

The derivations and application of the sensitivity formulas [GDA97] require the

choice of a nominal stable operating point at which parameters or controls are to

be adjusted, and a projected pattern of load increase. The nominal stable operating

point is shown in Table 5. Bus types are differentiated as:

• ‘PQ’, bus voltage and angle vary to maintain specified real and reactive power

injections.

• ‘PV’, reactive power output and bus angle vary to maintain specified real power

injection and voltage.

• ‘VA’, real and reactive power output vary to maintain specified bus voltage

and angle.
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Table 3: Transformer data

Tap Impedance Circuit Resistance Reactance Charging nominal
Bus Bus Number p.u. p.u. p.u. tap
1 29 1 0.001418 0.083418 0 1.111
1 29 2 0.00123 0.079708 0 1.111
2 30 1 0.001809 0.08 0 1.001
2 30 2 0.001473 0.079666 0 1.001
3 31 1 0.001628 0.084166 0 0.958
4 31 1 0.001614 0.083541 0 0.958
5 32 1 0.001701 0.083125 0 1.102
5 32 2 0.001743 0.083041 0 1.102
9 35 1 0.00075 0.0388 0 1.038
10 33 1 0.00073 0.0412 0 1.056
11 34 1 0.0004 0.02056 0 1.024
8 36 1 0.001458 0.080458 0 1.169
27 37 1 0.001859 0.08 0 0.94
28 37 1 0.001697 0.080875 0 0.94
39 38 1 0.000108 0.006375 0 1.0
20 19 1 0.00205 0.0805 0 1.0
22 21 1 0.00205 0.0805 0 1.0
13 12 1 0 0.033333 0 1.0
6 5 1 0 0.033333 0 1.0
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Table 4: Branch data

Tap Impedance Circuit Resistance Reactance Charging
Bus Bus Number p.u. p.u. p.u.
29 30 1 0 0.11721 0
31 32 1 0 0.034641 0
31 30 1 0 0.07906 0
32 36 1 0 0.1038 0
37 36 1 0 0.022255 0
27 19 1 0.000944 0.00759 0.12472
28 21 1 0.000943 0.007571 0.11711
1 2 1 0.001173 0.009338 0.28787
1 3 1 0.002284 0.018398 0.5546
2 4 1 0.001106 0.009019 0.26562
3 5 1 0.00118 0.009832 0.2772
4 5 1 0.001173 0.009776 0.27568
5 9 1 0.000436 0.005956 0.2473
7 17 1 0.000641 0.005102 0.15718
8 17 1 0.000641 0.005102 0.15718
9 11 1 0.001122 0.015332 0.63657
5 10 1 0.000909 0.012123 0.50235
10 11 1 0.000645 0.008821 0.36627
11 12 1 0.000963 0.013157 0.54617
11 38 1 0.000728 0.009951 0.4129
12 14 1 0.000483 0.006598 0.27397
12 38 1 0.000306 0.003964 0.7604
12 15 1 0.000936 0.007448 0.22967
12 15 2 0.000936 0.007448 0.2297
12 25 1 0.000779 0.010648 0.44213
12 25 2 0.000779 0.010648 0.4421
14 38 1 0.000246 0.003362 0.13961
15 16 1 0.000211 0.002885 0.11979
15 16 2 0.000211 0.002885 0.11979
16 23 1 0.001964 0.015628 0.48192
16 23 2 0.001964 0.015628 0.48192
16 24 1 0.000523 0.00713 0.7547
17 19 1 0.00035 0.024146 0.058978
17 21 1 0.00035 0.024146 0.058978
17 23 1 0.002077 0.016536 0.5098
17 23 2 0.002077 0.016536 0.5098
25 26 1 0.000617 0.008432 0.35012
25 26 1 0.000617 0.008432 0.3501
26 40 1 0.000523 0.00715 0.29655
26 40 2 0.00052 0.00711 0.295
1 7 1 0.00409 0.034082 0.96111
1 8 1 0.00409 0.034082 0.9611
5 7 1 0.000918 0.007305 0.22515
5 8 1 0.000918 0.007305 0.22515
18 17 1 0.000115 0.01055 0
12 38 1 0.000306 0.003964 0.7604
16 24 2 0.000523 0.00713 0.7547
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Table 5: Nominal stable operating point
Bus Bus Bus Voltage Angle Load Generation
No. Name Type (p.u.) (degrees) (MW) (MVAR) (MW) (MVAR)

1 INDQ4 PQ 1.014 -1.437 - - - -
2 LAND4 PQ 1.007 -1.648 - - - -
3 ABHA4T PQ 1.011 -0.852 - - - -
4 ABHA4U PQ 1.008 -1.097 - - - -
5 EXET4 PQ 1.016 -0.142 - - - -
6 EXET0 PV 1.020 -0.142 - - - 12.9
7 TAUN4J PQ 1.016 0.956 - - - -
8 TAUN4K PQ 1.018 0.865 - - - -
9 AXMI4 PQ 1.014 -0.317 - - - -
10 CHIC4 PQ 1.013 -0.201 - - - -
11 MANN4 PQ 1.008 -0.033 - - - -
12 LOVE4 PQ 1.006 0.721 422.0 -63.8 - -
13 LOVE0 PV 1.010 0.721 - - - 11.1
14 NURS4 PQ 1.005 1.212 200.4 48.4 - -
15 FLEE4 PQ 1.006 -0.416 469.1 96.5 - -60.0
16 BRLE4 PQ 1.009 -0.478 - - -108.8 86.3
17 HINP4 PQ 1.014 2.109 - - - -
18 HINP0 PV 1.000 8.683 - - 1099.1 -77.7
19 HINP2J PQ 0.994 3.476 - - - -
20 HINP0J PV 1.000 13.140 - - 207.8 19.6
21 HINP2K PQ 0.994 3.488 - - - -
22 HINP0K PV 1.000 13.153 - - 207.8 19.7
23 MELK4 PQ 1.015 -0.140 - - -392.6 42.5
24 DIDC4 PV 1.005 -0.541 - - -38.6 -177.0
25 BOLN4 PQ 0.998 0.573 518.5 117.3 - -
26 NINF4 PQ 0.994 1.710 358.4 153.1 - -
27 BRWA2Q PQ 0.987 3.036 - - - -
28 BRWA2R PQ 0.987 3.054 - - - -
29 INDQ1 PQ 0.898 -8.621 294.8 63.7 - -
30 LAND1 PQ 0.969 -5.284 131.6 39.1 - -
31 ABHA1 PQ 0.984 -4.412 157.9 46.9 - -
32 EXET1 PQ 0.951 -3.881 142.2 22.4 - -
33 CHIC1 PQ 0.956 -1.228 40.0 5.6 - -
34 MANN1 PQ 0.960 -4.609 368.5 91.6 - -
35 AXMI1 PQ 0.967 -2.289 84.2 22.4 - -
36 TAUN1 PQ 0.962 -1.860 31.6 6.7 - -
37 BRWA1 PQ 0.992 -1.658 200.1 - - -
38 FAWL4 PQ 1.005 1.841 156.0 57.4 - -
39 FAWL0 PV 1.000 8.420 - - 1806.5 -9.5
40 DUNG4 VA 0.996 3.400 - - 819.1 -26.4
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Table 6: Reactive power limits

Bus Bus Maximum Minimum
No. Name (MVAR) (MVAR)

6 EXET0 150 -75
13 LOVE0 150 -75
18 HINP0 660 -9999
20 HINP0J 150 -9999
22 HINP0K 150 -90
24 DIDC4 9999 -9999
39 FAWL0 470 -9999

Table 7: Direction of load increase

Bus Bus Real Reactive
No. Name Power Power

29 INDQ1 0.2032 0.0439
30 LAND1 0.0907 0.0270
31 ABHA1 0.1089 0.0324
32 EXET1 0.0980 0.0154
33 CHIC1 0.0276 0.0039
34 MANN1 0.2540 0.0632
35 AXMI1 0.0581 0.0154
36 TAUN1 0.0218 0.0046
37 BRWA1 0.1379 0.0000

The pattern of load increase is a direction in loading space along which the loading

margin is measured. The direction of load increase is shown in Table 7. Note that the

sum of the real power components of the load direction is unity. Thus the direction

of load increase is a unit vector using the L1 norm.

The nominal point of collapse must be computed by a method that takes into

account system limits such as generator reactive power limits as they are encountered.

In general, the limits enforced at the point of collapse are different than those at the

stable operating point.

The nominal voltage collapse was established as follows: From the base case equi-

librium point (Table 5) representing a total load of 3575 MW, the loading was grad-

ually increased at the specified buses in the proportions shown in Table 7. The effect

of generators reaching VAR limits listed in Table 6 was modeled by replacing ‘PV’
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buses with ‘PQ’ buses at the loading at which VAR limits were reached. Transformer

taps were held fixed at the starting ratios. No other changes to the network param-

eters were implemented. In particular, no shunts were adjusted as the loading was

increased. The base case system encountered a voltage collapse at a total load of

5380 MW, and thus the nominal margin is 1805 MW. Prior to voltage collapse, the

PV buses at EXET0, FAWL0, and LOVE0 encountered VAR limits, and the PV bus

at HINP0 was very close to reaching its VAR limit. Table 8 shows the solution at

the nominal point of collapse. Generators that have reached reactive power limits are

indicated in bold face as is the VAR output at HINP0 which is precariously close to

a VAR limit.

The Jacobian of the equilibrium equations with respect to the state variables

at the nominal point of collapse is singular (fold bifurcation). The left eigenvector

corresponding to the zero eigenvalue of the system Jacobian matrix evaluated at

the nominal point of collapse is shown in Table 9, normalized so that the largest

component is unity. This left eigenvector is the normal vector to the set of real

and reactive power injections that correspond to a fold bifurcation of the equilibrium

equations. The left eigenvector indicates that the bus with the greatest influence on

the loading margin is the Indian Queens 132kV bus.

7.3 Loading margin sensitivity

Introduction

This section describes and illustrates the use of loading margin sensitivities to avoid

voltage collapse. The nominal stable operating point and the nominal point of collapse

are described in the previous section.

The derivation of the sensitivity formulas assumes that the system equations re-

main fixed as parameters are varied. In particular, the limits enforced at the point

of collapse are assumed to stay the same as parameters are varied. (A change in the

system limits corresponds to a change in the system equations and the sensitivity

based estimates using the equations valid at the nominal nose can become inaccurate

when the parameters change sufficiently so that the equations change.)

For this study, when a generator represented by a ‘PV’ bus reaches a reactive power

limit, it is converted to a ‘PQ’ bus, effectively changing the equilibrium equations

modeling the system. In [GDA97] and [GDA98], the major cause for inaccuracies of

the sensitivity based estimates is shown to be generator reactive power limits changing

as parameters are varied.

The case studied here is indeed challenging since the generator at HINP0 is very
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Table 8: Nominal point of collapse

Bus Bus Bus Voltage Angle Load Generation
No. Name Type (p.u.) (degrees) (MW) (MVAR) (MW) (MVAR)

1 INDQ4 PQ 0.832 -29.32 - - - -
2 LAND4 PQ 0.826 -29.88 - - - -
3 ABHA4T PQ 0.863 -27.28 - - - -
4 ABHA4U PQ 0.851 -28.03 - - - -
5 EXET4 PQ 0.895 -25.03 - - - -
6 EXET0 PQ 0.948 -25.03 - - - 150.0
7 TAUN4J PQ 0.914 -23.43 - - - -
8 TAUN4K PQ 0.915 -23.71 - - - -
9 AXMI4 PQ 0.899 -24.20 - - - -
10 CHIC4 PQ 0.907 -22.47 - - - -
11 MANN4 PQ 0.916 -20.09 - - - -
12 LOVE4 PQ 0.958 -14.54 422.0 -63.8 - -
13 LOVE0 PQ 1.008 -14.54 - - - 150.0
14 NURS4 PQ 0.957 -14.44 200.4 48.4 - -
15 FLEE4 PQ 0.972 -17.45 469.1 96.5 - -60.0
16 BRLE4 PQ 0.982 -18.12 - - -108.8 86.3
17 HINP4 PQ 0.937 -21.56 - - - -
18 HINP0 PV 1.000 -14.50 - - 1099.1 650.0
19 HINP2J PQ 0.924 -21.67 - - - -
20 HINP0J PV 1.000 -11.38 - - 207.8 107.7
21 HINP2K PQ 0.924 -21.65 - - - -
22 HINP0K PV 1.000 -11.35 - - 207.8 107.6
23 MELK4 PQ 0.963 -20.77 - - -392.6 42.5
24 DIDC4 PV 1.005 -18.30 - - -38.6 582.1
25 BOLN4 PQ 0.958 -8.433 518.5 117.3 - -
26 NINF4 PQ 0.971 -2.317 358.4 153.1 - -
27 BRWA2Q PQ 0.912 -22.70 - - - -
28 BRWA2R PQ 0.912 -22.66 - - - -
29 INDQ1 PQ 0.569 -61.26 661.6 142.9 - -
30 LAND1 PQ 0.717 -43.48 295.4 87.8 - -
31 ABHA1 PQ 0.786 -39.44 354.4 105.3 - -
32 EXET1 PQ 0.787 -37.56 319.0 50.2 - -
33 CHIC1 PQ 0.852 -25.36 89.8 12.5 - -
34 MANN1 PQ 0.821 -33.42 827.0 205.7 - -
35 AXMI1 PQ 0.839 -29.97 189.0 50.2 - -
36 TAUN1 PQ 0.845 -33.64 70.9 15.1 - -
37 BRWA1 PQ 0.883 -34.07 449.0 - - -
38 FAWL4 PQ 0.957 -13.97 156.0 57.4 - -
39 FAWL0 PQ 0.983 -6.965 - - 1806.5 470.0
40 DUNG4 AV 0.996 3.400 - - 2748.7 601.2
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Table 9: Left eigenvector corresponding to the zero eigenvalue of the system Jacobian
at the nominal point of collapse

Bus Bus Real Reactive
No. Name Power Power
1 INDQ4 0.1172 0.3041
2 LAND4 0.1227 0.2936
3 ABHA4T 0.0899 0.2240
4 ABHA4U 0.0984 0.2386
5 EXET4 0.0683 0.1710
6 EXET0 0.0683 0.1530
7 TAUN4J 0.0552 0.1439
8 TAUN4K 0.0568 0.1445
9 AXMI4 0.0625 0.1545
10 CHIC4 0.0522 0.1337
11 MANN4 0.0404 0.1056
12 LOVE4 0.0206 0.0542
13 LOVE0 0.0206 0.0491
14 NURS4 0.0207 0.0593
15 FLEE4 0.0238 0.0373
16 BRLE4 0.0242 0.0307
17 HINP4 0.0421 0.1031
18 HINP0 0.0281 0.0000
19 HINP2J 0.0450 0.0916
20 HINP0J 0.0258 0.0000
21 HINP2K 0.0449 0.0915
22 HINP0K 0.0257 0.0000
23 MELK4 0.0341 0.0651
24 DIDC4 0.0221 0.0000
25 BOLN4 0.0094 0.0337
26 NINF4 0.0027 0.0157
27 BRWA2Q 0.0502 0.0967
28 BRWA2R 0.0500 0.0966
29 INDQ1 0.9086 1.0000
30 LAND1 0.3177 0.4820
31 ABHA1 0.2107 0.3091
32 EXET1 0.1730 0.2479
33 CHIC1 0.0660 0.1364
34 MANN1 0.0988 0.1357
35 AXMI1 0.0955 0.1670
36 TAUN1 0.1122 0.1572
37 BRWA1 0.1085 0.1385
38 FAWL4 0.0198 0.0617
39 FAWL0 0.0048 0.0597
40 DUNG4 0.0000 0.0000
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close to a limit at the nominal point of collapse. It is likely that for changes in some

parameters, the maximum VAR limit at HINP0 will be reached prior to the new

collapse point.

Computation of linear sensitivity

The linear estimate of the change in loading margin (∆L) resulting from a change to

an arbitrary parameter (∆p) is:

∆L = Lp∆p =
−wFp∆p

wFλk̂
(132)

where :

• Lp is the sensitivity of the loading margin with respect to the parameter.

• F are the power system equilibrium equations (real and reactive power balance

at each bus) that apply at the nose. In particular, F accounts for the power

system limits enforced at the nose.

• Fλ, the derivative of F with respect to the load parameters. For constant power

load models Fλ is a diagonal matrix with ones in the rows corresponding to

buses with loads.

• Fp, the derivative of the equilibrium equations with respect to the parameter

p at the nominal nose point. The parameter can be a vector and then Fp is a

matrix.

• w, the left eigenvector corresponding to the zero eigenvalue of the system Jaco-

bian Fx (Fx evaluated at a fold bifurcation is singular [IEEE1, DCL, Davos]).

• k̂, the unit vector in the direction of load increase. k̂ also defines the direction in

which the loading margin is measured. The direction of load increase is shown

in Table 7.

The denominator of (132) is a scaling factor that is the same for all parameter

changes. The linear sensitivity can be improved with a quadratic estimate, derived

and explained in [GDA97].

Sensitivity with respect to load variation

Table 9 shows the left eigenvector corresponding to the zero eigenvalue of the system

Jacobian evaluated at the nominal fold point. This left eigenvector indicates that the
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voltage collapse is most affected by the load at the 132 KV Indian Queens bus. There

are several situations in which the sensitivity of the margin to voltage collapse with

respect to the load would be of interest.

There is usually uncertainty in the metering or forecast of loads. By computing

the sensitivity to the load, one can estimate the effects of inaccuracy in the nominal

values used. Secondly, it might be possible to interrupt load at a bus, and it would be

useful to know how much margin can be gained for each MW of load shed. Finally,

the sensitivity computation identifies buses that are good candidates for planned

improvements. For example, load margin sensitivity can specify good locations for

VAR support or areas where interruptible contracts can be most profitable.

Methods

The loading margin corresponding to various loads of the same power factor at the

132KV Indian Queens Bus is computed by the same continuation method used to

obtain the nominal fold bifurcation. The results are compared to those obtained

using the linear sensitivity formulas evaluated at the nominal fold bifurcation.

There is 294 MW of 0.98 power factor load at the Indian Queens 132KV bus at

the nominal stable operating point. Results are obtained for variation of ±50MW, or

(±17%) of the base load.

Results

The solid lines in Figures 16 and 17 are the linear estimates for the loading margin

variation as a function of the load shed. The dots in Figures 16 and 17 represent the

actual values of the loading margin as computed by the continuation method.

Figure 16 shows the effects on the loading margin for increasing the load at INDQ0

by 10 MW increments at power factor 0.98. The dots represent the collapse points

as computed by continuation, and the line represents the linear estimate. Figure 17

shows the effects on the loading margin for decreasing the load at INDQ0 by 10 MW

increments at power factor of 0.98.

The agreement between the linear estimates and the actual margins is excellent

over the entire range, but better for the increase in load than the reduction of load.

Closer inspection showed that a reduction of any more than 3 MW caused the gener-

ator at HINP0 to reach its reactive power limit prior to voltage collapse. The nearby

VAR limit at HINPO affected the accuracy of the estimates as speculated. Although

the effect is recognizable as a deviation from the linear estimate, the magnitude of the

error is insignificant. (In fact, the HINP0 VAR limit causes an immediate instability

(see section 7.5). The immediate instability occurs closer to the estimate point of
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collapse than the fold point computed and is shown by the circles in Figure 18.)

Sensitivity with respect to VAR limits

Computation of the nominal voltage collapse point showed that Buses EXET0, FAWL0,

and LOVE0 all encounter VAR limits. We find out from sensitivities how the loading

margin to voltage collapse would change if these limits were different.

Methods

The magnitude of the components of the zero left eigenvector (Table 9) corresponding

to reactive power injection indicates that of the three generators that encounter VAR

limits between the nominal stable operating point and the point of collapse, the

generator at the 132 KV bus at Exeter has the greatest influence on the margin

to collapse. The loading margin corresponding to various maximum reactive power

limits at the 132KV Exeter Bus is computed by the same continuation method used

to obtain the nominal fold bifurcation. The results are compared to those obtained

using the linear sensitivity formula evaluated at the nominal fold bifurcation.

The nominal maximum reactive power limit at the Exeter 132KV bus is 150

MVARs. Results are obtained for a variation of 30 MVARs, or (±20%) of the nominal

limit.

Results

The solid lines in Figure 19 shows the linear estimate for the loading margin variation

as a function of the maximum reactive power limit at the 132 KV Exeter bus. The

dots in Figure 19 represent the actual values of the loading margin as computed by

the continuation method. The agreement between the linear estimates and the actual

margins is excellent over the entire range.

7.4 Contingency ranking for voltage collapse

The sensitivity formulas (132) of the previous section can be used to estimate the

effects of contingencies on the margin to voltage collapse. In this case the parameter

p is a vector representing the line admittance, and instead of looking at the effect of

small deviations, the change in the parameter is 100%.
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Figure 16: Effect of load increase at Indian Queens on the loading margin to voltage
collapse
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Figure 17: Effect of load decrease at Indian Queens on the loading margin to voltage
collapse
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Figure 18: Effect of load decrease at Indian Queens on the loading margin to voltage
collapse and critical VAR limit
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Figure 19: Effect of variation in VAR limits at Exeter on the loading margin to voltage
collapse
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Method

The estimates for the effects of contingencies were computed as described in [GDA98].

The actual margins resulting from the contingencies were computed by first identify-

ing a stable post contingency equilibrium at the base case loading and then gradually

increasing the load and accounting for VAR limits until a voltage collapse due to fold

bifurcation of the equilibrium equations was found.

Radial line outages are a special case in which the derived formulas do not strictly

apply since the post outage network will not be connected. We suggest that the

contingency list be first screened to identify radial lines, and that these outages be

analyzed and ranked separately from the other contingencies. 1

Results

Table 10 compares the estimates to the actual margins for all non-radial line outages

resulting in at least a 75 MW reduction in loading margin. The ranks correspond to

the rank of each outage among all other non-radial line outages. Table 11 compares

the estimates to the actual margins for all radial line outages, with ranking shown

among only radial lines. The two most critical radial line outages are among the

most critical line outages and are identified as so. However, the estimates for the

radial line outages tend to be better than the estimates for non-radial outages, and

so the moderate radial outages tend to be ranked too high when included with all

line outages. Table 12 shows the remaining line outages. Outages mis-grouped by

the estimates are shown in bold face. The radial outages were all ranked correctly.

For the four outages causing less than a 10 MW change in margin, the mean

error for the linear estimate was 3.0 MW and the maximum error was 4 MW. For

the ten outages causing between a 10 MW and 20 MW change in margin, the mean

error was 3.9 MW and the maximum error was 13 MW. For the thirteen outages

causing between a 20 MW and 45 MW change in margin, the mean error was 10.4

MW and the maximum error was 26 MW. The estimates captured the thirteen worst

non-radial line outages, all causing greater than 60 MW change in the margin. The

worst results pertained to the outages between BRWA2Q and HINP2J (27.19.1) and

BRWA2R and HINP2K (28.21.1).

As noted in [GDA98], the major cause for inaccuracy was due to changes in the

1For the system used for this report, all radial line outages result in isolation of a single bus. The
estimates were then obtained by assuming a reduced system in which the flows on the outaged line
appear as loads at the bus still connected to the network following the outage, and the left eigenvector
components for that bus adjusted to include the components corresponding to the isolated bus. The
outage estimates then correspond to the case of adding load at a bus.
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Table 10: Estimated and actual changes in the loading margin to fold bifurcation
resulting from severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW MW (rank) Generators
29.30.1 1464 -341 (1) -172 (1) -266 (1) EXET0

4.5.1 1555 -250 (2) -82 (4) -133 (4) EXET0,FAWL0

7.17.1 1635 -170 (3) -52 (9) -87 (7) EXET0,FAWL0,LOVE0

8.17.1 1637 -168 (4) -54 (8) -89 (6) EXET0,FAWL0,LOVE0

1.7.1 1643 -162 (5) -129 (2) -154 (2) EXET0,FAWL0

1.8.1 1643 -162 (6) -129 (3) -154 (3) EXET0,FAWL0

11.38.1 1650 -155 (7) -70 (5) -101 (5) EXET0,FAWL0,HINP0

2.4.1 1653 -152 (8) -48 (11) -75 (10) EXET0,FAWL0

3.5.1 1653 -152 (9) -51 (10) -80 (9) EXET0,FAWL0

11.12.1 1700 -105 (10) -61 (6) -83 (8) EXET0,FAWL0,HINP0

1.3.1 1718 -87 (11) -56 (7) -71 (11) EXET0,FAWL0

set of limits that apply at the point of collapse. This system proved to be a most

challenging case, since all but nine outages forced a change in the limits applied at

the nose.

As expected, often the change in VAR limits involved the HINP0 bus precariously

close to a limit at the nominal point of collapse. In many instances, encountering this

limit caused an immediate instability and this is addressed in section 7.5.

7.5 Voltage collapse due to VAR limits

The previous sections and the theory presented in [GDA97, GDA98] associate voltage

collapse of the electric power system with a fold bifurcation of the equilibrium equa-

tions used to model the system. Experience [DCL, Davos, FOC90, FFOCH, HSS,

HawPhD] has shown that the VAR limitations of generators are associated with volt-

age instability, and computational experience shows that the effect of changing PV

buses in the equilibrium model of the power system to PQ buses often reduces the

loading margin to voltage collapse.

In some cases, when the system loading is high, the effect of changing a PV bus

to a PQ bus causes the margin to the fold bifurcation to increase. Upon application
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Table 11: Estimated and actual changes in the loading margin to fold bifurcation
resulting from radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW MW (rank) Generators
18.17.1 1367 -438 (1) -265 (1) -366 (1)
39.38.1 1568 -237 (2) -167 (2) -203 (2) EXET0,LOVE0,HINP0

6.5.1 1738 -67 (3) -60 (3) -62 (3)
20.19.1 1752 -53 (4) -46 (4) -57 (4) EXET0,FAWL0,

LOVE0,HINP0

22.21.1 1752 -53 (5) -46 (5) -57 (5) EXET0,FAWL0,

LOVE0,HINP0

13.12.1 1792 -13 (6) -19 (6) -20 (6)

of the limit, the equilibrium point appears on the bottom half of the nose curve, and

voltages increase upon increase in load [HSS].

The points at which changing a PV bus to a PQ bus alter the system nose curve

so that the equilibrium solution is on the lower voltage branch of the new nose curve

represent points at which the power system may become immediately unstable. We

refer to these points as points of immediate instability, to distinguish them from fold

bifurcation points. However, either a fold bifurcation point or point of immediate

instability can lead to a dynamic voltage collapse.

Tables 13,14, and 15 show the same results as in section 7.4 except that the

actual margins are adjusted to reflect the cases in which an immediate instability

was encountered before the fold bifurcation at the nose of the curve. In all cases, the

VAR limit was caused by the generator at HINP0. Those cases for which a change in

margin occurs are highlighted in bold. The immediate instability caused only minor

changes in ranking between outages within 5 MW of each other. The outages are

listed in the same rankings as in section 7.4.

For nearly half of the outages, instability was due to fold bifurcation, not imme-

diate instability. All of the most serious outages were due to fold bifurcation. When

the actual margin represents the distance to immediate instability and not to fold

bifurcation, the margin to fold bifurcation is noted in parentheses. In all cases, fold

bifurcation occurs within 11 MW of immediate instability. Table 16 compares the
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Table 12: Estimated and actual changes in the loading margin to fold bifurcation
resulting from less severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW Generators

31.30.1 1735 -70 -33 -51 EXET0,FAWL0
9.11.1 1739 -66 -39 -51 EXET0,FAWL0,HINP0
27.19.1 1747 -58 -6 -8 EXET0,FAWL0,LOVE0,HINP0
28.21.1 1748 -57 -5 -8 EXET0,FAWL0,LOVE0,HINP0
5.7.1 1752 -53 -27 -37 EXET0,FAWL0,LOVE0
5.8.1 1755 -50 -26 -36 EXET0,FAWL0,LOVE0
10.11.1 1757 -48 -21 -29 EXET0,FAWL0,HINP0
5.10.1 1759 -46 -29 -37 EXET0,FAWL0,HINP0
16.24.1 1764 -41 -28 -39 EXET0,FAWL0,LOVE0,HINP0
16.24.2 1764 -41 -28 -39 EXET0,FAWL0,LOVE0,HINP0
12.38.1 1767 -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
12.38.2 1767 -3 -12 -12 EXET0,FAWL0,LOVE0,HINP0
17.23.1 1771 -34 -24 -29 EXET0,FAWL0,HINP0
17.23.2 1771 -34 -24 -29 EXET0,FAWL0,HINP0
26.40.2 1775 -30 -17 -27 EXET0,FAWL0,LOVE0,HINP0
26.40.1 1775 -30 -17 -27 EXET0,FAWL0,LOVE0,HINP0
37.36.1 1777 -28 -4 -8 EXET0,FAWL0,LOVE0
25.26.1 1778 -27 -17 -25 EXET0,FAWL0,LOVE0,HINP0
25.26.2 1778 -27 -17 -25 EXET0,FAWL0,LOVE0,HINP0
5.9.1 1778 -27 -12 -14 EXET0,FAWL0,HINP0
32.36.1 1779 -26 -14 -21 EXET0,FAWL0,LOVE0
16.23.1 1785 -20 -18 -23 EXET0,FAWL0,LOVE0,HINP0
16.23.2 1785 -20 -18 -23 EXET0,FAWL0,LOVE0,HINP0
12.25.1 1787 -18 -16 -22 EXET0,FAWL0,LOVE0,HINP0
12.25.2 1787 -18 -16 -22 EXET0,FAWL0,LOVE0,HINP0
31.32.1 1787 -18 -5 -8 EXET0,FAWL0,LOVE0
1.2.1 1791 -14 -14 -13 EXET0,FAWL0,LOVE0,HINP0
15.16.1 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
15.16.2 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
12.15.1 1793 -12 -14 -20 EXET0,FAWL0,LOVE0,HINP0
12.15.2 1793 -12 -14 -20 EXET0,FAWL0,LOVE0,HINP0
12.14.1 1800 -5 -4 -4 EXET0,FAWL0,LOVE0,HINP0
14.38.1 1800 -5 -2 -2 EXET0,FAWL0,LOVE0,HINP0
17.19.1 1809 4 0 2 EXET0,FAWL0,LOVE0
17.21.1 1809 4 0 2 EXET0,FAWL0,LOVE0
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Table 13: Estimated and actual changes in the loading margin to voltage collapse
resulting from severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW MW (rank) Generators
29.30.1 1464 -341 (1) -172 (1) -266 (1) EXET0

4.5.1 1555 -250 (2) -82 (4) -133 (4) EXET0,FAWL0

7.17.1 1635 -170 (3) -52 (9) -87 (7) EXET0,FAWL0,LOVE0

8.17.1 1637 -168 (4) -54 (8) -89 (6) EXET0,FAWL0,LOVE0

1.7.1 1643 -162 (5) -129 (2) -154 (2) EXET0,FAWL0

1.8.1 1643 -162 (6) -129 (3) -154 (3) EXET0,FAWL0

11.38.1 1650 -155 (7) -70 (5) -101 (5) EXET0,FAWL0,HINP0

2.4.1 1653 -152 (8) -48 (11) -75 (10) EXET0,FAWL0

3.5.1 1653 -152 (9) -51 (10) -80 (9) EXET0,FAWL0

11.12.1 1699 (1700) -106 (10) -61 (6) -83 (8) EXET0,FAWL0,HINP0

1.3.1 1718 -87 (11) -56 (7) -71 (11) EXET0,FAWL0

loading margins to fold bifurcation with the loading margins to immediate instabil-

ity for each outage at which an immediate instability was observed prior to voltage

collapse due to fold bifurcation.

Since all cases of immediate instability resulted from the generator at HINP0

hitting a VAR limit (although this did not always result in an immediate instability)

it is natural to ask how the contingencies affect the loading margin to the HINP0

VAR limit, as opposed to the loading margin to the fold bifurcation. This topic is

addressed in section 7.6.

7.6 Contingency ranking for voltage collapse due

to VAR limits

The sensitivity computations can be easily extended to the case were the voltage

collapse is an immediate instability due to a VAR limit rather than a fold bifurcation.

The derivations of the sensitivity formulas in [GDA97] required the description of

a manifold in which each point on the manifold corresponded to a point of fold

bifurcation. The normal vector to this surface is defined by the zero left eigenvector
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Table 14: Estimated and actual changes in the loading margin to voltage collapse
resulting from radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW MW (rank) Generators
18.17.1 1367 -438 (1) -265 (1) -366 (1)
39.38.1 1568 -237 (2) -167 (2) -203 (2) EXET0,LOVE0,HINP0

6.5.1 1738 -67 (3) -60 (3) -62 (3)

20.19.1 1750 (1752) -55 (4) -46 (4) -57 (4) EXET0,FAWL0,

LOVE0,HINP0

22.21.1 1750 (1752) -55 (5) -46 (5) -57 (5) EXET0,FAWL0,

LOVE0,HINP0

13.12.1 1792 -13 (6) -19 (6) -20 (6)

of the system Jacobian. Similarly we can construct a manifold in which each point

corresponds to the point at which a particular generator is at a VAR limit. The

normal vector to this surface can then be used in the sensitivity formulas to compute

the sensitivity of the margin to encountering a VAR limit.

Computation of nominal point of instability

Computation of the point of immediate instability is similar to computation of a

fold bifurcation point. The same continuation method can be used, and the point of

collapse is the point at which a VAR limit is encountered and upon further increase

in load the system voltages increase. Thus, the immediate instability can be detected

by computing the sensitivity of the bus voltages to the loading factor after application

of the limit. (Note that the software described in [HSS] performs this check to detect

voltage collapse due to fold bifurcation or immediate instability.) It is in general

easier to locate the exact point of encountering a VAR limit than it is to locate the

exact fold bifurcation point. The equations are sparser, a good initial guess for the

eigenvectors is unnecessary, and the Jacobian is less likely to be poorly conditioned

since the power balance equations are not evaluated at a point of singularity.

For this study, the maximum VAR limit at HINP0 was changed from 660 MVAR

to 630 MVAR. The continuation program was run as before, and again, VAR limits

were reached at EXET0, FAWL0, and LOVE0. However, at a loading 5379 MW,
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Table 15: Estimated and actual changes in the loading margin to voltage collapse
resulting from less severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change Linear Quadratic Limited
Outage MW Generators

31.30.1 1735 -70 -33 -51 EXET0,FAWL0
9.11.1 1735 (1739) -66 -39 -51 EXET0,FAWL0,HINP0
27.19.1 1741 (1747) -64 -6 -8 EXET0,FAWL0,LOVE0,HINP0
28.21.1 1742 (1748) -63 -5 -8 EXET0,FAWL0,LOVE0,HINP0
5.7.1 1752 -53 -27 -37 EXET0,FAWL0,LOVE0
5.8.1 1755 -50 -26 -36 EXET0,FAWL0,LOVE0
10.11.1 1750 (1757) -55 -21 -29 EXET0,FAWL0,HINP0
5.10.1 1753 (1759) -52 -29 -37 EXET0,FAWL0,HINP0
16.24.1 1757 (1764) -48 -28 -39 EXET0,FAWL0,LOVE0,HINP0
16.24.2 1757 (1764) -48 -28 -39 EXET0,FAWL0,LOVE0,HINP0
12.38.1 1767 (1767) -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
12.38.2 1767 (1767) -38 -12 -12 EXET0,FAWL0,LOVE0,HINP0
17.23.1 1769 (1771) -36 -24 -29 EXET0,FAWL0,HINP0
17.23.2 1769 (1771) -36 -24 -29 EXET0,FAWL0,HINP0
26.40.2 1769 (1775) -36 -17 -27 EXET0,FAWL0,LOVE0,HINP0
26.40.1 1770 (1775) -35 -17 -27 EXET0,FAWL0,LOVE0,HINP0
37.36.1 1777 -28 -4 -8 EXET0,FAWL0,LOVE0
25.26.1 1771 (1778) -34 -17 -25 EXET0,FAWL0,LOVE0,HINP0
25.26.2 1771 (1778) -34 -17 -25 EXET0,FAWL0,LOVE0,HINP0
5.9.1 1780 (1778) -29 -12 -14 EXET0,FAWL0,HINP0
32.36.1 1779 -26 -14 -21 EXET0,FAWL0,LOVE0
16.23.1 1778 (1785) -27 -18 -23 EXET0,FAWL0,LOVE0,HINP0
16.23.2 1778 (1785) -27 -18 -23 EXET0,FAWL0,LOVE0,HINP0
12.25.1 1779 (1787) -26 -16 -22 EXET0,FAWL0,LOVE0,HINP0
12.25.2 1779 (1787) -26 -16 -22 EXET0,FAWL0,LOVE0,HINP0
31.32.1 1787 -18 -5 -8 EXET0,FAWL0,LOVE0
1.2.1 1791 -14 -14 -13 EXET0,FAWL0,LOVE0,HINP0
15.16.1 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
15.16.2 1791 -14 -7 -9 EXET0,FAWL0,LOVE0,HINP0
12.15.1 1782 (1793) -23 -14 -20 EXET0,FAWL0,LOVE0,HINP0
12.15.2 1782 (1793) -23 -14 -20 EXET0,FAWL0,LOVE0,HINP0
12.14.1 1800 -5 -4 -4 EXET0,FAWL0,LOVE0,HINP0
14.38.1 1800 -5 -2 -2 EXET0,FAWL0,LOVE0,HINP0
17.19.1 1809 4 0 2 EXET0,FAWL0,LOVE0
17.21.1 1809 4 0 2 EXET0,FAWL0,LOVE0
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Table 16: The loading margins to fold bifurcation and voltage collapse for all line
outages causing an immediate instability prior to fold bifurcation

(nominal loading margin = 1805 MW)

Line Margin to Margin to
Outage Immediate Fold

Instability Bifurcation
MW MW

11.12.1 1699 1700
9.11.1 1735 1739
27.19.1 1741 1747
28.21.1 1742 1748
10.11.1 1750 1757
20.19.1 1750 1752
22.21.1 1750 1752
5.10.1 1753 1759
16.24.1 1757 1764
16.24.2 1757 1764
12.38.1 1767 1767
12.38.2 1767 1767
17.23.1 1769 1771
17.23.2 1769 1771
26.40.2 1769 1775
26.40.1 1770 1775
25.26.1 1771 1778
25.26.2 1771 1778
5.9.1 1778 1780
16.23.1 1778 1785
16.23.2 1778 1785
12.25.1 1779 1787
12.25.2 1779 1787
12.15.1 1782 1793
12.15.2 1782 1793
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HINP0 reaches its VAR limit of 630 MVARS, and the system becomes unstable once

the PV bus is converted to a PQ bus. (A fold bifurcation of the post limit system

occurs at 5385 MW. Note that the point of collapse for the original system occurred

at a loading of 5380 MW due to fold bifurcation.)

Computation of sensitivity

When the voltage collapse is identified with the fold bifurcation of the equilibrium

model, the left zero eigenvector can be used to compute the normal vector to the

surface of bifurcation points in parameter space. Similarly, when the voltage collapse

is identified with the immediate instability due to application of a VAR limit, there

is a normal vector in parameter space to the surface of points at which the critical Q

limit is reached. Chapter 4 details the computation of this vector for general limits.

In short, when equation (132) is evaluated with the vector w computed at the critical

VAR limit point (as opposed to at the fold bifurcation point), ∆L reflects the linear

estimate of the change in margin to the VAR limit for the change in parameter ∆p.

Table 17 compares the VAR limit normal vector N to the zero left eigenvector W.

The angle between N and W is 4.6 degrees. Note that it is considerably easier to

compute N than W. There is no need to compute a Hessian term and computation

of N does not require a good initial guess.

When the sensitivity computations and contingency rankings were repeated using

N in place of W, no significant changes were observed. Tables 18 and 19 compare the

linear estimates for the change in margin resulting from the lines outages computed

with both the left zero eigenvector, W, at the original fold bifurcation point, and

the normal vector to the VAR limit set, N, with the actual margins to instability

for the original system. Note that there is very little difference in the estimates, and

the top twelve contingencies are ranked the same except for two contingencies with a

difference of less than 1 MW are switched. In each case limited by fold bifurcation,

the estimate computed with the zero left eigenvector is better than the estimate

computed with the normal vector. For the one contingency of the top twelve limited

by immediate instability, the VAR limit normal vector is superior.

Table 19 shows the less critical contingencies which tend to be limited by im-

mediate instability as opposed to fold bifurcation. The estimates are very similar,

seldom differing by more than 5 MW. However, the estimates computed with the

normal vector to the VAR limit set are better than those computed with the zero left

eigenvector for the cases that were limited by immediate instability.
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Table 17: Comparison of the normal vectors to the parameter set corresponding to
fold bifurcation (W) and immediate instability (N)

Bus Bus Real Power Reactive Power
No. Name W N W N
1 INDQ4 0.1172 0.1357 0.3041 0.3351
2 LAND4 0.1227 0.1417 0.2936 0.3253
3 ABHA4T 0.0899 0.1061 0.224 0.2555
4 ABHA4U 0.0984 0.1153 0.2386 0.2703
5 EXET4 0.0683 0.0819 0.171 0.2018
6 EXET0 0.0683 0.0819 0.153 0.1806
7 TAUN4J 0.0552 0.0674 0.1439 0.1769
8 TAUN4K 0.0568 0.0693 0.1445 0.1776
9 AXMI4 0.0625 0.0749 0.1545 0.1826
10 CHIC4 0.0522 0.0627 0.1337 0.1584
11 MANN4 0.0404 0.0486 0.1056 0.1257
12 LOVE4 0.0206 0.0249 0.0542 0.0655
13 LOVE0 0.0206 0.0249 0.0491 0.0594
14 NURS4 0.0207 0.025 0.0593 0.0715
15 FLEE4 0.0238 0.0287 0.0373 0.0462
16 BRLE4 0.0242 0.0293 0.0307 0.0387
17 HINP4 0.0421 0.0522 0.1031 0.1376
18 HINP0 0.0281 0.0268 0 0.0608
19 HINP2J 0.045 0.0552 0.0916 0.1197
20 HINP0J 0.0258 0.0301 0 0
21 HINP2K 0.0449 0.0551 0.0915 0.1196
22 HINP0K 0.0257 0.03 0 0
23 MELK4 0.0341 0.0419 0.0651 0.0857
24 DIDC4 0.0221 0.0266 0 0
25 BOLN4 0.0094 0.0114 0.0337 0.0408
26 NINF4 0.0027 0.0033 0.0157 0.019
27 BRWA2Q 0.0502 0.0615 0.0967 0.1256
28 BRWA2R 0.05 0.0613 0.0966 0.1254
29 INDQ1 0.9086 0.9176 1 1
30 LAND1 0.3177 0.3473 0.482 0.5128
31 ABHA1 0.2107 0.2394 0.3091 0.3449
32 EXET1 0.173 0.2002 0.2479 0.2835
33 CHIC1 0.066 0.0789 0.1364 0.1615
34 MANN1 0.0988 0.1176 0.1357 0.1611
35 AXMI1 0.0955 0.1137 0.167 0.1971
36 TAUN1 0.1122 0.1355 0.1572 0.191
37 BRWA1 0.1085 0.1323 0.1385 0.1713
38 FAWL4 0.0198 0.0239 0.0617 0.0743
39 FAWL0 0.0048 0.0059 0.0597 0.0719
40 DUNG4 0 0 0 0
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Table 18: Comparison of linear estimated changes in the loading margin to voltage
collapse resulting from severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change VAR (N) Fold (W) Limited
Outage MW MW (rank) Generators
29.30.1 1464 -341 (1) -172 (1) -148 (1) EXET0

4.5.1 1555 -250 (2) -82 (4) -80 (4) EXET0,FAWL0

7.17.1 1635 -170 (3) -52 (9) -49 (10) EXET0,FAWL0,LOVE0

8.17.1 1637 -168 (4) -54 (8) -51 (8) EXET0,FAWL0,LOVE0

1.7.1 1643 -162 (5) -129 (2) -127 (2) EXET0,FAWL0

1.8.1 1643 -162 (6) -129 (3) -126 (3) EXET0,FAWL0

11.38.1 1650 -155 (7) -70 (5) -77 (5) EXET0,FAWL0,HINP0

2.4.1 1653 -152 (8) -48 (11) -47 (11) EXET0,FAWL0

3.5.1 1653 -152 (9) -51 (10) -51 (9) EXET0,FAWL0

11.12.1 1699 (1700) -106 (10) -61 (6) -69 (6) EXET0,FAWL0,HINP0

1.3.1 1718 -87 (11) -56 (7) -56 (7) EXET0,FAWL0

7.7 Large deviation sensitivity based contingency

analysis

This section examines application of the margin sensitivity formula (132) for the

case when F represents node voltage equations and the parameter p is the matrix of

changes in the impedance bus matrix resulting from each line outage. This formula-

tion is analogous to what is traditionally referred to as large deviation sensitivity and

is explained in section (4.3) of this thesis.

The formulas used for the contingency analysis are general and do not depend

upon the form of the F equations used to model the system. Usually the F equations

include power balance equations at every node in the system. The F equations can

also be formulated with node voltage equations instead of power balance equations.

The equilibrium solution of the two forms of the equations does not differ. The power

balance equations can be written in terms of the bus admittance matrix which is

sparse. The node voltage equations instead use the inverse of the bus admittance

matrix, the bus impedance matrix, and this matrix is generally dense. For most

computations, the power balance form is preferred since the resulting Jacobian matrix

is very sparse, retaining the structure of the original connection matrix. The Jacobian
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Table 19: Comparison of linear estimated changes in the loading margin to voltage
collapse resulting from less severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate VAR
Line Margin Change VAR (N) Fold (W) Limited
Outage MW Generators

31.30.1 1735 -70 -33 -30 EXET0,FAWL0
9.11.1 1735 (1739) -66 -39 -44 EXET0,FAWL0,HINP0
27.19.1 1741 (1747) -64 -6 -6 EXET0,FAWL0,LOVE0,HINP0
28.21.1 1742 (1748) -63 -5 -6 EXET0,FAWL0,LOVE0,HINP0
5.7.1 1752 -53 -27 -25 EXET0,FAWL0,LOVE0
5.8.1 1755 -50 -26 -24 EXET0,FAWL0,LOVE0
10.11.1 1750 (1757) -55 -21 -23 EXET0,FAWL0,HINP0
5.10.1 1753 (1759) -52 -29 -32 EXET0,FAWL0,HINP0
16.24.1 1757 (1764) -48 -28 -33 EXET0,FAWL0,LOVE0,HINP0
16.24.2 1757 (1764) -48 -28 -33 EXET0,FAWL0,LOVE0,HINP0
12.38.1 1767 (1767) -38 -12 -13 EXET0,FAWL0,LOVE0,HINP0
12.38.2 1767 (1767) -38 -12 -13 EXET0,FAWL0,LOVE0,HINP0
17.23.1 1769 (1771) -36 -24 -31 EXET0,FAWL0,HINP0
17.23.2 1769 (1771) -36 -24 -31 EXET0,FAWL0,HINP0
26.40.2 1769 (1775) -36 -17 -20 EXET0,FAWL0,LOVE0,HINP0
26.40.1 1770 (1775) -35 -17 -20 EXET0,FAWL0,LOVE0,HINP0
37.36.1 1777 -28 -4 -4 EXET0,FAWL0,LOVE0
25.26.1 1771 (1778) -34 -17 -20 EXET0,FAWL0,LOVE0,HINP0
25.26.2 1771 (1778) -34 -17 -20 EXET0,FAWL0,LOVE0,HINP0
5.9.1 1780 (1778) -29 -12 -13 EXET0,FAWL0,HINP0
32.36.1 1779 -26 -14 -14 EXET0,FAWL0,LOVE0
16.23.1 1778 (1785) -27 -18 -22 EXET0,FAWL0,LOVE0,HINP0
16.23.2 1778 (1785) -27 -18 -22 EXET0,FAWL0,LOVE0,HINP0
12.25.1 1779 (1787) -26 -16 -18 EXET0,FAWL0,LOVE0,HINP0
12.25.2 1779 (1787) -26 -16 -18 EXET0,FAWL0,LOVE0,HINP0
31.32.1 1787 -18 -5 -5 EXET0,FAWL0,LOVE0
1.2.1 1791 -14 -14 -15 EXET0,FAWL0,LOVE0,HINP0
15.16.1 1791 -14 -7 -7 EXET0,FAWL0,LOVE0,HINP0
15.16.2 1791 -14 -7 -7 EXET0,FAWL0,LOVE0,HINP0
12.15.1 1782 (1793) -23 -14 -16 EXET0,FAWL0,LOVE0,HINP0
12.15.2 1782 (1793) -23 -14 -16 EXET0,FAWL0,LOVE0,HINP0
12.14.1 1800 -5 -4 -5 EXET0,FAWL0,LOVE0,HINP0
14.38.1 1800 -5 -2 -2 EXET0,FAWL0,LOVE0,HINP0
17.19.1 1809 4 0 1 EXET0,FAWL0,LOVE0
17.21.1 1809 4 0 1 EXET0,FAWL0,LOVE0
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matrix resulting from the node voltage equations is dense.

Note that evaluating the sensitivity formulas assuming the node voltage model

does not require that the equilibrium points or bifurcation points be computed using

those equations. Since the zero set of either the node voltage or power balance equa-

tions is the same, the sparser power balance equations should be used for computing

the nominal boundary point and the normal vectors. The formulas are evaluated as

before, except that a linear transformation is applied to w. The quantity Fp repre-

sents the change in the node voltage equations resulting from a change in the line

impedance p, and is computed using a rank one update of the bus impedance matrix.

The results of the large deviation analysis are compared with those of the pre-

vious analysis for all non-radial line outages. The large deviation sensitivity based

estimates do in general provide bigger estimates and often over estimates for the

changes in margin. However, though of greater magnitude they are no more accurate

than the quadratic estimate, and they appear no better at ranking than the linear

estimate. The large deviation estimates appear more erratic; although the large de-

viation estimate captures 10 of the top 11 contingencies, it mis-ranks a negligible

outage (31.32.1) in the top 11.

The large deviation method utilizes sparse matrix techniques [AST83, SAA85] to

compute the update of the impedance bus matrix and is faster than the quadratic

estimate but not as fast as the linear estimate.

7.8 Conclusions

The methods presented in Chapters 5 and 6 were tested on a small but challenging

case. The nominal voltage collapse occurred at an equilibrium at which a critical VAR

output was precariously close to a limit. It was expected that line outages as well as

small changes in parameters would cause the system to encounter the limit prior to

voltage collapse. This phenomena had previously been associated with inaccuracies

in the estimates and rankings.

For this case, it was shown that the VAR limited changes produced a noticeable

but negligible effect on the estimates. In addition, the formulas were shown to perform

well estimating the effect on the loading margin of altering a generator maximum VAR

limit, illustrating a new application for the methods.

This chapter also tested a new implementation of the sensitivity formulas derived

in Chapter 4 using the node voltage form of the equilibrium equations. Contin-

gency analysis was performed by evaluating the sensitivity formulas for changes in

the impedance matrix resulting from line outages. The initial tests indicate that the
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Table 20: Comparison of linear, quadratic, and large deviation estimates for changes
in the loading margin to voltage collapse resulting from severe non-radial line outages

(nominal loading margin = 1805 MW)

Actual Estimate
Line Change Linear Quadratic Large Deviation
Outage MW (rank)
29.30.1 -341 (1) -172 (1) -266 (1) -187 (6)
4.5.1 -250 (2) -82 (4) -133 (4) -211 (4)

7.17.1 -170 (3) -52 (9) -87 (7) -231 (2)
8.17.1 -168 (4) -54 (8) -89 (6) -285 (1)
1.7.1 -162 (5) -129 (2) -154 (2) -221 (3)
1.8.1 -162 (6) -129 (3) -154 (3) -208 (5)
11.38.1 -155 (7) -69 (5) -101 (5) -119 (10)
2.4.1 -152 (8) -48 (11) -75 (10) -178 (7)
3.5.1 -152 (9) -51 (10) -80 (9) -125 (9)

11.12.1 -105 (10) -62 (6) -83 (8) -98 (12)
1.3.1 -87 (11) -56 (7) -71 (11) -131 (8)

power balance form of the equilibrium equations used in Chapter 6, where line out-

ages are reflected by changes in the admittance matrix, perform more consistently,

are faster, and provide better ranking.

Finally, since voltage collapse can be precipitated by generator power limits, a

new estimate was tested using the normal vector to the critical VAR limit in place of

the zero left eigenvector at a fold bifurcation. The results were comparable. However,

the VAR normal vector is easier to compute than the left zero eigenvector and also

does not require that a continuation method locate an exact fold bifurcation point.
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Table 21: Comparison of linear, quadratic, and large deviation estimates for changes
in the loading margin to voltage collapse resulting from less severe non-radial line
outages

(nominal loading margin = 1805 MW)

Actual Estimate
Line Change Linear Quadratic Large Deviation
Outage MW

31.30.1 -70 -34 -51 -54
9.11.1 -66 -39 -51 -79
27.19.1 -58 -6 -8 -21
28.21.1 -57 -5 -8 -21
5.7.1 -53 -27 -37 -82
5.8.1 -50 -26 -36 -60
10.11.1 -48 -21 -29 -55
5.10.1 -46 -29 -37 -67
16.24.1 -41 -28 -39 -60
16.24.2 -41 -28 -39 -60
12.38.1 -38 -12 -12 -25
12.38.2 -38 -12 -12 -25
17.23.1 -34 -24 -29 -45
17.23.2 -34 -24 -29 -45
26.40.2 -30 -17 -27 -34
26.40.1 -30 -17 -27 -35
37.36.1 -28 -4 -8 11
25.26.1 -27 -17 -25 -37
25.26.1 -27 -17 -25 -37
5.9.1 -27 -11 -14 -37
32.36.1 -26 -14 -21 -23
16.23.1 -20 -18 -23 -26
16.23.1 -20 -18 -23 -26
12.25.1 -18 -16 -22 -39
12.25.2 -18 -16 -22 -39
31.32.1 -18 -5 -8 -114
1.2.1 -14 -14 -13 -33
15.16.1 -14 -7 -9 -13
15.16.2 -14 -7 -9 -13
12.15.1 -12 -14 -20 -30
12.15.2 -12 -14 -20 -30
12.14.1 -5 -4 -4 -9
14.38.1 -5 -2 -2 -4
17.19.1 4 0 2 -19
17.21.1 4 0 2 -19
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Chapter 8

Sensitivity of Transfer Capability

Margins

This chapter applies the margin and sensitivity methods to the problem of computing

the transfer capability margin and determining the effect of varying simultaneous

transfers, loading, generation, and reactive power support.

8.1 Introduction

Open access to transmission services requires continual determination of the available

transfer capability (ATC) for each interface of a region or area of the power network.

The ATC indicates how much interarea power transfers can be increased without

compromising system security at a particular moment and for a prescribed interval in

time. The ATC is vital information for the bulk power market. The available transfer

capability is the total transfer capability (TTC) minus existing transfer commitments

together with adjustments to allow some margin of safety. Essentially, transmission

capacity can only be reserved when there is capacity available. While there exists

general agreement concerning the fundamental requirements of the ATC, computa-

tional procedures vary. In addition, once the ATC or TTC is computed under one set

of operating conditions, it is important to determine the effects of varying conditions

and assumptions. It is desirable to understand the effect of increased transfer on

each interface on the ATC of every other interface. This chapter illustrates the use of

sensitivities for estimating the effect on the transfer capability of varying simultane-

ous transfer directions, loading, generation, and reactive power support. The results

apply to the case of transfer limited by line flow limits, voltage limits, generator real

and reactive power limits, and voltage collapse. The computations are illustrated

on a 40 bus, 3 area model and performance is tested with a 1500 bus, twenty area

system. Both systems are derived from a portion of the US grid.
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Previous Work

A concise analysis of ATC computations and current terminology, along with a com-

prehensive bibliography is contained in [Sau97]. Foundational work regarding trans-

mission transfer capability determination is represented in [DGM79, GVHW, LTA72,

LA73, StC53], and, concerning sensitivity and optimal power flow, in [SM79, PPTT,

DT68]. NERC documents [NERC95, NERC96] contain useful terminology and de-

scriptions. The most current information can be found at the OASIS web sites for

each operating region.

Path following methods are used in this chapter to obtain nominal transfer mar-

gins. The details of these methods are explained in Chapter 3 of this thesis. Previous

use of continuation methods for margin determination includes [CA93, CFSB, RHSC,

VC91]. In particular, [RHSC, VC91] illustrate the combined use of continuation meth-

ods and sensitivity analysis for security margin computation. Chapter 1 references

fundamental work in this area.

[GDA97] presents exact analytical margin sensitivity formulas with illustrative

examples including the effect of variation in interarea transfers on the loading margin

to voltage collapse. [WF93] applies sensitivity analysis to the determination of the

contingencies that most limit transfer capability, and motivates the work on contin-

gency analysis presented in [GDA98]. [RAMCJ] demonstrates the use of sensitivity

formulas for locating series compensation to increase power transfer capability.

This chapter continues a research direction in available transfer capability indi-

cated in [Sau97] by applying the margin sensitivity ideas to transfer capability. This

chapter is an extension of the work reported in [GDAS]. This chapter tests the ap-

plication of the methods reported in [GDAS] on a realistic power system example.

8.2 Overview of transfer capability determination

For this chapter we use the main features of the NERC 1995 and 1996 definitions

[NERC95, NERC96]: The power system is judged to be secure for the purpose of

interarea transfer if “all facility loadings are within normal ratings and all voltages are

within normal limits”, the system “remains stable following a disturbance that results

in the loss of any single element”, “the post-contingency system ... has all facility

loadings within emergency ratings and all voltages within emergency limits” [Sau97].

While there exists general agreement concerning the fundamental requirements of

posted transfer capabilities, computational procedures are currently in the process

of refinement. Implementation varies regionally as well as by projected time period

(criteria for next day analysis can differ from seven days ahead). The most current
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information can be found at the OASIS web sites for each operating region. This

section outlines the components common to many transfer capability computations

[Sau97].

• Specify Operating Horizon. The time period, or operating horizon, for the

transfer capability computations must be specified. The assumptions used to

establish a base case as well as security criteria can depend upon the operating

horizon.

• Establish Base Case. The base case reflects the most likely condition of the

power system for some point in the (possibly very near) future. Obtaining a

credible base case is not a trivial task since there is always uncertainty with

forecasting the future. The base case must account for the forecast loading

in each area and all scheduled and forced transmission and generator outages

for the identified operating horizon. In addition, transmission reservations and

energy schedules (existing transmission commitments) must be accounted for

in a manner consistent with the operating horizon. Generation dispatch in

each area must be specified along with a stacking order and some criteria to

distribute additional demand arising from deviations to the base case. Normal

and emergency limits for all lines and transformers need to be specified.

• Capacity Benefit Margin Determination Reliability criteria require that a

portion of the total transfer capability be reserved to meet generation reliability

requirements. The reliability criteria can be based on historical analysis, the

result of a Loss of Load Expectation computation, or based on the size of the

largest plant or two largest units in the area.

• Transfer Specification A list of possible transfer directions to consider must

be obtained, along with specification of participation factors for generation and

source and sink for each transfer.

• Contingency Incremental Transfer Capability Computation A list of

contingencies must be obtained and some system of contingency analysis and

incremental transfer adjustment for each transfer direction computed. This step

often makes use of sensitivity and DC loadflow assumptions. The point of this

computation is to establish the limiting contingency and event (usually assumed

to be a flow limit) for each transfer direction.

• Transmission Reliability Margin Determination The transmission relia-

bility margin is determined from the contingency incremental transfer capabil-

ities. The TRM is intended to provide a safety margin for the posted transfer
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capability in view of credible contingencies.

The available transfer capability is defined as

Available Transfer Capability (ATC) =

Total Transfer Capability (TTC)

−Existing Transmission Commitments (ETC)

−Transmission Reliability Margin (TRM)

−Capacity Benefit Margin (CBM)

There is considerable flexibility within the framework described by [NERC95,

NERC96]. Significant variation in implementation exists between regions and areas.

For example, the list of credible contingencies considered and the weighting applied

to each, or the conditions which merit full AC solution and which can be adequately

screened with DC or sensitivity methods can influence the transfer capability compu-

tations. In addition, the existing transactions considered in the computation might

only include firm transactions or they may include non-firm transactions or projec-

tions. In some respects the process of posting available transfer capability is similar

to booking seats on an airplane; each individual airline can decide for each flight how

many tickets should be sold, even if they sell more or less than the number of seats

on the capacity for. However, they most certainly do know exactly what the capacity

of each plane is! Essentially, transfer capability computation involves forecasting,

contingency analysis and ranking, multiple AC power flow solutions, and engineering

judgment based on system experience.

Path following methods

Path following methods are a useful tool for accurately computing transfer capabil-

ities. Path following or continuation methods work by tracing equilibrium solutions

from a known operating point as some parameter is adjusted. The problem of com-

puting a transfer margin to a security violation involves finding an equilibrium that

satisfies a specific condition such as a variable reaching a limit.

Continuation methods can be implemented with any set of power system equi-

librium equations, although common descriptions of the programs often assume the

standard power flow equations. The continuation program used to establish the trans-

fer capabilities must take into account the effects of limits that change the equilibrium

equations and the sequence in which the limits are encountered. In particular, the

continuation program should use a predictor-corrector method so that equilibrium

solutions are found at successive limit events.
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The transfer for a particular transfer direction is gradually increased starting at

the base case transfer, and several equilibria computed corresponding to different

transfer levels until the critical security violation is encountered. The real power

transfer at the first security violation is the total transfer capability.

System modeling

This section details the modeling required to compute the transfer capability. The

continuation program used to establish the nominal transfer capability traces equi-

librium solutions, not transient trajectories of the state. Thus, detailed equations

that model the dynamic response of the system yield the same results as steady state

equations provided that they have the same equilibrium solutions [Dob94].

The model must include the following:

• Static equilibrium equations. The equilibrium equations can be standard or

elaborate power balance equations, or the the right hand side of the system

differential, or differential algebraic equations.

• Equilibrium equations that model the interarea transfers. Appending to the

power balance equations equation (133) for each area is sufficient:

Area Export Set Point = Σ(area tie line MW flows) (133)

A transfer between two areas is enforced by raising the export set point of the

sending area and lowering the export set point of the receiving area by the

amount of the transfer.

• Static generator dispatch equations. As the transfers are altered, the dispatch

equations should distribute area slack to the area generators proportionally

according to the generator participation factors. For example, if the generator

participation factor of the ith generator in the area is αi, the dispatch equation

can take the form

(generator i output) = αi Parea slack (134)

A more detailed representation of the voltage control system and governor equa-

tions is probably not necessary because of the time frame appropriate for ATC

computations.
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8.3 Sensitivity

Once the capability for one transfer direction has been determined, it is useful to es-

timate the effect on the transfer capability of adjusting simultaneous transfers, and of

modifying the assumptions used for the initial transfer capability determination. This

section states the sensitivity formulas and outlines the computations. The formulas

are derived and further explained in Chapter 4.

8.3.1 Assumptions

We assume that the transfer capability (CBM, TRM, ATC and TTC) for an interface

has been obtained and also a critical limit and corresponding solved case (the critical

case) at which the limit is encountered has been identified by a continuation method.

For example, DC loadflow methods, transfer distribution factors and outage sensitiv-

ities can be used to find the approximate TTC for many cases and identify a critical

contingency and TRM, then a continuation of AC loadflow solutions could be used

to refine the capability computation and screen for voltage and VAR limits likely to

be encountered between the base case and the critical case. The critical case may

then reflect a post-contingency system, and the system equations at the critical case

could differ from that of the base case. Changes in the equations might reflect a line

contingency or application of generator real and reactive power limits and emergency

dispatch policies.

We assume that the static equations that model the power system just before

encountering the critical event can be written in the form

0 = F (z, λ, p) (135)

where

• z is the vector of n equilibrium states, which can include individual line flows

as well as total flows across each interface.

• λ is a parameter vector of area export set points.

• p is a vector of parameters such as bus power injections, load parameters or

generator participation factors [GDA97]. p can also be considered elements of λ

for computation of the sensitivity of a transfer margin to simultaneous transfer.

• F should include area interchange, generator dispatch, and any other static

controls. If a differential-algebraic or differential equation model of the power

system is available then F can be chosen as the right hand side of those equa-

tions.



8.3. SENSITIVITY 135

Note that it is useful to distinguish between the equations used for computations

and the equations assumed to model the system. For example, it would be inefficient

to compute all line flows or generator VAR outputs with each iteration of a loadflow

solution, but it is convenient to assume that they are state variables of the model.

The security requirements are reflected by inequalities in the equilibrium states:

zmin
i ≤ zi ≤ zmax

i , i = 1 · · ·n (136)

When a limit is encountered, one of the following equations holds for some i:

zi = zmin
i (137)

zi = zmax
i (138)

and we write the applicable equation in the general form

0 = zi − zlim = E(z, λ, p) (139)

Suppose that at transfer λ∗ the critical limit is encountered. The vector of state,

transfers, and parameters at the limit is (z∗, λ∗, p∗) and

F (z∗, λ∗, p∗) = 0 (140)

E(z∗, λ∗, p∗) = 0 (141)

(z∗, λ∗, p∗) is the critical point identified by the ATC computation.

8.3.2 Sensitivity formulas

The sensitivity of the transfer capability T to the parameter p, denoted Tp, is com-

puted applying the methods detailed in Chapter 4:

Tp = −
w

(
Fp
Ep

)∣∣∣∣∣
(z∗,λ∗,p∗)

w

(
Fλk̂

Eλk̂

)∣∣∣∣∣
(z∗,λ∗,p∗)

(142)

where

• k̂ is a unit vector describing the transfer direction. For the simple case of

imports across one interface matched by exports across another interface, k̂ is

a column vector with a one in the row corresponding to one interface equation

and a negative one in the row corresponding to the other interface equation.
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• Fp and Ep are the derivatives of the equilibrium and limit equations with respect

to parameter p.

• Fλk̂ and Eλk̂ are the vectors representing the derivatives of the equilibrium

and limit equations with respect to the interarea transfers in the direction of

scheduled interchange.

• w is a nonzero row vector orthogonal to the range of the Jacobian matrix J of

the equilibrium and limit equations, where

J =

(
Fz
Ez

)∣∣∣∣∣
(z∗,λ∗,p∗)

(143)

The row vector w is found by solving the linear system

wJ = 0 (144)

The Jacobian matrix J has n columns and n+1 rows. Since every set of n+1 vectors

in Rn is linearly dependent, there is always a nonzero vector w that solves (144).

J generically has rank n, so that w is unique up to a scalar multiple. This scalar

multiple does not affect (142).

The first order estimate of the change in transfer capability corresponding to the

change in p of ∆p is

∆T = Tp∆p (145)

The estimate of the transfers at the critical limit for a change in p is

λ∗(p) = λ0 + k̂∆T (146)

Note that established sensitivity methods such as outage distribution factors and

transfer distribution factors can be derived using equation (142) as shown in Chapter

4. The derivation of these sensitivities in a general framework is useful since it extends

their application to voltage and VAR limitations.

If the security limit is due to voltage collapse or oscillatory instability, slightly

different sensitivity formulas apply, and these formulas are presented in Chapter 4.

Details concerning the formulas applicable to voltage collapse are presented in Chap-

ter 5. The formulas applicable to oscillatory instability are detailed in Chapter 9.

8.4 Example

The methods are first illustrated with a 40 bus test system to motivate the important

concepts. The methods are then tested on a realistic 1500 bus model and placed in

context of the ATC evaluation.
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Figure 20: Critical bus voltage versus transfer to Area 3

8.4.1 40 bus system

The 40 bus system represents an equivalent network for roughly 40,000 MW of gener-

ation. There are three areas and 2 interfaces. Area 2 is modeled in the greatest detail

and reflects 24,500 MW of generation. Area 1 and Area 3 are modeled in less detail.

The entire system represents 36,570 MW of generation. At the base case operating

point, 430 MW flow from Area 1 to Area 2 and 675 MW flow from Area 2 to Area 3.

Initial transfer computation

The initial transfer capability is computed by increasing the export set point for Area

2 and decreasing the export set point for Area 3 while holding the exports from Area

1 constant. As the transfer is increased, the first security violation is a low voltage

limit corresponding to a transfer of 1734 MW across the Area 2 - Area 3 interface. If

the transfer is further increased, eventually voltage collapse occurs for a transfer of

2280 MW.

Figure 20 shows the voltage profile at the bus most affected by the transfer.
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Figure 21: Effect of simultaneous transfer on transfer capability limited by low voltage

Simultaneous transfer

Formula (142) is evaluated to determine the sensitivity of the transfer capability

with respect to export from Area 1 at both the low voltage limit and the voltage

collapse limit. The sensitivities were used to obtain first order estimates of the transfer

capability from Area 2 to Area 3 as a function of the transfer from Area 1 to Area

2. Figure 21 shows the estimates of the transfer capability limited by the low voltage

limit and the actual computed transfer capability for a range of transfer from Area 1.

Figure 22 shows the estimates of the transfer capability limited by voltage collapse

and the actual computed transfer capability for the same range of transfer from Area

1. The dots in Figures 21 and 22 represent the actual computed boundary points

and the line represents the linear estimates. Agreement between estimates and actual

transfer capability is excellent.

Generator Dispatch

Assumptions concerning which generators back off or increase output to satisfy trans-

fers can influence the transfer capability computation. In addition, unplanned gener-

ator outages can cause previously computed transfer margins to be inaccurate.
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Figure 22: Effect of simultaneous transfer on transfer capability limited by voltage
collapse
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Figure 23: Effect of generator dispatch on transfer capability limited by low voltage

The largest plant in Area 2 consists of two 1000 MW generator units. The initial

transfer computation assumed that only one unit was operational. The sensitivity

formulas were evaluated for variation of ± 1000 MW to model the effects of either

outage of the remaining unit or additional maximum output provided by the second

unit. Figure 23 compares the estimates for the resulting transfer capability with the

transfer capability computed by full continuation. Agreement is excellent over the

entire range.

Load variation

The variation of individual or aggregate loads can affect the transfer capability. Fig-

ure 24 compares the linear estimates and the actual computations of the transfer

capability resulting from changing the load level at the critical bus. The critical bus

is the bus that reached the initial low voltage limit.

Reactive power support

The sensitivity formulas could prove useful determining the effects of control actions

or planned improvements on the transfer capabilities. Figure 25 shows the effect of
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Figure 24: Effect of load variation at a critical bus on transfer capability limited by
low voltage
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Figure 25: Effect of reactive power support on transfer capability limited by low
voltage

adding reactive power support at the critical bus.

8.4.2 1500 bus system

The sensitivity formulas are tested on a 1500 bus power system partitioned into 20

areas and derived from a portion of the US grid. The main area is modeled in detail

(1200 buses), and the other areas are represented by equivalents that retain all tie

buses and tie bus neighbors. The transfer capability computation for one transfer

direction is computed and the sensitivity formulas tested. The transfer margin for

one transfer direction can be used to determine the transfer capability of several

interfaces. However, the computation of the ATC for all interfaces of the main area

requires that the nominal transfer capability be determined from several transfer

directions. The ATC for each interface is determined by the most limiting transfer

capability for that interface. Several interfaces might be limited by transfer in the

same direction.

Base Case. The base case reflects a solution at which all voltages and line flows are

within limits. There are 235 generators in the main area representing a capacity of
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Table 22: Area exports at base case, nominal transfer limit, and contingency transfer
limit

Net Export Net Export Net Export
Area Base Case Flow limit Voltage Limit
Main 506 MW 506 MW 506 MW

A 621 MW 1597 MW 1876 MW
G -5402 MW -6378 MW -6657 MW
N 1330 MW 1330 MW 1330 MW

more than 30,000 MW. The base case main area load is 24,000 MW and the total

load in the entire system is 105,000 MW. The base case existing exports for the main

area and areas A,G, and N are shown in the first column of Table 22. (Note that the

sum of these exports does not equal zero because not all areas are shown.)

The generator incremental dispatch within the main area is determined by a con-

strained economic dispatch using quadratic cost curves for each dispatchable unit.

The incremental dispatch of the other areas is assumed in proportion to the size of

each generator in that area. The assumption concerning which buses act as sources

or sinks for each transfer direction can influence the transfer capability computation.

The relative participation of individual generators depends upon the economics of

each generator. In a competitive environment utilities might be reluctant to share

data that indicates the relative profitability of each of their units.

Transfer Specification. Transfer across the Area A - Main Area interface is in-

creased by increasing import from Area A and increasing export to Area G.

Capacity Benefit Margin For this case, the CBM is selected to be twice the ca-

pacity of the largest unit in the main area. The largest unit in the main area has a

maximum output of 900 MW and the CBM is thus 1800 MW. The 1800 MW is then

allocated among six interfaces based on the results of an off-line analysis.

Transfer Reliability Margin. The critical contingency is known to be the loss of

a 500kV tie line to Area G. The transfer margin is computed for the base case as well

as the critical contingency (CITC).

Nominal and Contingency Incremental Transfer Capability The results in

this Chapter were computed using an implementation of the program described in

Chapter 3 that uses linear sensitivity to predict the next switching, MW,VAR, or flow

limit and then directly computes a full AC solution corresponding to that limiting

event. For the base case the limiting event is an overload on one 500KV line. For the

CITC computation, the limiting event is a bus voltage reaching an emergency low

voltage rating. Table 22 shows the area exports for four of the twenty areas at both
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Table 23: Sensitivities of the transfer margin with respect to area exports
Nominal Contingency

Flow Limit Voltage limit
Area [MW/MW] [MW/MW]

Main -1.003 -0.961
A -1.000 -1.000
B -0.945 -0.984
C -0.929 -0.980
D -0.989 -0.993
E -0.997 -0.981
F -0.989 -0.992
G 0.000 0.000
H -0.074 0.169
I -0.886 -0.240
J -0.992 -0.950
K -0.995 -0.971
L -0.036 0.098
M 0.022 -0.455
N -0.003 -0.050
O -0.033 0.066
P -0.149 0.487
Q 0.005 -0.254
R -0.946 -0.959
S -0.977 -0.984

the nominal and contingency transfer limits. The incremental transfer margin for the

nominal transfer is 976 MW and the incremental transfer margin for the contingency

case is 1255 MW.

8.4.3 Sensitivity of the transfer capability to transactions

Table 23 shows the sensitivities of the transfer margins with respect to every area

export. These sensitivities are essentially the components of the normal vector to

the event boundary, and are computed simultaneously with the direct method that

computes the margin. The first column of Table 23 shows the sensitivities of the line

flow limited transfer capability with respect to all area export set points, normalized

so that Area G is the slack area. The second column of Table 23 shows the relative

sensitivity of the voltage limited contingency incremental transfer capability with
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Figure 26: Effect of simultaneous transfer on margin to first flow limit

respect to the area export set points. To compute the sensitivity of the margin

with respect to a transaction between two areas, simply subtract the component

corresponding to the receiving area from the component of the sending area. These

sensitivities indicate that transfer from Area M to the main area should be the most

effective in reducing the overload. The sensitivities also indicate that transfer from

Area P to Area A best relieves the voltage constraint.

Equation (142) is used to compute estimates for the change in the nominal transfer

capability, as limited by the line overload, resulting from transactions between Area

N and the main area. Figure 26 shows the linear estimate for the change in transfer

margin as a function of the simultaneous transfer from Area N to the main area. The

estimates are compared with actual values computed by continuation represented by

the dots in Figure 26. Figure 27 compares the linear estimate with actual values com-

puted by continuation for the change in the voltage limited contingency incremental

transfer margin.
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Figure 27: Effect of simultaneous transfer on margin to voltage limit
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8.4.4 Computational efficiency

Results were obtained running MATLAB version 5 uncompiled on a 200 MHz Pentium

based computer with 96 MB of RAM.

The continuation program uses exact first order sensitivities at each solved equi-

librium point to compute estimates of the transfer margins to the following events:

• generator maximum and minimum real power limits

• generator minimum reactive power limits

• line and transformer flow limits

• shunt switching events initiated by high and low voltage limits

• low bus voltage limits

Testing the program on several scenarios using the 1500 bus system indicates that

the method is effective and reduces the total number of loadflow solutions required

by each continuation. The program forces a maximum 250 MW step increase. The

average transfer step between event solutions is 120 MW, and the median step is

136 MW. The maximum step size predicted a flow limit for a 227 MW transfer with

less than a .1 MW error. 85% of solutions required 2 loadflow iterations or less

and no solutions required more than 3 iterations. (Note that in all cases maximum

transfer was limited by voltage collapse precipitated by VAR limits causing immediate

instability as indicated by the voltage sensitivity computation after application of the

limit. Direct solution of fold bifurcation solutions most likely would require more

loadflow iterations.) The mean error for the predictor step was 4.8% and the median

error was 3.7%. The majority of events are generator VAR limits and voltage limits.

Voltage and VAR limits tend to yield larger errors than real power or flow limits.

Larger step sizes were correlated with large errors.

The continuation method to establish the limiting event for a transfer direction

usually requires less than one minute. However, depending upon the initial operating

point, one continuation can take from several seconds to several minutes. From a

typical operating point, increasing the largest transfers past several limiting events to

establish the point of maximum transfer (fold bifurcation or immediate instability)

requires about 10 minutes. The method is slowed by the large number of voltage and

VAR limits that are encountered near points of extreme transfer or loading.

Computation of the event normal vector once the event point is found is about

equivalent to one iteration of the loadflow, and required less than one second. Com-

putation of the derivatives with respect to varying transfer directions is a simple index
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operation requiring virtually no time once the normal vector is computed. Thus, once

the limiting event is found, the sensitivity of the transfer margin to that event with

respect to thousands of simultaneous changes in load, generation, interarea transfers

or line status can be obtained in less than one second.

8.5 Discussion

The results show that the computation of transfer margins by continuation methods

is efficient and yields important sensitivity information. The sensitivity information

is obtained as a by-product of the computation to obtain the transfer margins. The

sensitivities prove accurate at estimating the effect on the margins of simultaneous

transfer not considered by the continuation.

The example is representative of only a portion of a complete ATC computation.

The transfer margins would need to be computed for several other transfer directions.

However, the sensitivity of the margins to the area exports indicate which transfer

directions are likely to affect the margin to each event. In addition, the transfer

margins are used to determine the limiting flows on each interface. Once the in-

cremental transfer margins for enough nominal and contingency transfer directions

have been computed, the minimum flows on each interface corresponding to limiting

transfers are established. Then a portion of the CBM is allocated to each interface

and the ATC of each interface is posted for that operating horizon. The entire ATC

computation needs to be repeated for each operating horizon in which the conditions

and assumptions have changed. The practical use of accurate sensitivity information

could ease the computational burden of this process.

8.6 Conclusions and Future Work

This chapter suggests how the sensitivity of the transfer capability can be computed

and used to estimate the effect on the transfer capability of variations in parameters

such as those describing other transfers, operating conditions or assumptions. A con-

tinuation method is used to find the nominal and contingency incremental transfer

capability. The first order sensitivity of this transfer capability to a wide range of

parameters can then be quickly computed. The objective is to use these sensitivities

to quickly extract the maximum possible engineering information from each contin-

uation. The sensitivity methods could contribute to the quick update of transfer

capabilities when operating conditions or other transfers change. The sensitivity in-

formation should greatly reduce the computational burden of computing the available

transfer capability and the transfer reliability margin.



Chapter 9

Eigenvalue and margin sensitivities

for the avoidance of interarea

oscillations

The loss of system stability due to voltage collapse associated with the saddle node or

fold bifurcation was addressed in previous chapters. This chapter concerns oscillatory

instability which is associated with Hopf bifurcation. The fold bifurcation is charac-

terized by a simple zero eigenvalue of the Jacobian matrix of the system equilibrium

equations. The Hopf bifurcation is characterized by an undamped complex pair of

eigenvalues of the Jacobian matrix of the system dynamic equations. Since detec-

tion of Hopf bifurcations requires dynamic equations, not just equilibrium equations,

the analysis is different from that of the previous chapters but still follows the same

general framework.

9.1 Introduction

Interarea oscillations are often observed as oscillations of real power flow between

regions of a power system or groups of generators [IEEE1]. Voltages and current

oscillate with the power swings. If the oscillations are undamped, voltages may exceed

limits causing protective devices to trip and forcing equipment outages. Cascading

outages can lead to blackouts.

Established methods of preventing and controlling interarea oscillations require

the linearization of the system dynamic model about an operating equilibrium point

[IEEE1, Kundur, SauPai, Bergen]. The eigenvalues, and thus qualitative behavior,

of the linearized system depend upon the equilibrium point at which the system is

linearized. Standard linear control system techniques can be applied to the parameters

of the linearized model. However, when the gross operating conditions of the system

change, a new equilibrium point must be calculated and the control techniques applied

to the linearized system at that new equilibrium.

Many of the parameters that influence the system equilibrium point, such as

interarea transfers, do not appear as parameters of the linearized equations and thus

149
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the effects of changing these parameters on the dynamic behavior of the power system

can not be ascertained from the linearized equations. In addition, the power system

can be modeled by separate equations for different time scales. The equations that

are used to detect an oscillation (transient time scale) are different than those used

to trace the long time slow evolution of the system (steady state time scale).

This chapter presents a method for avoiding interarea oscillations by determining

the effects of controls and parameters that move the steady state system equilibrium

of the power system. The methods in this chapter can be used to analyze the effect

on an oscillation of varying interarea transfers and wheeling agreements, generator

dispatch, load shedding, and direction of load growth.

Previous Work

References [SauPai, Kundur] include both contemporary and classical approaches to

power system dynamic stability and machine modeling. The texts [WW, Bergen,

Kusic] all contain informative descriptions of the Automatic Generation Control

(AGC) and tie line bias control. The working group paper [Jal92] and its many

discussions provide an accurate assessment of current AGC practices and emphasize

the time scale appropriate for AGC. Anderson and Fouad [AF] is the classic text for

power system control and stability.

The basic mathematical analysis of the Hopf bifurcation is well covered in [GH]

and computational methods to locate Hopf bifurcations are presented in [Seydel] and

[Alv90]. Eigenvalue parametric sensitivity and generalized eigenvalue computation

is addressed in [GV]. Previous work concerning Hopf bifurcations in power systems

includes [AV84], [DAD92] and [MMH95]. [Cañ95] and [HH91] address saddle node

bifurcation in systems of differential-algebraic equations. Applicable work regarding

small signal stability and eigensensitivity includes [IEEE1], [Mar86], [Sme93]. [DC91]

considers the computational complexity and cost of parametric robust stability de-

termination for power system dynamic models. Methods for computing eigenvalues

and eigenvectors for power systems are presented in [Mar86, WS90, WRPK, AS96]

and for general sparse unsymmetric matrices in [DS93].

9.2 Assumptions and model

In this section we state the primary assumptions underlying the methods presented

in this chapter. The primary assumptions are implied by standard power systems

practice and are qualitative and not dependent upon specific equations for the power

system. However, secondary assumptions regarding the explicit system equations are
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necessary for computation and quantitative analysis.

Over transient time periods (less than one second to tens of seconds), disturbances

and fluctuating demands result in the system frequency varying about synchronous

speed. Generators respond to frequency fluctuations according to their governor

characteristics and the interarea flows vary around the scheduled transfers. The

dynamic behavior of the power system over transient time periods is assumed to be

represented by parameterized differential equations,

ż = F (z, r, λ) (147)

where

F is smooth with respect to z,r and λ.

z is the vector of state variables.

r is the vector of load reference set points for each generator.

λ is a vector of parameters.

The system (147) is often modeled by a differential-algebraic system of equations

ẋ = f(x, y, r, λ)

0 = g(x, y, r, λ)
(148)

where

z = (x, y) is the vector of state variables.

f and g are smooth with respect to z,r and λ.

The derivative of g with respect to the y variables, denoted gy is nonsin-

gular evaluated over the range of interest.

The distinction between variables and parameters is crucial. Parameters are ac-

tive; they are directly set or assumed. Variables are passive; they assume the values

imposed by solution of the equations. The choice of variable and parameter is time

scale dependent. The differential-algebraic system of equations (147) account for the

transient behavior of the power system for which the vector load reference set points

is considered a parameter of (147). A perturbation to the parameters cause the state

to move from equilibrium and the system frequency to change.

The steady state behavior of the power system over longer time periods is assumed

to be represented by static equations,

0 = H(z, r, λ) (149)

where
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z and r are variables.

λ ∈ Rm is a vector of parameters.

H is smooth with respect to z,λ and r.

H(z0, r0, λ0) = 0 ⇒ F (z0, r0, λ0) = 0

Note that in (147) or (148) r is a parameter, but in (149) r is a variable. The equa-

tions (149) consider the time scale in which generation is economically dispatched

to meet the slowly evolving component of load fluctuation and the Automatic Gen-

eration Control (AGC) acts to maintain scheduled interchanges and restore system

frequency. Equations (147) or (148) represent the behavior of the system as the loads

and the state fluctuate about nominal equilibrium values and system frequency can

deviate from synchronous speed. Equilibria of H are equilibria of F , but H includes

equations that describe how r changes over extended periods of time to account for

economic dispatch, interarea schedules, and AGC, and assumes that system frequency

is synchronous speed.

The electrical output of a generator is controlled by two inputs, the governor droop

and the load reference set point. The governor droop determines how the generator

responds to a change in frequency. The governor droop is a constant parameter, not

a control parameter. The load reference set point determines the steady state power

output of the generator. The load reference set point is a control input that can be

revised according to an economic dispatch and permits control through the AGC.

Immediately following a disturbance the transient response of each generator is

determined by its electrical proximity to the disturbance. The system frequency a

short time (a few seconds) after a disturbance, and the proportion of the disturbance

“picked-up” by each generator, is determined by each generator’s rotating inertia.

Several seconds after a disturbance the system frequency and generator response is

affected by each generator’s governor and droop. The relative outputs of the gener-

ators when the system frequency is restored to synchronous speed is determined by

each generator’s load reference set point. The load reference set point is adjusted only

every few minutes, not seconds [Jal92]. Over transient time periods then, the load

reference is a parameter. Over longer time periods that assume steady state operation

at synchronous speed, the load reference set points are variables determined by the

system conditions and dispatch policy. At steady state the load reference set points

equal the generator power outputs.

Although the separation of the power system model into separate equations for

different time scales is not usually explicitly stated, this corresponds to the standard

practice of solving a loadflow to determine an operating point (solving (149)) but

using a detailed dynamic model (147) to either estimate the stability via eigenvalue

computation, or the transient trajectory following some disturbance. Note that the
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load reference set points are not always the only quantities that are a variable in

one time scale and a parameter for the other. For instance, it is common to model

loads differently for steady state time scales than for transient time scales. The key

differences between the transient and steady state models are:

• System frequency is a variable for the transient time frame and a constant for

the steady state time frame.

• Economic dispatch and area interchange occur over the steady state time frame

but not the transient time frame.

The time scale separation of the power system model is not an artifact of approx-

imate equations but a reflection of intentional control design. The decoupling of the

transient control from the operational control provides for the secure operation of the

power system during severe disturbances.

The steady state power system model is valid for some particular parameter value

λ0 if:

1. The steady state equations (149) have an equilibrium solution (z0, r0, λ0). (z0, r0)

is referred to as the equilibrium state.

2. (z0, r0) is an exponentially stable equilibrium solution of the differential equa-

tions (147).

3. The system state remains in the basin of attraction of the equilibrium solution

of the differential equations (147).

Fundamental to these assumptions is the distinction between the equilibrium state

and the system state. The system state consists of the instantaneous values of the

state variables. The equilibrium state however, is a theoretical point in state space

that represents the fixed point of the differential equations (147) that model the sys-

tem at that moment. We do not require that the power system state be at equilibrium,

only that the equations that model the system have an equilibrium.

The assumptions imply that the dynamic behavior of the power system is qual-

itatively the same as that of a linearized system at the equilibrium solution of the

differential equations (147). The stability of the power system with equilibrium state

(z0, r0) can thus be determined by the stability of the linear differential equation

ż = A∆z (150)

where A = Fz|(z0,r0). Since the power system equilibrium is assumed exponentially

stable, all the eigenvalues of A have negative real part.



154 CHAPTER 9. INTERAREA OSCILLATIONS

By locating the parameters λ at which the assumptions break down, we identify

not only the limits of the model but also a boundary at which reliable operation of the

actual power system is unlikely. The model breaks down by two generic mechanisms:

1. The stable equilibrium solution disappears as parameters change.

2. The stable equilibrium solution becomes unstable as parameters change.

Mechanism (1) is characterized by the disappearance of the equilibrium solution and

is associated with voltage collapse. Mechanism (2) is characterized by a complex pair

of eigenvalues of the linearized equation (150) with zero real part corresponding to

Hopf bifurcation of the differential equations (147) and the occurrence of undamped

oscillations in the actual system. Lightly damped oscillations are problematic in the

actual power system, and correspond to eigenvalues of (150) approaching but not

necessarily crossing the imaginary axes. This chapter presents methods of predicting

and avoiding oscillations by changing λ, the parameters of the equilibrium equations

(149).

9.3 Motivation

Suppose that as a transfer increases on a power system a lightly damped mode ap-

pears. If the transfer further increases will an oscillation occur? If another transfer

is adjusted will the damping of the mode become worse or better?

One approach to answer these questions involves gathering empirical sensitivity

information from repeated computations. Several equilibrium solutions of (149) cor-

responding to different transfer levels (λ) are computed and then the eigenvalues of

(150) corresponding to each equilibrium are found. If several possible changes to the

interarea transfer are under consideration, equilibrium solutions and eigenvalues are

computed for each case. If results are needed for several different load levels, then for

each set of transfers, equilibrium and eigenvalue computations must be repeated at

each loading. This empirical sensitivity analysis is computationally burdensome.

An alternative to empirically determining sensitivity requires evaluating analyt-

ical formulas for the sensitivities of interest. In particular, we are interested in the

sensitivity of the damping of the least damped mode, and the sensitivity of the margin

to onset of oscillations (or unacceptably low damping). Instead of computing many

equilibrium solutions of (149) and corresponding eigenvalues of (150) for each, one or

only a few equilibrium solutions are obtained and the sensitivity with respect to any

parameter evaluated. The damping or margin resulting from changes to parameters

can then be approximated by a Taylor series.
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The advantage of empirical sensitivity determination is accuracy. The disadvan-

tage is computing time. Analytical sensitivity evaluation offers great time savings by

many orders of magnitude.

9.4 Computations

In this section we present the formulas for the sensitivity of an eigenvalue and the

sensitivity of the margin to oscillations, with respect to any parameter.

Eigenvalue sensitivity

Assume that (z0, r0, λ0) is the present stable operating point with a lightly damped

semisimple eigenvalue µ. Let A = Fz|(z0,r0,λ0) represent the Jacobian matrix of (147)

evaluated at (z0, r0, λ0). Then an equation for µ in terms of its corresponding eigen-

vectors is

µ = wAv (151)

where w is the left (row) eigenvector of A corresponding to µ and v is the right

(column) eigenvector of A corresponding to µ. Choose w and v normalized so that

|v| = 1 and wv = 1. We are interested in how µ changes as λ varies. For instance,

λ represents the scheduled interchange transfers. As λ varies, z and r vary to satisfy

(149) and thus µ changes as A is evaluated at a different equilibrium.

µ(z, r, λ) = wFz(z, r, λ) (152)

Thus, computing the sensitivity of µ is a two step process: first the sensitivity of the

equilibrium state to changing λ is computed, and then the sensitivity of µ found by

application of the chain rule. The sensitivity of the equilibrium state with respect to

λ is found by solving the linear system

(
Hz Hr

)∣∣∣
o

(
Zλ

Rλ

)
=

(
−Hλ

)∣∣∣
o

(153)

where 0 = (z0, r0, λ0). The vector Zλ represents the sensitivity of the equilibrium

state with respect to λ. The vector Rλ represents the sensitivity of the load reference

set points (or mechanical inputs) to the generators with respect to λ. The sensitivity

of the eigenvalue with respect to λ is then found by evaluating

µλ =
(
wFzzv wFzrv

) (
Zλ

Rλ

)
+ wFzλv (154)
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Note that since w and v are also functions of the equilibrium state, computing second

order and higher sensitivity terms requires solving for the derivatives of the eigenvec-

tors [GV]. In typical system models Fzr = 0 and for most of the parameters we are

considering, Fzλ = 0 since λ and r do not appear in Fz. Estimates for the change in

the damping as λ changes by ∆λ are found from

Re{∆µ} = Re{µλ}∆λ (155)

The steps in the computation then are :

1. obtain Fz evaluated at (z0, r0, λ0)

2. find the eigenvalue µ and corresponding eigenvectors w and v of the critical

mode.

3. obtain the Jacobian matrices Hz , Hr, Hλ at (z0, r0, λ0)

4. solve the linear system (153) for Zλ and Rλ.

5. obtain the Hessian tensors Fzz and Fzλ at (z0, r0, λ0)

6. evaluate (154)

7. evaluate (155) for proposed changes ∆λ

The computation generalizes to the case when λ is a vector.

Sensitivity of the margin to onset of oscillations

Again let (z0, r0, λ0) represent the stable operating point with an eigenvalue µ. We

are concerned with how much the scalar parameter λ can vary before the damping of

µ becomes unacceptably low or zero. Several equilibrium solutions of (149) are found

for varying λ until one with unacceptable damping is located. (Alternatively, consider

a present operating point of unacceptable damping.) Let (z∗, r∗, λ∗) = ∗ represent

this critical equilibrium point. Then λ∗ − λ0 is the nominal margin to oscillation.

Now we ask how altering another scalar parameter, p, can influence the margin. For

instance, if λ represents the transfer to one area, p might represent the transfer to

another area. The margin to oscillation is denoted Λ, and is an implicit function of

p.
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Computing the sensitivity of Λ with respect to p involves solving the linear system

(
Hz Hr Hλ

wFzzv wFzrv wFzλv

)∣∣∣∣∣
∗




Zp

Rp

Λp




=

(
−Hp

−wFzpv

)∣∣∣∣∣
∗

(156)

The vector (Zp, Rp) represents the sensitivity of the equilibrium state and mechanical

power inputs on the boundary of constant damping of µ as p and λ vary. Again, note

that commonly Fzλ = Fzr = Fzp = 0. Estimates for the change in the margin as p

changes by ∆p are found by

∆Λ = Λp∆p (157)

The steps in the computation are :

1. obtain the critical equilibrium (z∗, r∗, λ∗)

2. find the eigenvalue µ and corresponding eigenvectors w and v of the critical

mode at the critical equilibrium.

3. obtain the Jacobian matrices Hz , Hr, Hλ, Hp at (z∗, r∗, λ∗)

4. obtain the Hessian tensors Fzz,Fzλ and Fzp at (z∗, r∗, λ∗)

5. solve the linear system (156) for Zp,Rp, and Λp.

6. evaluate (157) for proposed changes ∆p

Solution of (156) can be simplified as follows. Compute the vector η satisfying

η

(
Hz Hm

wFzzv wFzrv

)∣∣∣∣∣
∗

= 0 (158)

Since

(
Hz Hr

wFzzv wFzrv

)∣∣∣∣∣
∗

has one more row than column, there is always a vector

satisfying (70). Pre-multiplication of equation 156 by η and rearranging yields

Λp = −
η

(
Hp

wFzpv

)∣∣∣∣∣
∗

η

(
Hλ

wFzλv

)∣∣∣∣∣
∗

(159)

The sensitivity of the margin with respect to p is then found by evaluating (159).
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GeneratorGenerator Load

Figure 28: One line diagram of 3 bus test system

9.5 Results

This section presents results concerning measuring distances to instabilities in terms

of interarea flows, tie line flows, or flows on particular lines. Adjusting the dispatch of

generation to maintain specific line flows is one type of power system control that can

not be well represented by the classical approach of linearizing about an operating

point. Adjusting the dispatch or interchange moves the equilibrium without any

change to the parameters that appear explicitly in the linearized model.

3 bus system

The first example involves a three bus, two line system. There is a load bus connected

to two generator buses. Figure 28 shows a one line diagram of the system. From a

nominal stable operating point, increasing the load at the load bus at a constant power

factor causes a Hopf bifurcation to occur. Thus, from the stable operating point, it

is possible to measure the distance to instability with a loading margin. The loading

margin to oscillation instability can be affected by adjusting the generator dispatch.

Figure 29 shows the results for varying the proportion of load assumed by Generator

2 from 0% to 20%. The nominal percentage is assumed to be 10%. The dots represent

the actual computed bifurcation points, and the solid line is the estimate computed

by evaluating equation (157). Note that the range for which the sensitivity gives

an accurate prediction depends on the location of the nominal instability at which

computations are evaluated (Figure 30).

Eigenvalue interaction

Figures 31,32,and 33 illustrate the interaction of two complex pairs of eigenvalues

for the 3 bus power system model as the generator dispatch is varied. Each figure

corresponds to a different setting for the voltage reference set point at one of the

generator buses. Observe that a naive application of linear eigenvalue sensitivity

techniques would yield little useful information. (Imagine tangent vectors to the
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Figure 29: Effect of generation dispatch on Hopf margin
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Figure 30: Effect of generation dispatch on Hopf margin, extended variation
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Figure 31: Trajectory of critical eigenvalues as generator dispatch is varied for gen-
erator terminal voltage of 1.00 p.u.
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Figure 32: Trajectory of critical eigenvalues as generator dispatch is varied for gen-
erator terminal voltage of 1.05 p.u.
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Figure 33: Trajectory of critical eigenvalues as generator dispatch is varied for gen-
erator terminal voltage of 1.10 p.u.
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Figure 34: One line diagram of 9 bus test system

trajectories with magnitudes inversely proportional to the distances between dots).

If the sensitivities are evaluated near the bends in the trajectories, they would provide

useful approximations only for very small changes to the parameter. In addition, the

very nature of the movement can be dramatically changed by a small change in the

parameters. Note that the interaction shown in Figures 31 leads to a qualitatively

different result than the interaction shown in Figure 33. Which of the two interacting

eigenvalues becomes unstable as the dispatch is adjusted switches when the generator

voltage reference set point moves through 1.50 p.u. This phenomena is discussed in

detail in [EngMS].

9 bus system

The second example uses the 9 bus WSCC system in [SauPai] with some modifica-

tions. Consider this as a three area system with one generator per area and each

area tied to the other two areas. Figure 34 shows a one line diagram of the system.

Each generator is modeled by a ninth order dynamic model including an IEEE type

I exciter and a third order governor model. For the transient differential equations

(148) the real power portions of the loads are modeled as fifty percent constant volt-

age and fifty percent constant current and the reactive power portions of the loads

are modeled as sixty percent constant voltage and forty percent constant current. For

the steady state equations 149 the loads are modeled as constant power. The least

damped eigenvalues at the base case are shown in Figure 35. Figure 36 shows the

movement of the least damped modes as transfer from Area 1 to Area 3 increases
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Figure 35: Least damped eigenvalues at base case of 9 bus system.

and transfer from Area 1 to Area 2 is held constant. Figure 37 shows the movement

of the critical mode as a function of the transfer. Figure 38 shows the damping of

the critical mode as a function of the transfer and the linear estimate of the behavior

computed at the base case. We are interested in how adjusting the interchange with

one area can affect the margin to instability as measured by the interchange with an-

other area. We examine how adjusting the flow between Area 1 and Area 2 influences

the margin to instability as measured by the flow on the tie line connecting Area 1

to Area 3, and how well this behavior is predicted by the sensitivity formulas.

Figure 39 shows the effect of varying the flow between Areas 1 and 2 on the

margin to instability as measured by the flow between Areas 1 and 3. The dots are

the actual bifurcation points for each interchange; the solid line is the Taylor series

estimate computed by evaluating equation (157).

37 bus system

The 37 bus system has 3 generators represented with tenth order models and 25

generators represented with 2nd order models. Loads are considered constant power.

There are three areas represented. At the base case, Area 1 is importing about 70

MW from Area 2 and exporting about 700 MW to Area 3. As the interchange is

adjusted, generators pick up slack proportional to their size.

We are interested in the maximum amount of power that Area 1 can wheel from
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Figure 36: Movement of least damped eigenvalues as transfer to Area 3 increases.
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Figure 37: Movement of critical eigenvalue as transfer to Area 3 increases.
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Figure 38: Damping of critical mode versus linear estimate as function of transfer to
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Figure 39: Linear estimate and actual margin to oscillations as function of export to
Area 2 in 9 bus system.
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Area 2 to Area 3 without interarea oscillation. Eigenanalysis at the base case shows

two modes (of 80 eigenvalues) that are considerably less damped than all others.

Using the sensitivity formulas, the sensitivities of these eigenvalues are computed

with respect to the export set points for each area. These parameters appear in area

interchange equations appended to the equilibrium equations and dispatch equations.

The area interchange equations are just the sum of the real power flows on the tie lines

for each area. The area interchange parameters do not appear in the linearized small

signal equations, and hence are a prime example of the versatility of the sensitivity

formulas derived in this chapter versus classical linearization techniques that can not

account for variation of these parameters.

The computed sensitivities indicate that only one of the two modes is affected

by transfers. A succession of equilibrium points as the wheeling is increased and

decreased between zero MW and 1500 MW is computed using a continuation method

coded in Mathematica.

Figure 40 shows the damping of the sensitive eigenvalue versus the real power

wheeling. The solid line in Figure 40 represents the linear sensitivity of the damping

with respect to transfer from Area 2 to Area 3 computed at the base case. The

sensitivity computation suggests that the transfer would be limited to near 1000 MW

due to oscillation. However, the damping does not vary linearly with the transfer and

the mode never becomes unstable. If more than 1500 MW is wheeled, the system

experiences voltage stability problems.

9.6 Discussion and conclusions

This chapter illustrates the use of eigenvalue and margin sensitivities for estimating

the effects of adjusting parameters of the steady state model on the transient behavior

of the power system. These parameters, such as area export set points, do not appear

in the transient models that determine the oscillatory stability of the system and

can not be studied with traditional linearized techniques. This chapter identifies

eigenvalue interaction as a precursor to oscillatory instability. Future work could

address the possibility of avoiding oscillatory instability by detecting and controlling

eigenvalue interaction.

Several obstacles exist to successfully implementing the continuation methods to

locate Hopf bifurcations in realistic power system models. The most obvious obstacle

is computing all the eigenvalues of very large and possibly ill conditioned systems

[AS96, DS93]. This obstacle can be partially circumvented if measured data or expe-

rience can help to identify a critical mode. Possibly only one or several eigenvalues

and eigenvectors would then need to be computed and tracked. However, unlike the
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170 CHAPTER 9. INTERAREA OSCILLATIONS

case of fold bifurcation or simple limit constraints, there is no guarantee that a lightly

damped mode will go unstable even as transfer or loading is increased. This point is

illustrated by the 37 bus system results.

Very large power system models not only contain large numbers of dynamic vari-

ables and modes, but even larger numbers of parameters, many of which are poorly

know. Even with a reduced set of important eigenvalues and a small system, eigen-

value behavior and interaction can create numerical challenges as shown by Figures

31, 32, and 33 for the three bus system. The eigenvalues of the system Jacobian ma-

trix can be sensitive to the uncertain parameters, and robust stability determination

for variation in these parameters is computationally infeasible [DC91].

9.7 Appendix

Sensitivity computations for the differential-algebraic model

Accepted practice is to model the power system with differential-algebraic equations

of the form

ẋ = f (x, y, λ)

0 = g(x, y, λ)

Essentially, the “dynamic” variables, x, are those variables for which a differential

equation exists. For example x includes machine rotor speeds and angle deviations.

The “algebraic variables” y are those variables that do not appear explicitly as time

derivatives in the model equations. For example, the direct and quadrature axis

currents of a synchronous machine do not appear as time derivatives in the model

equations. Note that this is not to say that algebraic variables do not have dynamics,

it is simply that the time derivatives of the algebraic variables do not appear explicitly

in the equations.

For illustration, the f equations include the swing dynamics for each modeled

machine and may also include equations for voltage regulators and governor equations

for each generator. The g equations include the stator algebraic equations at each

machine as well as the power balance equations at each bus.

The distinction between algebraic and dynamic variables is a time scale separation.

The algebraic variables may be thought of as those variables with stable dynamics

much faster than those of the dynamic variables.

The parameters, λ, can include everything that is not a variable; there is no dis-

tinction between parameters that appear in the dynamic or static equations. For

example, machine moments of inertia, damping, and control gains, are parameters
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that appear in f while transmission line parameters and generator participation fac-

tors appear in g. λ may include any or all of these.

The maps f and g define another system as follows. Where the derivative of g

with respect to y is nonsingular, by the implicit function theorem there is locally a

map h such that

0 = g(x, h(x, λ), λ) (160)

The map h describes how the algebraic variables depend upon the state variables to

satisfy the algebraic constraints. We can describe the complete system then by the

composition of f with h

ẋ = F (x, λ) = f(x, h(x, λ), λ) (161)

which is valid where h is defined. The equilibria of the system satisfy 0 = F (x, λ)

and the stability of the equilibrium (x0, λ0) is determined by the eigenvalues of the

derivative of F with respect to the state variables x. The remainder of this appendix

assumes that all derivatives are evaluated at (x0, λ0). By the Chain Rule:

Fx = fx + fyhx (162)

where hx is found from the algebraic equations.

0 = g(x, h(x), λ) ⇒ 0 = gx + gyhx ⇒ hx = −[gy]
−1gx (163)

and

Fx = fx − fy[gy]
−1gx (164)

There is no need to distinguish between the static and dynamic equations as

far as locating equilibrium solutions and fold bifurcations. However, detection of

the Hopf bifurcation requires attention to the Jacobian matrix Fx, not

(
fx fy
gx gy

)
.

The formulas from the previous section can be applied to the eigenvalues or Hopf

bifurcation of Fx. However, computing the inverse of gy is costly. It is more intuitive

and computationally simpler to approach the problem of locating the eigenvalues of

Fx as a “generalized eigenvalue problem”.

If A and B are two square matrices of the same dimension, the pencil of A and B

is the set of all matrices that can be represented as A− µB for µ a complex number.

Each eigenvalue, µ, of the pencil satisfies

det(A− µB) = 0 (165)

and the eigenvectors corresponding to the each eigenvalue satisfy

Av = µBv (166)
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The problem of finding µ and v that satisfy equation (166) is called the generalized

eigenproblem.

In power systems, B is simply the diagonal matrix with ones on the rows corre-

sponding to the dynamic variables, denoted E.

E =

(
In×n 0

0 0

)
(167)

For z = (x, y) and F (z, λ) =

(
f (z, λ)

g(z, λ)

)
, the generalized eigenvalue-eigenvector

equations can be written

(Fz − µE)ṽ = 0 (168)

w̃(Fz − µE) = 0 (169)

w̃(Fz − µE)ṽ = 0 (170)

where µ is an eigenvalue of the pencil of Fz and E, and w̃ and ṽ the corresponding

left and right eigenvectors respectively. Rewrite equation (170) as

(
w w′

) ((
fx fy
gx gy

)
−

(
µ In×n 0

0 0

)) (
v

v′

)
= 0 (171)

Solution of equations (169,169,171) implies that

wfy = −w′gy (172)

gxv = −gyv′ (173)

wfx + w′gx −wµI = 0 (174)

fxv + fyv
′ − µIv = 0 (175)

The left eigenvalue-eigenvector equation for Fx can be written

0 = w(Fx − µI) = w(fx − fy[gy]
−1gx − µI) = wfx + w′gx − wµI (176)

Similarly the right eigenvalue-eigenvector equation for Fx can be written

0 = (Fx − µI)v = (fx − fy[gy]
−1gx − µI)v = fxv + fyv

′ − µIv (177)

It follows that µ is an eigenvalue of Fx and partitions w of w̃ and v of ṽ are the

corresponding eigenvectors. (This observation is also made in [Sme93] and [Cañ95],

except that [Sme93] does not consider parameters that move the equilibrium and

[Cañ95] concerns finding the left eigenvector corresponding to the zero eigenvalue of

a system at saddle node bifurcation.)



9.7. APPENDIX 173

The eigenvalue sensitivity formula is found as in Chapter 4, differentiating equa-

tion (170) with respect to the parameter.

w̃(FzzZλ + Fzλ − µλE)ṽ = 0 (178)

w̃µλEṽ = w̃(FzzZλ + Fzλ)ṽ (179)

µλ =
w̃(FzzZλ + Fzλ)ṽ

w̃Eṽ
(180)

=
w̃(FzzZλ + Fzλ)ṽ

wv
(181)

where Zλ is found from solution of the linear system

FzZλ = −Fλ (182)

Note that the desired normalization is still wv = 1 not w̃ṽ = 1.

Computational methods for the eigenvector-eigenvalue problem can be converted

to the generalized eigenvalue approach by simply substituting the matrix µE every-

where the matrix µI is found and partitioning the eigenvectors accordingly. The for-

mulation of the eigenproblem for the differential-algebraic equations as a generalized

eigenproblem allows for the application of well established computational methods. In

addition, some routines exist specifically for generalized eigenproblems [GV, MS73].

Note that the error analysis of the generalized eigenproblem differs from that of the

standard eigenproblem. This is particularly apparent for power systems applications

that involve nearly singular gy. Although the inverse of gy does not need to be com-

puted, as gy approaches singularity the eigenvectors become very sensitive and the

sensitivity computations become poorly conditioned. This behavior can be associated

with singularity of the equilibrium equations and proximity to voltage collapse. Es-

sentially, the time scale separation implicit in constructing the differential-algebraic

model is not justified when gy approaches singularity. Future analysis is required

concerning the power system model when the algebraic variables are singular (see

[VSZ91]).
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Chapter 10

Conclusions and Future Research

10.1 Conclusions

This thesis demonstrates that the computation of security margins and the sensitivity

of the security margins with respect to parameters yields practical information useful

for the control and planning of large electric power systems. The security margin

reflects the amount by which parameters can change before a security violation is

reached, and the sensitivity of that margin indicates how that margin is affected by

other parameters. The thesis establishes a coherent, consistent, and general frame-

work for margin and sensitivity analysis applicable to a variety of security criteria.

The thesis shows how to efficiently compute the security margins defined by limit-

ing events and instabilities, and the sensitivity of those margins with respect to any

model parameter.

Applications

This thesis forwards the application of margin and sensitivity methods in the areas of

voltage stability, contingency analysis, oscillatory instability, and transfer capability.

The methods of this thesis find considerable service in the area of voltage stabil-

ity and voltage collapse. The loading margin to voltage collapse is a fundamental

index of relative voltage stability and system security. We show that the sensitivity

of the loading margin to voltage collapse with respect to arbitrary parameters can be

computed efficiently and used to obtain quantitative estimates of the effects of vary-

ing parameters and assumptions. The effective use of the estimates is illustrated for

a range of system parameters including interarea transfers, load model parameters,

shunt compensation, the direction of load increase, generator dispatch, and line pa-

rameters. The closeness of the estimates over a useful range of parameter variations

and the ease of obtaining the linear estimate suggest that the sensitivity computations

will be of practical value in avoiding voltage collapse.

Generator reactive power limits have a significant influence on voltage stability and

generators reaching maximum reactive power limits can precipitate immediate voltage

collapse. The sensitivity based estimates are shown to be useful for approximating
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the change in loading margin corresponding to changes in generator reactive power

limits. This thesis introduces the use of the normal vector to the boundary of a critical

generator reactive power limit and shows that the margin sensitivity methods work

effectively for voltage collapse caused by either saddle node bifurcation of equilibria

or immediate instability due to generator reactive power limits.

This thesis also demonstrates that effective contingency analysis for voltage col-

lapse can be done by computing the loading margin sensitivities from a single nominal

nose curve. The results show that the linear estimates are extremely fast and provide

acceptable contingency ranking. For example, after the single nose curve and a left

eigenvector are computed, the linear estimates of all single line outages for a practical

1390 bus system are computed in less time than is typically required for one load flow

solution. The quadratic estimates refine the linear estimates and are more costly but

are still faster than previous methods.

The margin and sensitivity methods are also shown to be useful for determining

transfer capabilities. Interarea transfer can be limited by several security criteria such

as low voltage limits, line flow limits, or voltage stability. The general sensitivity

formulas presented in this thesis are applicable to security margins defined by any

limit criteria. The sensitivity based estimates of the effect of simultaneous transfers

on the transfer margins are computed and agree well with the exact computations for

a 1500 bus model of a portion of the US grid. A method to compute transfer margins

by directly locating intermediate limit events reduces the total number of loadflow

iterations required by each margin computation and provides sensitivity information

for minimal additional cost.

The use of margin sensitivities for estimating the effects of adjusting steady state

model parameters on the oscillatory stability of the power system is demonstrated.

The steady state parameters such as area export set points do not appear in the

transient time scale models, but do implicitly affect the oscillatory stability. These

eigenvalue and margin sensitivities can not be computed with traditional methods

based on the linearization of the transient time scale equations. Application of the

margin and sensitivity methods to interarea oscillations has identified eigenvalue in-

teraction as a potential mechanism for instability.

Theory

This thesis extends the understanding of security margins and sensitivity computa-

tions for power systems.

This thesis defines admissible power system models based on the fundamental

assumptions of steady state analysis implied by accepted engineering practice. The

sensitivity formulas derived are valid for any power system equations that satisfy the
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assumptions and are independent of any approximations used to derive the equations.

It is demonstrated that the general sensitivity formulas derived in this thesis can be

reduced in special cases to yield traditional approximate sensitivity formulas such as

line distribution factors, outage distribution factors, participation factors and penalty

factors. For example, it is shown that large deviation sensitivity formulas result from

reparameterization of the system equations, that participation factors are eigenvalue

sensitivities that neglect the implicit dependence of the system Jacobian matrix on the

equilibrium point, and that exact penalty factors are the components of the normal

vector to the hypersurface in parameter space that describes how system parameters

must change to satisfy equilibrium conditions.

This thesis provides an explanation of established methods for computation of se-

curity margins synthesized from basic principles of numerical analysis. Improvements

to accepted techniques are suggested and applied. For example, by adapting the

corrector step to directly locate intermediate events of practical interest, the normal

vector to each event can be obtained at negligible cost and used to obtain sensitivities

of the security margin with respect to any parameters. In addition, the total number

of solutions required to compute the security margin are minimized.

10.2 Future work

There are several avenues for future research.

Reliability

There is growing concern over the effect of deregulation on the reliability of electric

power systems. Utilities are in need of a reliability indicator that can be tracked over

time and used to quantitatively assess system reliability. Security margins seem well

suited for this role. The loading margin to the first limit violation could be used to

compare the relative security of different systems or of the same system at different

times. In addition, the sensitivity of the reliability margin can be computed to any

parameter and used to forecast the reliability margin resulting from contingencies and

transactions.

Contingency analysis

The methods of Chapter 6 and 7 considered contingency analysis for voltage collapse

precipitated by either saddle node bifurcation of equilibria or immediate instability

due to reactive power limitations. However, the methods could be extended to any
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security criteria or performance index. The normal vector to each event boundary

could be computed in route to establishing the nominal point of collapse, and the

contingencies ranked according to each criteria. For instance, the contingencies ranked

the highest due to their effect on the margin to voltage collapse may not be the

worst contingencies with respect to flow limits or economic cost. Chapter 6 and the

discussion to [GDA98] by Anjan Bose and Hang Liu suggest that the contingency

methods might be improved by computing more than one nominal point of collapse.

For instance, it might prove beneficial to compute the point of collapse corresponding

to different area export schedules, varying assumptions about VAR limits, or by

changing the nominal loading patterns in hopes of capturing contingencies masked

by the nominal continuation.

Constrained economic dispatch

Direct computation of the security margin and the normal vector to the event bound-

ary permits inclusion of security margin constraints in the constrained economic dis-

patch problem. Essentially, the normal vector to the boundary could be used to define

an inequality constraint in an iterative step of the optimization process. Inclusion of

security constraints in the optimization problem allows for the computation of the

components of the nodal prices attributable to reliability. This information could be

used to identify the most profitable locations to offer interruptible contracts or to

locate peaking generation.

Oscillations

Many of the difficulties encountered applying margin sensitivity methods to the prob-

lem of oscillatory instability were attributable to the large number of states repre-

sented by even modest sized power system models. In addition, the behavior of

eigenvalues is notoriously complicated. The possibility of avoiding oscillatory insta-

bility by detecting and controlling eigenvalue interaction should be investigated. One

goal for future research in the area of power system oscillations is the development of

fundamental understanding and heuristic rules for avoiding oscillations. The eigen-

value sensitivity formulas coupled with conjectures regarding power system behavior

may lead to general rules for avoiding oscillations. Approximate information concern-

ing the frequency of an oscillation and the mode shape coupled with knowledge that

increasing a particular parameter always increases the equilibrium value of a partic-

ular state variable could be used to show that changing the parameter in general will

damp that oscillation. For example, if decreasing the interarea transfer between two

areas has the effect of decreasing the angle difference between two buses, and that in
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general the damping of an eigenvalue associated with oscillation between those two

areas increases with the decreasing angle difference, then decreasing the interarea

transfer between the two areas would be a general guideline for suppressing oscil-

lation between those two areas. It is possible that the eigenvalue and eigenvector

sensitivity formulas may indicate that only a subset of the generator equations are

required to determine interarea oscillatory modes.
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