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Re-Dispatching Generation to Increase Power System
Security Margin and Support Low Voltage Bus
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Abstract—This article proposes a new method to increase a
power system’s security margin and/or support its low voltage bus
by re-dispatching generator outputs, using a normal vector found
at a voltage collapse boundary or a low voltage boundary (LVB).
This method uses the normal vector as an indicator to change
the generation direction so that more power can be transferred
before reaching a boundary of a critical limit such as the voltage
collapse boundary or LVB, etc. The method has been tested in
the simulation on several systems and shows predicted results. It
can be applied to many practical power systems to enhance the
system’s security, or to increase the system’s transfer capability. It
also provides technical guidance for an open access transmission
in a deregulated environment, when bidding results are shown as
generation patterns.

Index Terms—power generation dispatch, power system control,
power system dynamic stability, power system reliability, power
system scheduling, power system security, power transmission con-
trol, power transmission reliability.

I. INTRODUCTION

OWER system reliability problems are caused by many

factors. The generation pattern and the load pattern,
which represents generation and load at every bus, are among
the leading factors. A poorly scheduled generation or load
pattern can reduce a system’s ability to transfer power while
maintaining its reliability. Studies on the economic dispatch
problem assume that the system can maintain its reliability.
The optimal power flow (OPF) program does consider both
the economic dispatch and the stability, but it requires a
heavy computation. With the open access transmission in a
deregulated environment, poorly scheduled generation patterns
and load patterns from competitive bidding will be seen more
and more often. These patterns might cause many stability
problems.

Between the power system generation pattern and the load
pattern, the generation pattern is easier to control. The load pat-
tern is relatively uncontrollable due to the uncontrollable con-
sumer demand. Although load-sheddings and price incentives
can be used as ways to adjust the load pattern, these are not gen-
erally recommended except under extreme conditions such as at
peak load or under contingencies. On the other hand, a genera-
tion pattern has more flexibility in terms of supplying power. It
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is easier to control than the load pattern by the utility companies
or an independent system operator (ISO).

Another reason for considering the generation pattern is that
the generation pattern can cause more problems if not controlled
properly. Normally there are more load buses than generator
buses in a common power system and these load buses are usu-
ally highly mesh (network) connected. They are more stable (in
terms of voltage stability) than scattered generator buses. Indus-
trial experiences have shown that even a remote generator shut-
down can cause severe voltage instability.

A good generation direction (or pattern) should be main-
tained to supply the maximum power possible to the load
before reaching the boundary of a system limit. The boundary
of the limit can be a voltage collapse boundary (also called the
Point of Collapse (PoC) boundary [2]), a low voltage boundary
(LVB), or a thermal limit boundary, etc. To form a good
generation direction, sometimes a generator needs to reduce
its power output so that other generators can transfer more
power to the load. That is why utilities under heavy peak load
prefer local generation to buying cheaper power from far-away
generators when the system reliability is critical. In the power
industry, economy is always secondary to reliability. However,
when local generation is insufficient, remote generation is
still necessary. In a competitive utility market, buying power
from far-away generators will be very common. The method
proposed in this paper gives guidance to the cooperation among
generators (power companies) on how to form a good genera-
tion direction to avoid technical difficulties in transmission.

Much work has been done in a load space to control the load
direction [1], [2] to avoid the system limits, while few work have
been done in the generation space. The methods developed in
the load space might not be very useful in a generation space.
The minimum distance to the PoC boundary in a load PQ space
can be determined by the method proposed in Dobson’s paper
[3], [4]. In addition, the minimum distance to the PoC boundary
in a generation space can be obtained in a similar way. How-
ever, the distance to the boundary of a limit is not the same
as the total generation on the boundary of the limit. The above
method cannot find the generation direction for the maximum
possible total generation by simply changing the sign of the ob-
jective function. The minimum distance to the boundary of a
limit is in the Ly norm form (such as | X|» = />_ z?) in the
load PQ space as in most of the papers [3], [4]. It might be good
to use the Lo norm form for security reasons such as in the case
of finding the minimum distance to the PoC boundary. How-
ever, in a generation space the maximum total generation on the
boundary of a limit is expressed better in the .; norm form (such

0885-8950/00$10.00 © 2000 IEEE



WANG AND LASSETER: RE-DISPATCHING GENERATION TO INCREASE POWER SYSTEM SECURITY MARGIN 497

as | X |1 = > |#:]), since the amount of power generation and
its price are always calculated in the L; norm forms.

The method in this paper deals with the generation space.
It finds the generation direction that maximizes the total gen-
eration on the boundary of a limit. A new gradient search al-
gorithm is proposed to find this generation direction using a
normal vector found at the boundary of the limit. The paper is or-
ganized as follows: Section II discusses the normal vector on the
boundary surface. Section III introduces the search algorithm to
maximize the generation capability. Simulation results are also
presented. Section IV summarizes the method, its applications
and future work.

II. THE NORMAL VECTOR AT THE BOUNDARY
A. Traditional Powerflow Equation and Jacobian

The traditional power flow equation /' = 0 can be written in
a complex number form as:

F=VI'—S=VIV)}-8=0 (1)
where
[Vile/® 51 P Q1
|Valei® S Py | Q2
V= . S=1 o= .| ti| .
V2] eI S, P, Q.

Here n is the number of total system buses, V' is the complex
vector of the bus voltage including magnitudes and angles, I =
YV is the complex bus injection current vector, ¥ isann X n
system complex admittance matrix, S is the bus complex power
injection vector, j = +/—1 is the imaginary unit number, P
and @ are the bus active and reactive power injection vectors,
respectively.

The n system buses are grouped into m PV buses and (n—m)
PQ buses. Generally, PV buses are generator buses with known
bus voltage magnitudes and generator active power outputs, ex-
cept one PV bus (usually bus 1), which is chosen as the slack
generator bus. The slack bus has a known voltage magnitude
and its active power output is slack so as to balance the system
power loss. The slack bus is usually also chosen as the voltage
angle reference bus with a zero phase angle. P() buses are load
buses with known active power and reactive power injections.
The power flow equation solves for a state variable vector = to
match all (m — ) PV bus active power outputs (except slack
bus), all (n — m) PQ bus active power and (n — m) reactive
power outputs.

The state variable = includes all (n — [) bus voltage angles
(except the reference angle) and all (n — m) PQ bus voltage
magnitudes. It has the form of

by VL e R ()
where 7 is for all (n — [) buses (except the angle reference bus),
s is for all (n — m) PQ buses. The power flow Jacobian F, is a

(2n —m —1) x (2n — m — 1) matrix.

B. Modified Powerflow Equation and Jacobian

When the system load is increased along an assumed direc-
tion, the amount of generator active power outputs to balance
the load increase need to be calculated. To do this, let Kpy,
and K denote the direction vectors of the system load ac-
tive power and reactive power increase. Let K p¢ be the direc-
tion unit vector of the generator active power increase. Kpr,
and K pg are all unit vectors in the L; norm forms. Then the
bus complex power injection S under the generation increase
without including generator reactive power can be expressed as

SISO+KPGXQ—(KPL—jKQL)Xl (3)

where
So  1s the base case,

l is a scalar that represents the amount of load increase
and
g is a scalar for corresponding generator outputs.

The above equation does not include the generator reactive
power output pattern since the generator reactive power is not
considered in the power flow equation, as a generator bus is
a PV bus. The generator’s reactive power will be determined
after the power flow equation is solved. If a generator reactive
power limit is reached, we will turn this generator from a PV
bus into a PQ bus with a fixed reactive power output at the limit,
and add that reactive power into (3). Now assume ¢ is a system
parameter and is increased from zero to a predetermined value.
To balance the modified power flow equation /' = 0, we need
to solve for the state variables = and the slack variable [ for
the parameter g. Here all generators’ active power outputs are
fixed by Kpg X g, and all load increase is along the direction
of (Kpr + 7K¢r). This modified power flow equation solves
for the state variable % to match all 2 PV bus active power
outputs, all (n — m) PQ bus active power and (n — m) reactive
power outputs. The state variable 3 has the form of

) 91‘7 ) |VS|7 ]T: [lv xT]Tv yeRQnim

“4)
where 7 is for all (n — [) buses (except the angle reference bus),
s is for all (n—m) PQ buses. The modified power flow Jacobian
F,isa (2n —m) x (2n — m) matrix.

It can be easily shown that the traditional power flow equa-
tion is only a special case of the modified power flow equation
when the generation direction is on the previous slack generator
and ¢ is used as the slack variable instead of /. The advantage
of the modified power flow equation is that it will keep the gen-
erator direction and the load direction as fixed while increasing
the generation and the load till reaching the PoC boundary. Un-
like the traditional power flow equation, all generator buses and
load buses are included in the modified power flow equation.
The modified power flow equation contains information of the
generation direction and the load direction. It is also convenient
for calculating the normal vector in a full generation space since
there is no singled-out slack generator bus, as to be discussed
later.

=l
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C. The Normal Vector to the PoC Boundary Surface in a
Generation Space

To study the maximum possible total generation of a system,
or a system’s maximum transfer capability, g should be chosen
as the parameter. Similar to what has been done in load space
[3], [4], it can be shown that as g increases to its maximum
g*, a saddle node bifurcation occurs. At this maximum point
(y*, g*), we have

F(y+, gx) =0
F, |+ has reduced rank of (2n —m — 1)
F, |« has a single zero eigenvalue
wFyl #0

whyyle(v, v) #0 (5)

where w and v are nonzero left and right eigenvectors satisfying
wky|, = 0and Fy|,v = 0.

Assuming the load direction (K pz, +j7Kgr,) is pre-specified,
in a generation space, where the axes are individual generator
outputs P, a PoC boundary forms one point for each generation
direction K p;. When K p¢ scans over all possible directions, a
hypersurface is formed by the points. The power flow equation
will have no solution outside the hypersurface.

On the hypersurface, we have

F,|.dy + Fp,|.dPg =0,  Pgc R™ (6)

or

wF,|wdy +wFp,|wdPs =0,  PgeR™ (1)

Since wF|. = 0, we have wFp, |.dPgs = 0, which means that
the vector, . = (wFp,|.)T, w € R™, is the normal vector to
any dp, lying on the hypersurface.

D. The Normal Vector to the LVB Surface in a Generation
Space

Practically, a power system might not be loaded to its PoC
boundary. Before reaching the PoC boundary, some bus voltages
might be so low that the voltage-sensitive circuit breakers will
separate the buses from the rest of power system, even this may
cause cascade circuit breaker actions. The low voltage threshold
of the circuit breaker is set at a predetermined acceptable limit
regardless whether the system is at its PoC boundary or not.
Considering this kind of situation, the LVB can be defined. A
system is loaded to its LVB when any one of its buses reaches
its preset low voltage limit, under a fixed generator direction
and a load direction. At any point on the hypersurface of the
LVB formed by scanning all possible generation directions in
the generation space, there is one bus with its voltage at its preset
low voltage limit.

Taking this constraint into consideration, the power flow
equation satisfying the LVB conditions can be written as:

F(Z)=0 ®)
where

z = [l, g, -, 67,7 |‘/(1|7 ...]T7 z € RQn—m,' (9)
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Here 7 is for all (n — ) buses (except the angle reference bus),
q is for all (n — m — I) PQ buses (the voltage magnitude of the
load bus at its low voltage limit is known here and is not part of
the unknown state variables). The power flow Jacobian F, is a
(2n —m) x (2n. — m) matrix.

Similar to the method that has been used in the optimal eco-
nomic dispatch [5], considering the variable g, the total slack
power generation, as the cost function or the constraint func-
tion, then the normal vector to the hypersurface of the LVB can
be calculated as

dg _ dg

=% _ Y g,
Y= Py —dr e

uweR" (10)

where d—% is the second row of the new inverse jacobian F~1

d
since g happens to be the second element of z, and F'p,, can be
obtained in the same way as F'p, in (6), which is a matrix with

only a few ones as the elements.

III. THE GRADIENT SEARCH METHOD
A. The Search Algorithm

Now let’s consider how to change K p¢ to increase the total
generation g before reaching a boundary. The optimization
problem is stated as:

Maz: |g x Kpali

SubJGCt to: |Kpc;|1 = Z KPG =1
PoC boundary condition
(or LV B condition) (11)
To solve the problem, let’s consider the following property in
aspace. For a continuous and smooth hypersurface in a multi-di-
mensional hyperspace (e.g., the PoC boundary hypersurface or
the LVB hypersurface in the m dimension P hyperspace), as-
sume that the surface is convex enough, at the local maximum of
the L1 norm (| Pg|max|1 = D Plmasx at Pe|max for example),
it can be easily shown that at this point the normal vector to the
hypersurface has the form:

5 = u(Pa|max) = \/—% 1,1, 1,-- 1% seR™ (12)
It also means that at the point Pg|max, the hypersurface of the
boundary intersects a hyperplane which is tangent to the hyper-
surface at the point Pg|max. All the points on the hyperplane
have the same L norm value as the L; norm value of Pe|max
(which is > Pg|max)-

To solve the optimization problem using the above space
property, we can choose

u—(ues)s

AKpg = (13)

Cu—(ues)sly

where w is the normal vector of a point on the hypersurface and
h is the step size. The new generation direction is updated by

(14

1, we calculate

K}L_)GGIU = Kpa + AKpg

After normalizing |[K3&|, = Y- Kpg¥ =
the system boundary again and obtain new g
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Fig. 1. The search algorithm.

This process repeats until the stop criterion is met. The ending
K pe;|max 18 then the generation direction along which we can
supply the maximum power to the system before the boundary
is reached. At the boundary along K p¢; | max, the normal vector
u equals s.

Fig. 1 shows an example in a two generator system for a
fixed load direction using this method. Since there are only
two generators in the power system, the generation P space
is two-dimensional. The boundary of a limit can be either a PoC
boundary or a low voltage boundary, and it is a curve here (hy-
persurface in a higher dimension hyperspace). At the boundary
of the maximum possible total generation in the L; norm form,
the boundary surface is tangent to a line (hyperplane in a higher
dimension) with a normal direction s = % [1, 1]7. Initially as-
suming we start from a generation direction K p¢; and get to the
boundary at g X K p¢;, from the normal vector w at this boundary,
we can calculate the change for Kpg, —(u — (u @ s)s) to in-
crease g. This vector of change is parallel to the line of the max-
imum possible total generation. By setting the step size h, we
obtain the change in the generation direction, A K p¢z, from (13).
The new generation direction K 3" is updated as in (14). Since
AKpg stays on the line of the K pg unit vector, K pgt” will
still have the I.; norm of 1. We then calculate the new boundary
along K32 and get the new possible total generation g on
the boundary point of g™ x K3, If the chosen step size h
is not too big, g™ will be larger than g. This process will be
repeated until u = s, or giax along K pe|max is reached. In this
example we assume the base case is zero, which is not neces-
sary.

Some points about the method need to be mentioned here.
When calculating g X K pg on the LVB, if the PoC boundary
is reached before the LVB is reached, we will stop at the PoC
boundary and use the normal vector on the PoC boundary in-
stead.

The method can consider generator MW limits as well. If a
generator reaches its MW limit, (or if we need to fix a gener-
ator’s active power output at a specified value and consider only
other generators), we can drop the generator from the generation
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Fig. 2. Searching the K p for the maximum generation capability: (a) On the
surface, and (b) at each step.

space while keeping this generator’s output at its MW limit
(or the specified output) in the subsequent calculations. So the
dimensionality of the generation space is reduced by 1. The
method remains unchanged in the reduced dimension.

B. Simulation

To test this method in simulation, we modified the IEEE 24
bus system [6] into an 18 bus system with only three genera-
tors at bus 1, 10 and 16, and one synchronous condenser, so
the surface of the boundary of a limit in the generation space
is a three-dimensional surface here and can be visualized. As
shown in Fig. 2, first, the boundary surface is calculated and
plotted. The load direction is fixed as pre-specified and is the
same for all generation directions here. The surface shown is a
0.9 pu LVB surface. To form the surface, for all possible gener-
ation directions, the generation parameter g is increased using
a continuation power flow program until any of the bus voltage
drops to the low voltage limit, which is 0.9 pu for all 18 buses
in this case, or stops at the PoC boundary, whichever is reached
first. Thus all stopping boundary points form the surface. We
further set all generator MW limits at 15 per unit (100 MVA
base). So the surface is restricted in the bus 10 and the bus 16
directions.

To test the method, we choose to start at a boundary point
A. It takes about 12 steps to get to the final boundary point
C, which has the direction of the maximum total generation.
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TABLE 1
GENERATOR OUTPUTS DURING SEARCH FROM POINT A TO POINT C
step 1 2 3 4 5 6 12
Gen 1(pu) 106 { 103 | 9.5 9.1 8.5 7.6 7.2
Gen 10(pu) 2.6 3.6 5.5 7.1 8.8 104 | 11.6
Gen 16(pu) | 10.6 | 12.2 | 15.0 | 15.0 | 15.0 | 15.0 | 143
Total (pu) | 23.8 | 26.2 | 30.0 | 31.2 | 324 | 33.0 | 33.1

At point C, its normal vector is, © = s = %[1, 1, 117, We
also start at a different boundary point B, which ends at point
C as well. Fig. 2(a) shows every steps on the surface. Fig. 2(b)
shows that at each step, the total generation at the boundary is
increased. We need to keep the step size h small enough so that
at the next step the total generation at the boundary is increased.
During the search, we also need to keep the step size h large
enough so we can reach the final point C in fewer steps. For this
reason, a variable step size algorithm is implemented along with
the search algorithm.

Table I shows the first few steps when the search algorithm
change generation pattern from point A to point C. Notice step
1 is the point A; step 12 is the point C. It clearly shows that
the total generation at the boundary increases as the generation
pattern changes. Notice generator 16 reached its MW limit at 15
pu during the search and finally reduced. And generator 1 has
to reduce its active power in order to transfer more total power.

We also tested the method using the original IEEE 24 bus
system that has 10 generators, with MW, MVAR limits and low
voltage limits. In the 10-dimension generation hyperspace, the
method gives similar results with improved security margin or
transfer capability.

The CPU time in our test ranges from 30 seconds to a few
minutes on the HP C-180 unix station in MATLAB environ-
ment. It should be noticed that the time mainly depends on the
type of the computer used, the size of the system, the initial gen-
eration direction started from, the precision requirements of the
final results, and the other computational technique involved.

IV. DISCUSSION

Besides the PoC boundary or LVB, the method can also be
used to consider any other operational limits. With added con-
straint functions, boundaries can be found for system limits,
such as line current limits. After the normal vector is found on
those boundaries, the search algorithm can be performed to ad-
just the generation direction and avoid those limits as well.

Although the method can be used to consider many different
system operational limits, it should be noted that for any limit
this method is the fastest ascent search method. Of the many
paths existing between the starting searching point and the final
point with the maximum total generation, a system operator will
have many choices to adjust generator dispatch before the limit
for the maximum total generation is reached. A system operator
might choose, for example, to do economic dispatch, with in
mind the knowledge of how much more power can be safely
generated and transmitted.

Although we have only tested this methods on simple load
models so far, it can be shown that adding complicated voltage-
dependent load models will not change the flexibility of the
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method, only complicate the constraint equation and the power
flow Jacobian. Future work can be done with different available
load models.

This method assumes that the load direction is fixed. In the
real world the load direction might change every minute. As
the load direction changes, the search algorithm should be done
again for the new load direction to find a new generation di-
rection. With a reasonable load forecast model incorporated,
using fast computing methods such as the parallel processing
method or the sparse matrix method, on-line implementation of
this method will be possible. This will greatly benefit an open
access market when the validity of bidding results has to be ver-
ified (and possibly modified) under reliability constraints in a
timely manner. The number of steps needed to get to the final
generation direction depends on the initial generation direction
and it will determine the speed of the search algorithm. To re-
duce the steps, after we get the final point, we can use it as the
initial point once the load direction is changed slightly and we
need to search again. In this way the computation time can be
greatly reduced in on-line implementation. To further reduce the
computation time, a direct method instead of the search algo-
rithm can be developed in future work.

This method is able to find a local maximum only. If we start
from the current generation direction, we should be able to get to
the nearest local maximum. However, multiple maximums may
coexist in a system since the surface of the boundary of a limit
might not be smooth. To find those maximums, we could start
the search from multiple different initial points to find them.
However there is no guarantee that all of them can be found.

This method should be performed under the worst first con-
tingency condition as well, because a power system often op-
erates assuming this condition for reason of the reliability. For
example, if we find a generation direction with the boundary
maximized under a worst line contingency case and use it in
normal operation, the system will be safe under any line outage
conditions while maintaining the maximum power transfer ca-
pability. Further, the search can also be pre-performed for each
contingency and put into operating procedures, so a system op-
erator knows how to re-dispatch generation should a contin-
gency occur.

V. CONCLUSION

This paper demonstrates a method of adjusting the generation
direction to increase the power system transfer capability up to
the system’s voltage collapse boundary or LVB. The advantage
of this method to any OPF program is obvious: the use of the
normal vector eliminates the need to calculate the sensitivities
of the individual generator output that may need more power
flow iterations.

This method will be helpful in an open access transmission
environment, where generators supply power according to the
pricing strategy before any system stability limit is reached.
When a system operates near a LVB or a PoC boundary, in-
creasing reactive power generation sometimes can be used to en-
hance reliability. However, this might be in conflict with system
voltage regulation requirements. If this is the case, the system
operator should encourage different generators to form a certain



WANG AND LASSETER: RE-DISPATCHING GENERATION TO INCREASE POWER SYSTEM SECURITY MARGIN 501

generation direction using this method in order to transfer more
power to the load.
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