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Abstract

We propose a new algorithm for unit commitment

that employs a Lagrange relaxation technique with a

new augmentation of the Lagrangian. The new aug-

mentation involves a duplication of variables that al-

lows relaxation of the coupling between generator time-

spanning constraints and system-wide instantaneous

constraints. This framework allows the possibility of

committing units that are required for the VArs that

they can produce, as well as for their real power.

Furthermore, although the algorithm is very CPU-

intensive, the separation structure of the Lagrangian

allows its implementation in parallel computers. Our

work builds upon that of Batut & Renaud, as well as

that of Baldick.

1 Introduction

Lagrangian relaxation as a technique for unit commit-

ment has come a long way since it was �rst intro-
duced, but there has been one constant central theme
all along, namely, that of separability. Since the early
papers [1, 3] this decomposability was the sought-after
quality, and for a good reason: the unit commitment
problem, being of a mixed-integer nature, su�ers from
combinatoric complexity as the number of generators
increases. It is this feature that dooms other algo-
rithms intended for solving it, such as dynamic pro-
gramming: the combined state space of several gen-
erators in a dynamic program has a size that is too
large to be able to tackle many realistic problems, even
with limited{memory schemes. And it only gets worse
as other constraints that increase the required state
space (such as limited ramp rates) are introduced.
Lagrangian relaxation permits the decomposition of

the problem into several one machine problems at each

iteration; the coupling to other constraints involving
more machines is achieved by sharing price informa-
tion that is updated from one iteration to another.
The complexity of a given iteration becomes linear in
the number of generators instead of geometric. This
property is what has given the technique an increased
acceptance when compared to other techniques such
as dynamic programming and branch and bound algo-
rithms.
Mathematically, the unit commitment problem can

be formulated as:

min
P;Q;U

�
F (P;U) +K(U) j

(P;U) 2 D; (P;Q;U) 2 S; (P;Q;U) 2 C
	
(1)

where
nt: Length of the planning horizon
ng : Number of generators to schedule
pi;t: Real power output for

generator i at time t
qi;t: Reactive power output for

generator i at time t
ui;t: On/o� status (one or zero)

for generator i at time t
P : (pi;t), i = 1 : : : ng , t = 1 : : : nt
Q: (qi;t), i = 1 : : : ng , t = 1 : : : nt
U : (ui;t), i = 1 : : : ng, t = 1 : : : nt

F (P;U): The total production cost
K(U): The sum of any startup costs
D: A set of dynamic generator-wise

constraints
S: A set of static instantaneous

constraints
C: A set of nonseparable constraints

It is assumed that the production cost function F is
separable over each generator and time period so that
F (P;U) =

Pnt

t=1

Png

i=1 u
i;tF i(pi;t). For our purposes,



the constraints of the problem have been separated
into three kinds: The set D contains constraints that
pertain to a single generator, but may span several
time periods. These include minimum up or down
times and ramping constraints. The set S contains
constraints that span the complete system but involve
only one time period, such as load/demand matching,
voltage limits, reserve constraints and generation up-
per/lower limits. Finally, C is the set of constraints
that involve more than one generator and more than
one time period. A typical example is the infeasibility
of turning on more than one unit at a time in a given
location because of crew constraints.
Muckstadt and Koenig [3] introduced a �rst ver-

sion of Lagrangian relaxation for the unit commitment
problem. They considered a lumped one-node net-
work with losses modeled as a �xed penalty factors.
Reserve constraints were also considered. To illustrate
the separation structure, we write an example formula-
tion including demand and reserve constraints. Their
relaxation yields a Lagrangian

L(P;U; �; �) = F (P;U) +

ntX
t=1

�t(P t
D �

ngX
i=1

ui;tpi;t)

+

ntX
t=1

�t(Rt �

ngX
i=1

ui;tP i
max) (2)

where P t
D is the real power demand in period t and

Rt is the desired minimum total commited capacity
for the same period. One can then consider the dual
objective

q(�; �) = min
P;U
L(P;U; �; �) (3)

and corresponding dual problem

max
��0;��0

q(�; �) (4)

which can be written explicitly in the following form
after collecting terms on a per generator basis

max
��0;��0

(
ntX
t=1

(�tP t
D + �tRt) +

min
P;U

"
ngX
i=1

ntX
t=1

(ui;tF i(pi;t)� �tui;tpi;t � �tui;tP i
max)

#)

(5)

Thus, for �xed � and �, �nding the value of q(�; �)
amounts to solving ng separate, single-generator dy-
namic programs of the form

min
pi;�;ui;�

ntX
t=1

(ui;tF i(pi;t)� �tui;tpi;t � �tui;tP i
max) (6)

These dynamic programs can actually accomodate
any D{type constraint such as minimal up or down
times, as well as any startup costs. Ramp-rate con-
straints can also be introduced by discretizing the gen-
eration range for the unit, although the size of the state
space grows considerably. For a detailed description of
a dynamic programming graph including most of these
constraints, see reference [5].
This suggests that a dual maximization algorithm is

better suited to this particular problem because it can
exploit the separation structure of the dual objective.
A subgradient{based dual maximization algorithm ap-
plied to the unit commitment problem proceeds as fol-
lows:

Algorithm 1: Classical Lagrangian relaxation

Step 0 k  0

Step 1 Initialize �k and �k to a sensible (under esti-
mate) value

Step 2 Compute

(P̂k ; Ûk) � arg min
feasible P;U

L(P;U; �k; �k)

by solving ng single{generator dynamic pro-
grams that incorporate any D{type con-
straints and any startup costs.

Step 3 The dual cost is q(�k ; �k) = L(P̂k; Ûk; �k; �k)

Step 4 The primal cost is in�nite if the schedule Ûk
is infeasible; else it is the cost at the solution
of

min
feasible P

F (P; Ûk)

where P feasible means that it satis�es the
demand. This problem is separable into nt
economic dispatches. If there are any startup
costs, they should be added too.

Step 5 Compute the duality gap at this iteration as
primal cost { dual cost

Step 6 If the gap is small enough, stop; else, update
�, � according to a subgradient maximization
technique, for example Poljak's formula:

�tk+1  �tk +
1

�0 + �1k
(P t

D �

ngX
i=1

ûi;tp̂i;t)

�tk+1  �tk +
1

�0 + �1k
(Rt �

ngX
i=1

ûi;tP i
max)

Step 7 k  k + 1; Go to Step 2.



Such is the basic idea behind Lagrangian relaxation.
In the past 20 years, advances have been made in sev-
eral areas, enhancing the number and type of con-
straints that can be treated, addressing some con-
vergence issues when the cost is not strongly convex,
and so on. In 1983, Bertsekas et. al. [6] described
an algorithm that included many re�nements in the
dynamic programming subproblem, as well as proof
that the expected relative duality gap is inversely pro-
portional to the number of generators; this was good
news for large{scale problems. Also in 1983, Mer-
lin and Sandrin [7] reported a Lagrangian relaxation
method with linear costs, reserve constraints, expo-
nential restart costs (but not banking capabilities) and
special �{updates that take into account the kind of
constraints that are violated and some properties of
linear cost functions. In 1988, Zhuang and Galiana [9]
reported a three{stage method involving (1) Standard
Lagrangian relaxation without reserve constraint, (2)
A reserve feasibility search, and (3) An economic dis-
patch stage. At the time, several methodologies for
achieving reserve feasibility were being tested. Most
relied on further stepping up the multipliers for the
demand constraints, thus increasing the number of
commited generators. At issue was whether to raise
all multipliers simultaneously or sequentially, starting
with those of time periods where the reserve constraint
was most unful�lled. Reserve feasibility search has
been an active area and the di�culty is especially im-
portant in so{called indirect methods1. It is in part
due to the fact that a dual solution does not necessar-
ily meet the primal's constraints. Of course, if those
constraints were not in the dual problem in the �rst
place, primal feasibility is even more of an issue.

Sophisticated as the schemes were becoming, the un-
derlying network was being largely ignored. In [11],
Ru�zi�c and Rajakovi�c include transmission line transfer
limits using a DC 
ow model and transmission losses
using constant factors. This can be done because in
the Lagrangian such relaxed constraints are linear in
ui;tpi;t and ui;t, so it is still possible to collect all terms
on a per-generator basis, achieving separation into ng
dynamic programs. However, even with just two con-
gested lines the computation times escalated. This
seems to be inherent to binding constraints in subgra-
dient methods, especially if poorly scaled.

Several other papers have followed the DC 
ow
formulation in their incorporation of line limits to

1In reference [17], Shaw distinguishes between direct and in-

direct methods, where the former address reserve feasibility and
other OPF constraints in the dual optimization phase, whereas

the latter deal with such constraints only after having generated

a commitment schedule with a dual maximization that did not

include such constraints and thus make post factum corrections.

the dual maximization, including [13, 15, 16, 17, 18].
Baldick [15] uses a general formulation that could
in principle be used to address AC 
ow constraints,
but the speci�c algorithm that he describes still uses
a basic DC 
ow approximation. It seems that the
general rule of thumb is: if a constraint is linear,
then add it to the Lagrangian, appropriately re-
laxed with a multiplier, and separation will be pre-
served. As a matter of fact, any constraint g(P;U) =Pnt

t=1

Png

i=1 g
i;t(ui;t; pi;t) can be addressed in the dual

maximization while preserving separation. Others
have followed this trend of addressing more and more
linear constraints in the dual optimization. For exam-
ple, in [12], ramping constraints are relaxed as well, so
that the dynamic programs do not have to deal explic-
itly with ramp constraints, but 2ntng more multipliers
are needed. This idea is also used in [20].

There are several possible drawbacks to this overall
scheme of adding more linear constraints to the formu-
lation and dealing with them in the dual optimization
phase. The �rst one is that the number of dual vari-
ables grows very large. In general, this does not seem
to be a problem with regards to convergence, unless
many of the constraints that they represent are actu-
ally binding. However, it does increase the amount of
memory needed: for line limit multipliers, for example,
2nlnt variables may be needed, nl being the number
of lines in the network.

The second drawback applies to only some types of
constraints, such as line limits modeled by means of
DC 
ow sensitivities: they are not sparse, although
one could conceivably zero out small elements. This
does not apply to inherently sparse constraints such
as ramp rate limits, but hinders the scalability of the
DC 
ow approach to incorporation of line limits to the
dual optimization phase, especially when considering
line outages that are valid only for some time periods;
this would make it necessary to consider several sets
of sensitivities. Furthermore, the DC 
ow is just an
approximation that may be signi�cantly o� in some
cases.

A third (and more important) drawback is that some
potentially important constraints cannot be formu-
lated as linear. For example, consider the case of volt-
age limits, where it is necessary to perform a power

ow to investigate their values. However, one should
notice that, complicated as AC OPF constraints are,
they still fall neatly into the category of S{type con-
straints: they apply to all generators, but only at one
time period. We shall take advantage of this in the
following section.



2 Unit commitment with AC

OPF formulation

Our approach has its roots in the variable duplica-

tion technique credited to Guy Cohen in [13] by Batut
and Renaud. This same technique was used later by
Baldick [15] in his more general formulation of the unit
commitment problem. The main technical achieve-
ment of our paper is the inclusion of reactive power
output variables to the formulation, so that better
loss management may be performed and generators
that are necessary because of their VAr output but
not their real power are actually commited. This is
the logical next step in the development of Lagrangian
relaxation techniques. At this point, when typical al-
gorithms reduce the duality gap to �gures close to 1%,
it is important to recognize that a better handling of
the reactive power considerations at the unit commit-
ment stage may have a payo� that is higher than those
few last percentage points in the duality gap.
We start by de�ning two sets of variables, the dy-

namic variables and the static ones:

Dynamic:

ui;t: Commitment status f0; 1g for generator i at time
t

di;tp : Real power output for generator i at time t

di;tq : VAr output for generator i at time t

U : (ui;t), i = 1 : : : ng , t = 1 : : : nt

Dp: (di;tp ), i = 1 : : : ng, t = 1 : : : nt

Dq : (di;tq ), i = 1 : : : ng, t = 1 : : : nt

D: (Dp; Dq)

Static:

si;tp : Real power output for generator i at time t

si;tq : VAr output for generator i at time t

Sp: (si;tp ), i = 1 : : : ng , t = 1 : : : nt

Sq : (si;tq ), i = 1 : : : ng , t = 1 : : : nt

S: (Sp; Sq)

Then the following optimization problem is de�ned

min
D;U;S

ntX
t=1

ngX
i=1

[ui;tF i(di;tp ) +Ki;t(ui;�)] (7)

subject to:

(1) D{type constraints

P i
min � di;tp � P i

max; (8)

Qi
min � di;tq � Qi

max; (9)

U satis�es minimal up and down times, (10)

(2) S{type constraints

0 � si;tp � P i
max; (11)

Qi
min � di;tq � Qi

max; (12)

(Sp; Sq)

(
satis�es the network load 
ow
equations while respecting line
MVA limits and voltage limits

(13)

(3) and the following additional constraints

Rl;t �
X
i2Zl

ui;tP i
max � 0; l = 1 : : : nz; t = 1 : : : nt

(14)
si;tp � ui;tdi;tp = 0; i = 1 : : : ng ; t = 1 : : : nt (15)

si;tq � ui;tdi;tq = 0; i = 1 : : : ng ; t = 1 : : : nt (16)

where Rl;t is the minimum combined capacity that is
acceptable for the lth zone in the tth period and Zl is
the set of indices of generators in the lth zone.
We will assume that we can enforce both the D con-

straints (8{10) and the S constraints (11{13), so that
we only relax the three last constraints (14{16), which
leads to the following Lagrangian:

L(U;D; �; �) =
ntX
t=1

ngX
i=1

[ui;tF i(di;tp ) +Ki;t(ui;�)]

+

ntX
t=1

nzX
l=1

�l;t(Rl;t �
X
i2Zl

ui;tP i
max)

+

ntX
t=1

ngX
i=1

�i;tp (si;tp � ui;tdi;tp )

+

ntX
t=1

ngX
i=1

�i;tq (si;tq � ui;tdi;tq ) (17)

=

ngX
i=1

ntX
t=1

fui;tF i(di;tp ) +Ki;t(ui;�)� �i;tp ui;tdi;tp

� �z(i);tui;tP i
max � �i;tq ui;tdi;tq g

+

ntX
t=1

ngX
i=1

(�i;tp si;tp + �i;tq si;tq )

+

ntX
t=1

nzX
l=1

�l;tRl;t (18)

= L1(U;D; �; �) + L2(S; �) + L3(�) (19)



where � = (�i;tp ; �i;tq ) are multipliers on the relaxed

equalities of the two kinds of variables, �l;t is the mul-
tiplier associated to the lth zone's reserve requirement
at the tth period, and z(i) returns the index of the
zone to which generator i belongs.
The separation structure of the Lagrangian is obvi-

ous upon looking at equations (18) and (19). It makes
it possible to write the dual objective as

q(�; �) = min
U;D;S

fL1(U;D; �; �) + L2(S; �) + L3(�)g

= min
U;D
L1(U;D; �; �)

+ min
S
L2(S; �)

+ L3(�) (20)

By looking again at (18) and (20), it can be seen that
the �rst term can be computed by solving ng dynamic
programs again; the second term separates into nt op-
timal power 
ow problems with all generators com-
mited but with special cost curves �i;tp si;tp + �i;tq si;tq for

generator i at time t. Notice that si;tq also has a price.
It is assumed that the solutions of the dynamic pro-
grams meet the D constraints and that the solutions
of the optimal power 
ows meet the S constraints.
It would be tempting to apply a dual maximization

procedure to the dual objective as stated, but there
are some issues that prevent us from doing that with-
out some modi�cation of the Lagrangian. The �rst
issue is that the cost of di;tq re
ected in the dynamic
programs, being linear, is not strongly convex; this
can cause unwanted oscillations in the di;tq prescribed
by the dynamic program (see [13]). Therefore we set
out to �x this before addressing any other problems
by augmenting the Lagrangian with quadratic func-
tions of the equality constraints. This will introduce
nonseparable terms, but using the Auxiliary Problem
Principle described by G. Cohen in [4] and [8] we can
linearize those terms about the previous iteration val-
ues, rendering them separable. Thus we write the new
augmented Lagrangian as

L(U;D; S; �; �) =
ntX
t=1

ngX
i=1

[ui;tF i(di;tp ) +Ki;t(ui;�)]

+

ntX
t=1

nzX
l=1

�l;t(Rl;t �
X
i2Zl

ui;tP i
max)

+

ntX
t=1

ngX
i=1

�i;tp (si;tp � ui;tdi;tp )

+

ntX
t=1

ngX
i=1

�i;tq (si;tq � ui;tdi;tq )

+

ntX
t=1

ngX
i=1

cp

2
(si;tp � ui;tdi;tp )2

+

ntX
t=1

ngX
i=1

cq

2
(si;tq � ui;tdi;tq )2 (21)

The Auxiliary Problem Principle allows us to substi-
tute the augmentation terms by the following at iter-
ation k (see [13])

ntX
t=1

ngX
i=1

cp(�s
i;t
p � �ui;tp

�di;tp )(si;tp � ui;tdi;tp )

+

ntX
t=1

ngX
i=1

bp

2

�
(si;tp � �si;tp )2 + (ui;tdi;tp � �ui;t �di;tp )2

	

+

ntX
t=1

ngX
i=1

cq(�s
i;t
q � �ui;tq

�di;tq )(si;tq � ui;tdi;tq )

+

ntX
t=1

ngX
i=1

bq

2

�
(si;tq � �si;tq )2 + (ui;tdi;tq � �ui;t �di;tq )2

	
(22)

where �ui;t, �di;tp , �di;tq , �si;tp and �si;tq are the values obtained
at the (k � 1)th iteration. Since (22) is separable, we
can collect terms of the augmented Lagrangian on a
per-generator basis, so that at the kth iteration we are
faced with

L(U;D; S; �; �; �U; �D; �S) =
ngX
i=1

ntX
t=1

fui;tF i(di;tp ) +Ki;t(ui;�)

+
bp

2
ui;t(di;tp )2 +

bq

2
ui;t(di;tq )2

+
�
��i;tp � cp(�s

i;t
p � �ui;t �di;tp )� bp�u

i;t �di;tp
�
ui;tdi;tp

+
�
��i;tq � cq(�s

i;t
q � �ui;t �di;tq )� bq�u

i;t �di;tq
�
ui;tdi;tq

+
h
��z(i);tP i

max

i
ui;tg

+

ntX
t=1

ngX
i=1

fbp

2
(si;tp )2 +

bq

2
(si;tq )2

+
�
�i;tp + cp(�s

i;t
p � �ui;t �di;tp )� bp�s

i;t
p

�
si;tp

+
�
�i;tq + cq(�s

i;t
q � �ui;t �di;tq )� bq�s

i;t
q

�
si;tq g

+

ntX
t=1

ngX
i=1

fbp

2

�
(�si;tp )2 + (�ui;t �di;tp )2

�

+
bq

2

�
(�si;tq )2 + (�ui;t �di;tq )2

�g
+

ntX
t=1

nzX
l=1

�l;tRl;t (23)

= L1(U;D; �; �; �U; �D; �S) + L2(S; �; �U; �D; �S)

+L3(�) (24)



Notice that (24) has the same separation structure of
(19).

Now that the separability issue has been resolved,
we propose the following

Algorithm 2: AC Augmented Lagrangian relaxation

Step 0 k  � 0

Step 1 Initialize (�i;tp ; �i;tq ) to the values of the multi-
pliers on the power 
ow equality constraints
at generator buses when running an OPF with
all units commited. Initialize ( �U; �D; �S) to ze-
ros.

Step 2a Compute

(Û ; D̂) arg min
feasible U;D

L1(U;D; �; �; �U; �D; �S)

by solving ng one-generator dynamic pro-
grams.

Step 2b Compute

Ŝ  � arg min
feasible S

L2(S; �; �U; �D; �S)

by solving nt OPF's in which all generators
are committed, their generation range has
been expanded to include P i

min = 0 and the
special cost L2(S; �; �U; �D; �S) is used. Note:
all tasks in steps 2a and 2b can be solved in
parallel.

Step 3 If the commitment schedule Û is not in a
database of tested commitments, perform a
cheap primal feasibility test. If the results
are not encouraging, store the schedule in the
database and label it \infeasible", then go to
Step 6.

Step 4 Perform a more serious primal feasibility test
by actually attempting to run nt OPF's with
the original Pmin constraints. If all OPF's
are successful, store the commitment in the
database, together with the primal cost in-
cluding startup costs, and the duality gap
(the dual cost was available upon solving 2a
and 2b). Else label the commitment as \in-
feasible", store it in the database, and go to
Step 6.

Step 5 If the duality gap is small enough, stop.

Step 6 Update all multipliers using subgradient tech-
niques, and

�U  � Û

�D  � D̂

�S  � Ŝ

k  � k + 1

Step 7 Go to Step 2.

The proposed algorithm is very OPF{intensive: the
major computational cost is that of computing nt
OPF's for every iteration in order to solve the static
subproblems, plus extra OPF's in selected iterations
when a given commitment is promising. Thus, every
e�ort possible must be made to try to alleviate the
burden of OPF computation. The �rst thing that can
be done is to use as a starting point for the OPF the
result of the previous iteration for the same time pe-
riod. Most of the times, the only di�erence in the
data for the OPF would be a small change in the costs
(re
ected by the change in � from one iteration to an-
other). This should result in fewer iterations needed
for the OPF.
Another drawback of the algorithm is that a di�er-

ent set of OPF computations must be performed to
compute the value of the dual objective and to com-
pute the value of the primal. Thus, before even try-
ing to compute the value of the primal objective, one
should make sure that such a costly computation is
worth doing. Some of the cheap tests include verifying
that the reserve constraint is met and that the mis-
match between the S and the D variables is small.
With respecto to the latter, we have found that if
u1;t = 1, a smaller mismatch should be asked for as
requisite to feasibility than if ui;t = 0. More costly fea-
sibility tests would involve power 
ow problems start-
ing from appropriate initial values. Finally, since Alsac
et al. [10] claim that LP{based OPF methods can be
faster in detecting infeasibility, it might be advanta-
geous to use such methods.

3 Preliminary computational

results

We have written a preliminary implementation of
the algorithm in the MATLABTM environment. The
dynamic subproblems can accomodate minimal up
or down times, warm start and cold startup costs.
The static subproblems are solved by an OPF code
(see [22]) that incorporates box constraints on gener-
ator's P and Q, polynomial cost functions for both P



and Q, voltage constraints, line MVA limits and of
course, the power 
ow equations. The program has
been tested on a modi�ed IEEE 30-bus system [2] with
6 generators and a planning horizon of length 6. For
comparison purposes, a version of the Lagrangian re-
laxation algorithm with DC Flow-based relaxed line
limits was also written. It turns out that generator
number 4, located at bus number 27, is needed for
voltage support for many load levels even though it is
most uneconomical to operate. The AC-based algo-
rithm correctly identi�ed this unit as a must-run for
those time periods, even providing some price informa-
tion on the MVArs that this unit produced by means
of the corresponding �i;tq . The number of iterations
required was usually in the vicinity of one hundred. In
contrast, the DC 
ow-based algorithm failed to com-
mit unit 4 for any period, producing a commitment
schedule that was infeasible in light of the AC power

ow constraints.
The importance of proper selection of the

(cp; bp; cq ; bq) parameters was apparent from the be-
ginning. We obtained good results with cp = 0:05,
bp = 4cp, cq = 0:08 and bq = 4cq . However, other
choices tended to produce somewhat smooth, damped
oscillations in the values of some of the (�i;tp ; �i;tq ).
To highlight one of the new features found in the

algorithm, we show the evolution of (�i;tp ; �i;tq ) vs. it-
eration number for a typical run in �gure 1. The mul-
tipliers with the higher values are all P{type multipli-
ers. Those with the smaller values correspond to the
�i;tq . Most of them settle to zero, indicating that Q
is essentially free almost always. However, a few of
them actually have high prices: these belong to gen-
erators and time periods where the OPF tries to use
their MVArs in order to force feasibility or guided by
economic considerations, but the generators are not
actually committed. In the course of the algorithm,
these �i;tq may grow so large that they trigger the re-
spective unit on. Once this happens, such multipliers
tend to approach zero again, since Q is now plentiful.
In �gure 1 there are two clear examples of this behav-
ior, corresponding to unit 4 being commited for certain
time periods. As the multiplier approaches zero, the
static copy si;tq will approach the dynamic di;tq .

4 Future work

At the time that this paper was written, the imple-
mentation served the purpose of testing the overall al-
gorithm's expected behavior. The results that were
obtained encourage us to believe that the formulation
is sound. However, clearly more work is needed in or-
der to produce anything close to practical. More kinds

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

Figure 1: Evolution of multipliers in a typical run.

of constraints (e.g., ramp limits) need to be included
in the implementation. Preparations for testing larger
scale systems are under way, and, if successful, a par-
allel implementation will be worth pursuing. At the
conference, we should have more experience with the
algorithm and more complete data to report. We con-
clude this paper with the following comment: since
computer capacity grows much faster than the size of
the electrical power systems in the world, we believe
that this algorithm or a variant of it could well be
solving real life unit commitment problems in a few
years.
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