Module 1

Inertia in the Power System

What does inertia do for us and where does it come from?

Module 1a

Intuition on Inertia's Importance

What does inertia do for us and where does it come from?

Fuel burned to power turbine generator (synchronous machine) All **synchronized** to 60Hz

Hundreds or thousands of km separation

Distant load consumes power

The System with Widely Distributed Renewable Generation

Renewable resources (wind and solar) will "plug in" widely along this network

Failure modes:

Failure modes:

• Transmission line outage

Failure modes:

- Transmission line outage
- Generator outage

Failure modes:

- Transmission line outage
- Generator outage
- Bus outage

Maintaining System Frequency is Crucial

Failure modes:

- Transmission line outage
- Generator outage
- Bus outage

Frequency limit: 59.5Hz min, 60.5Hz max ~0.8% variation

Turbine Generator Mechanical Model

Grid Frequency Set by Generator Rotational Speed

J: moment of inertia

 ω_m : angular speed

Kinetic energy:
$$\frac{1}{2}J\omega_m^2$$

Intuition from Energy Balance Perspective

- Power system stores inertial energy in generators
- When an outage occurs, this energy serves as a "buffer"
 - Decreases for $P_{in} < P_{out}$
- Generator speed is directly affected by outages

∴The system frequency is directly affected by power imbalances in the grid

Module 1b

Dynamic Synchronous Generator Model

A first step towards studying power system dynamics

Generator Power Balance

$$P_m = P_e + \frac{d}{dt} W_{kinetic} + P_{friction}$$

(Ignore machine losses, except for mechanical friction)

Generator Power Balance

$$P_m = P_e + \frac{d}{dt} W_{kinetic} + P_{friction}$$

(Ignore machine losses, except for mechanical friction)

1. Balanced three-phase positive-sequence operation

- 1. Balanced three-phase positive-sequence operation
- 2. Constant machine excitation

- 1. Balanced three-phase positive-sequence operation
- 2. Constant machine excitation
- 3. Ignore saturation and **saliency** (so, round rotor, constant airgap)

- 1. Balanced three-phase positive-sequence operation
- 2. Constant machine excitation
- 3. Ignore saturation and **saliency** (so, round rotor, constant airgap)
- 4. The turbine-generator has a very large moment of inertia

Simplified Generator Electrical Model

Assumption 3

per phase equivalent (Assumption 1)

Simplified Generator Electrical Model

Rotor Position During Transients

Rotor Position During Transients

Rotor Position Relation to Electrical Angle

 $\theta(t) = \omega_m t + \theta_0 + \Delta \theta(t)$

 $\delta(t) = \theta_0 + \Delta \theta(t) - \frac{\pi}{2}$ When rotor angle is 90 deg, maximum coupling to phase "a"

Assuming equal number of rotor and stator poles

Generator Power Balance

$$P_m = P_e + \frac{d}{dt} W_{kinetic} + P_{friction}$$

(Ignore machine losses, except for mechanical friction)

Rotor Speed and Acceleration

$$W_{kinetic} = \frac{1}{2} J \dot{\theta}^2$$

$$\theta(t) = \omega_m t + \theta_0 + \Delta \theta(t)$$

$$\frac{d}{dt}\theta(t) = \omega_m + \frac{d}{dt}\Delta\theta(t)$$

Rotor Speed and Acceleration

 $\theta(t) = \omega_m t + \theta_0 + \Delta \theta(t)$

$$\frac{d}{dt}\theta(t) = \omega_m + \frac{d}{dt} \overset{0}{\delta}\theta(t) \approx \omega_m$$

Speed of transient rotor angle small relative to shaft speed due to large inertia (Assumption 4)

Rotor Speed and Acceleration

$$\theta(t) = \omega_m t + \theta_0 + \Delta \theta(t)$$
$$\frac{d}{dt}\theta(t) = \omega_m + \frac{d}{dt}\Delta \theta(t) \approx \omega_m$$
$$\frac{d^2}{dt^2}\theta(t) = \frac{d^2}{dt^2}\Delta \theta(t)$$

Kinetic Energy Variation

$$W_{kinetic} = \frac{1}{2}J\dot{\theta}^{2}$$

$$\frac{d}{dt}W_{kinetic} = J\dot{\theta}\ddot{\theta} = J\omega_{m}\ddot{\theta}$$

$$= J\omega_{m}\ddot{\delta}$$
Angular momentum of rotor Rotor acceleration
The Per Unit Inertia Constant, H

Steady-state rotor energy

MVA rating of generator

Friction Losses

$$P_{friction} = k\dot{\theta}^2 = k\omega_m^2 + 2k\omega_m\dot{\delta}$$

Static term, not critical – can be subtracted from input mech power

$$P_{friction} \approx 2k\omega_m \dot{\delta}$$

Define
$$D = \frac{2k\omega_m}{S_{base}}$$

The "Swing Equation"

$$P_m = 3 \frac{|E||V_t|}{X_d} \sin \delta + 2k\omega_m \dot{\delta} + J\omega_m \ddot{\delta}$$

$$\frac{P_m}{S_{base}^{3\phi}} = \frac{ev_t}{x_d} \sin \delta + D\dot{\delta} + M\ddot{\delta}$$

Non-linear differential equation describing "swings" in power angle during transients

Example: Increase in Mechanical Power

(Not practical, prime mover dynamics on order of seconds, but insightful)

Example: Increase in Mechanical Power

(Not practical, prime mover dynamics on order of seconds, but insightful)

Determine Initial Conditions

$$\delta(0^{-}) = \delta(0^{+}) = \delta_0$$
$$\dot{\delta} = 0$$

$$p_{m1} = \frac{ev}{x_d} \sin \delta_o \Rightarrow \delta_0 = 0.2527 \text{ rad.}$$
$$= 14.5^\circ$$

Assume negligible friction $f_m = 60$ Hz

Per unit quantities: $H = 5, x_d = 0.5, e = 1.2$ $v = 1, p_{m1} = 0.6, p_{m2} = 1.8$

Check Final Condition

$$\delta(0^{-}) = \delta(0^{+}) = \delta_0$$
$$\dot{\delta} = 0$$

$$p_{m1} = \frac{ev}{x_d} \sin \delta_o \Rightarrow \delta_0 = 0.2527 \text{ rad.}$$
$$= 14.5^{\circ}$$

We know the final condition too:

$$\delta_{\infty} = 0.848 \text{ rad.} = 48.6^{\circ}$$

Assume negligible friction $f_m = 60$ Hz

Per unit quantities: $H = 5, x_d = 0.5, e = 1.2$ $v = 1, p_{m1} = 0.6, p_{m2} = 1.8$

Define Governing Equation

Governing equation:

$$p_m = p_{e,max} \sin \delta + D\dot{\delta} + M\ddot{\delta}$$

Split into two first order equations:

$$x_{1} = \delta, x_{2} = \dot{\delta}$$
$$\dot{x_{1}} = \dot{\delta} = x_{2}$$
$$\dot{x_{2}} = \frac{p_{m} - Dx_{2} - p_{e,max} \sin x_{1}}{M}$$

Must solve numerically

Assume negligible friction $f_m = 60$ Hz

Per unit quantities:

$$H = 5, x_d = 0.5, e = 1.2$$

v = 1, $p_{m1} = 0.6, p_{m2} = 1.8$

Oscillates Around δ_{∞} , Variation with D

Oscillates Around δ_{∞} , Variation with H

The "Equal-Area Criterion"

The "Equal-Area Criterion"

Example: Generator Fault

Three-phase to ground bolted short on generator terminals

Condition for Instability

Accelerating energy cannot be removed, shaft speed increases, lose synchronism

Solution is Monotonic!

Worst-case example with no damping, but:

we're on the clock

If fault cleared too late, generator loses synchronism

Higher inertia, more time to respond

Conclusions

 Synchronous generator dynamic model derived from power balance

- Nonlinear swing equation defines rotor angle evolution
- System is stable when

• Higher inertia systems evolve more slowly

Module 1c

Multimachine Frequency Dynamics

A model for studying disturbances in the power system

Classical Model Used for "First Swing Analysis"

- Simplest model used in stability studies
- Limited to relatively short time-scales (order of seconds)

J. L. Jorgenson and P. L. Denholm, "Modeling Primary Frequency Response for Grid Studies," NREL/TP-6A20-72355, 1489895, Jan. 2019. doi: 10.2172/1489895.

Traditional Primary Control

• Primary frequency control: first 30 seconds

Secondary and Tertiary Control

• Secondary frequency control, 30s to 10s of minutes

• Tertiary: After ~15 mins, adapt generator and load set points

Rate of Change of Frequency

- ROCOF
 - Inversely proportional to system inertia
- Provides time for primary frequency control to adjust prime mover output

Internal machine node

Obtain a System of Swing Equations

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

p_{ei} for each generator depends on network, loads, and actions of all other generators

$$p_{ei} = \operatorname{Re}\{e_i i_i^*\}$$

• Must solve network equation:

$$\begin{bmatrix} Y_{nn} & Y_{ns} \\ Y_{ns}^T & Y_{ss} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_n \\ \boldsymbol{v}_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{i}_n \\ \boldsymbol{0} \end{bmatrix}$$

Mathematical Network Description

Mathematical Network Description

Mathematical Network Description

Admittance Matrix Definition

For *n* generators

$$I_i = \sum_{k=1}^n Y_{ik} E_k$$

Generator Power a Bit More Involved

For *n* generators

$$I_i = \sum_{k=1}^n Y_{ik} E_k$$

$$S_i = V_i I_i^* = \sum_{k=1}^n Y_{ik}^* E_k^*$$

$$P_i = \sum_{k=1}^n |E_i| |E_k| \left[\hat{G}_{ik} \cos(\delta_i - \delta_j) + \hat{B}_{ik} \sin(\delta_i - \delta_j) \right]$$

Multimachine Swing Equation

$$M_i \ddot{\delta}_i = p_{mi} - \sum_{k=1}^n |e_i| |e_k| \left[\hat{g}_{ik} \cos(\delta_i - \delta_k) + \hat{b}_{ik} \sin(\delta_i - \delta_k) \right]$$

Now, multivariable definition:

 $\begin{aligned} x_i &= \delta_i \\ x_{i+n} &= \dot{\delta_i} \end{aligned}$

$$\dot{x_i} = \dot{\delta_i} = x_{i+n}$$
$$\dot{x_{i+n}} = \frac{p_{mi} - p_{ei}}{M}$$

e.g.
$$n = 2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_1 \\ \delta_2 \\ \delta_1 \\ \delta_2 \end{bmatrix}$$

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers Apply fault by modifying admittance matrix Y

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers Apply fault by modifying admittance matrix Y

Solve multimachine swing equation for fault duration

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers Apply fault by modifying admittance matrix Y

Solve multimachine swing equation for fault duration

Apply post-fault conditions by modifying **Y**
Multimachine Fault Analysis

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers Apply fault by modifying admittance matrix Y

Solve multimachine swing equation for fault duration

Apply post-fault conditions by modifying **Y** Solve multimachine swing equation for new steady state

Example Solution for 7 Bus, 3 Generator system

Example Solution for 7 Bus, 3 Generator system

Conclusion

- Multimachine frequency dynamics are a straightforward conceptual extension of single-machine dynamics
- Classical model enables "first swing analysis" to determine inertial response of electromechanical system. **Inertia buys us time.**
- Looking ahead... we wouldn't need so much inertia if we could respond more quickly!

Conclusion

- Multimachine frequency dynamics are a straightforward conceptual extension of single-machine dynamics
- Classical model enables "first swing analysis" to determine inertial response of electromechanical system. **Inertia buys us time.**
- Looking ahead... we wouldn't need so much inertia if we could respond more quickly
- Much higher detail can be added (damper circuits, rotor and stator circuits, detailed flux linkages, higher level control) by extensions of the classical model principle

Example Solution for 7 Bus, 3 Generator system

Multimachine Fault Analysis

Determine **pre-fault** initial bus voltages, currents, internal voltages and generator powers

Multimachine Fault Analysis

Example of Applying Fault

$$p_{e1} = |e_1|^2 \hat{g}_{11} + |e_1||e_2| [\hat{g}_{12}\cos(\delta_1 - \delta_2) + \hat{b}_{12}\sin(\delta_1 - \delta_2)]$$

$$p_{e2} = |e_2|^2 \hat{g}_{22} + |e_1||e_2| [\hat{g}_{21}\cos(\delta_2 - \delta_1) + \hat{b}_{21}\sin(\delta_2 - \delta_1)]$$

Now, multivariable definition:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \dot{\delta_1} \\ \dot{\delta_2} \end{bmatrix}$$

$$\dot{x_i} = \dot{\delta_i} = x_{i+n}$$

$$\dot{x}_{i+n} = \frac{p_{mi} - p_{ei}}{M}$$

Network Component Descriptions

$$\begin{bmatrix} Y_{nn} & Y_{ns} \\ Y_{ns}^T & Y_{ss} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_n \\ \boldsymbol{v}_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{i}_n \\ \boldsymbol{0} \end{bmatrix}$$

 $\mathbf{i} = \begin{bmatrix} i_1 \\ \vdots \\ \vdots \\ i_n \end{bmatrix} \qquad \mathbf{e} = \begin{bmatrix} e_1 \\ \vdots \\ \vdots \\ e_n \end{bmatrix}$

$$\boldsymbol{v}_a = \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \vdots \\ \boldsymbol{v}_m \end{bmatrix}$$

generator currents

Generator internal voltages

Bus voltages (non-generator)

Obtain a System of Swing Equations

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

p_{ei} for each generator depends on network, loads, and actions of all other generators

$$p_{ei} = \operatorname{Re}\{e_i i_i^*\}$$

• Must solve network equation:

$$\begin{bmatrix} Y_{nn} & Y_{ns} \\ Y_{ns}^T & Y_{ss} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_n \\ \boldsymbol{v}_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{i}_n \\ \boldsymbol{0} \end{bmatrix}$$

Proceeds as Before

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

ent

 $V_t \angle 0^\circ$

p_{ei} for each generator depends on network, loads, and actions of all other generators

$$\begin{bmatrix} Y_{nn} & Y_{ns} \\ Y_{ns}^T & Y_{ss} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_n \\ \boldsymbol{v}_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{i}_n \\ \boldsymbol{0} \end{bmatrix}$$

Obtain a System of Swing Equations

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

p_{ei} for each generator depends on network, loads, and actions of all other generators

$$p_{ei} = \operatorname{Re}\{e_i i_i^*\}$$

• Must solve network equation:

$$\begin{bmatrix} Y_{nn} & Y_{ns} \\ Y_{ns}^T & Y_{ss} \end{bmatrix} \begin{bmatrix} \boldsymbol{e}_n \\ \boldsymbol{v}_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{i}_n \\ \boldsymbol{0} \end{bmatrix}$$

Obtain a System of Swing Equations

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

• p_{ei} for each generator depends on network, loads, and actions of all other generators

$$p_{ei} = \operatorname{Re}\{e_i i_i^*\}$$

• Must solve network equation:

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^T & Y_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_a \\ \boldsymbol{e} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{i} \end{bmatrix}$$

Network Component Descriptions

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^T & Y_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{e} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{i} \end{bmatrix}$$

Assume **N system busses** and **M internal machine buses**

$$\boldsymbol{i} = \begin{bmatrix} i_1 \\ \vdots \\ \vdots \\ i_m \end{bmatrix} \qquad \boldsymbol{e} = \begin{bmatrix} e_1 \\ \vdots \\ \vdots \\ e_m \end{bmatrix}$$

M vector of generator currents and internal voltages

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ \vdots \\ \vdots \\ v_n \end{bmatrix}$$

N vector of bus voltages

Admittance Matrix, Y₂₂

N system busses and M internal machine buses

Network Component Descriptions

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^T & Y_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_a \\ \boldsymbol{e} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{i} \end{bmatrix}$$

Assume **N system busses** and **M internal machine buses**

$$\mathbf{i} = \begin{bmatrix} i_1 \\ \vdots \\ \vdots \\ i_m \end{bmatrix} \qquad \mathbf{e} = \begin{bmatrix} e_1 \\ \vdots \\ e_m \end{bmatrix}$$

M vector of generator currents and internal voltages

$$\boldsymbol{v}_{a} = \begin{bmatrix} v_{1} \\ \vdots \\ \vdots \\ v_{n} \end{bmatrix}$$

N vector of bus voltages

Mathematical Network Description

Admittance Matrix, Y₂₂

N system busses and M internal machine buses

Network Component Descriptions

Network Component Descriptions

$$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^T & Y_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_a \\ \boldsymbol{e} \end{bmatrix} = \begin{bmatrix} 0 \\ \boldsymbol{i} \end{bmatrix}$$

generator currents

Generator internal voltages

Bus voltages

Obtain a System of Swing Equations

$$M_i \ddot{\delta}_i = p_{mi} - p_{ei}$$

- p_{ei} for each generator depends on network, loads, and actions of all other generators
- Network is defined by admittance matrix

$$I_i = \sum_{k=1}^n Y_{ik} V_k$$

Admittance between the i_{th} bus and the k_{th}

 $i_i^* = v_{ai} \qquad \qquad p_{ei} = \operatorname{Re}\{e_i i_i^*\}$

Power System Classical Model

• Start with generator model, assume D=0

Exercises

Grid Frequency Set by Generator Rotational Speed

Determine Initial Conditions

$$\delta(0^{-}) = \delta(0^{+}) = \delta_0$$
$$\dot{\delta} = 0$$

$$p_{m1} = \frac{ev}{x_d} \sin \delta_o \Rightarrow \delta_0 = 0.4298 \text{rad.}$$
$$= 24.6^\circ$$

Assume negligible friction $f_m = 60$ Hz

Per unit quantities:

$$H = 5, x_d = 0.5, e = 1.2$$

v = 1, $p_m = 1.0$

Define Governing Equation

Governing equation:

$$p_m = p_{e,max} \sin \delta + D\dot{\delta} + M\ddot{\delta}$$

Split into two first order equations:

$$x_{1} = \delta, x_{2} = \dot{\delta}$$
$$\dot{x_{1}} = \dot{\delta} = x_{2}$$
$$\dot{x_{2}} = \frac{p_{m} - Dx_{2} - p_{e,max} \sin x_{1}}{M}$$

Must solve numerically

Assume negligible friction $f_m = 60$ Hz

Per unit quantities:

$$H = 5, x_d = 0.5, e = 1.2$$

v = 1, $p_{m1} = 0.6, p_{m2} = 1.8$

Example: Increase in Mechanical Power

Governing equation:

 $2.4\sin\delta + 0.0265\ddot{\delta} = 1.8$

Split into two first order equations:

 $\dot{\delta} = \omega(t)$ $\dot{\omega}(t) = 67.92 - 90.57 \sin \delta$

Use MATLAB to solve

Assume negligible friction $f_m = 60$ Hz

Per unit quantities: $H = 5, x_d = 0.5, e = 1.2$ $v = 1, p_{m1} = 0.6, p_{m2} = 1.8$

Example: Increase in Mechanical Power

Example: Increase in Mechanical Power

Assume negligible friction Per unit quantities:

$$H = 5$$

 $x_d = 0.2$
 $e = 1.2$
 $v = 1$

Example: Generator Terminal Fault

Assume negligible

 $\delta(0) = \delta_1$ $\dot{\delta}(0) = 0$

$$\frac{P_m}{S_{base}} = D\dot{\delta} + M\ddot{\delta}$$

Example: Generator Terminal Fault

Assume negligible

$$\frac{P_m}{S_{base}} = p \dot{\delta} + M \ddot{\delta} \qquad \begin{array}{l} \delta(0) = \\ \dot{\delta}(0) = \end{array}$$

 δ_1

$$\delta = \frac{P_m}{2MS_{base}}t^2 + \delta_1$$

Know what the angle will be the moment the fault is cleared. But is this angle acceptable?

Example: Generator Terminal Fault

$$\frac{P_m}{S_{base}} = D \dot{\delta} + M \ddot{\delta} \qquad \dot{\delta}(0) = 0$$

Goal: Understand Transient Stability in the Power System

- Transient stability: maintaining system frequency ("synchronism") after a disturbance
- The swing equation describes "swing" in power angle during transients
- Linearizing the swing eqn? Not important
- Solving nonlinear swing eqn
- Equal-area stability crtierion

Explore This Behaviour in a Single Generator

$$P_{mech} - P_{elec} = I \frac{d\omega_m}{dt} \omega_m$$

$$\omega_m = 3600 \text{ RPM} = 377 \text{ rad/s}$$

Electrical Model of a Synchronous Machine

- State and provide intuition on the electrical model
- Emphasize the simplifications we are making
- Discuss P = f(delta), so there's an inherent connection between the mechanical state and the output power
- We'll ride this curve as faults happen
Dynamics of a Synchronous Machine

- Derive the dynamic equation of an SM
- In doing so, emphasize the assumptions we are making
- Highlight what the behavior is during a fault and how inertia provides <u>damping</u>

High Inertia Generators are "Stiff"

• Emphasizing the modeling benefits we can derive from the generators having high inertia

Equal Area Criterion?

• Worth covering?

Wind and Solar do Not Provide Inertia

- No inertia in solar
- There's a spinning turbine in wind... is that useful inertia? No. We'll explain later
- In general, we'll discuss more in the next module

The Instability of a 100% Renewable Grid

- First, must have storage to ensure dispatchability
- No system inertia, what happens?

Conclusions

- Energy stored in rotating inertias is fundamental to how the power system handles transients
- Wind, solar, and battery sources do not provide system inertia
- This greatly hampers system stability, unless we do something about it.
- Looking ahead: *power electronics* can respond to disturbances quickly...