Module 1

Inertia In the
Power System

What does inertia do for us and where does it come from?
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University
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What does inertia do for us and where does it come from?
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The Power System Connects Centralized
Generation to Distant Loads

Power plant  Step-up High-voltage Step-down Step-down

transformer transmission line transformer transformer
(substation)
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The Power System Connects Centralized
Generation to Distant Loads
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Power plant  Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Fuel burned to power turbine generator (synchronous machine)
All synchronized to 60Hz
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The Power System Connects Centralized
Generation to Distant Loads

Power plant  Step-up High-voltage Step-down Step-down

transformer transmission line transformer transformer
\ (substation) ]

Hundreds or thousands of km separation
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The Power System Connects Centralized
Generation to Distant Loads
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Power plant  Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer

(substation)

Distant load consumes power
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The System with Widely Distributed
Renewable Generation

| a2
1 2 . ! A L H MEA-‘
Power plant{ Step-up High-voltage 1 Step-down Step-down 4
transformer transmission line transformer transformer
(substation)

Renewable resources (wind and solar) will “plug in”
widely along this network

This Photo by Unknown Author is licensed under CC BY
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The Power System Must be Resilient
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Power plant  Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Failure modes:
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The Power System Must be Resilient
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Power plant  Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Failure modes:
« Transmission line outage
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The Power System Must be Resilient
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nt High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Failure modes:
« Transmission line outage
* Generator outage
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The Power System Must be Resilient

Power plant  Step-up High-voltage -C Step-down
transformer transmission line transformer transformer

(substation)

Failure modes:

« Transmission line outage
* Generator outage

 Bus outage
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Maintaining System Frequency is Crucial

Power plant  Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Failure modes:

« Transmission line outage Frequency limit:

« Generator outage 59.5Hz min, 60.5Hz max
* Bus outage ~0.8% variation

This Photo by Unknown Author is licensed under CC BY
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Turbine Generator Mechanical Model

Speed control

. Wim Synchronous We  Electrical

Valve




Grid Frequency Set by Generator Rotational Speed

. Wm |Synchronous | We Electrical

Valve

o '

V,sinw,t

we = kw,y,

e.g. rotate at 3600 RPM to
produce 60Hz




Rotating Masses “Store”
Kinetic Energy

O\
O ﬁ )
l Wy

J: moment of Inertia w,,: angular speed

Kinetic energy: %]a),%l



Nominal Operation, P;, = P,,;

Power System
w, = kw,,

Pout




Generator Outage, P;, < P,,;

Supplies the difference

Power System
w, = kw,,

P out




Generator Outage, P;, < P,,;

Supplies the difference

P out

Power System
‘@




Intuition from Energy Balance Perspective

* Power system stores inertial energy in generators

* When an outage occurs, this energy serves as a “buffer”
 Decreases for P, < Pyy¢

« Generator speed is directly affected by outages

~. The system frequency is directly
affected by power imbalances in the grid




Module 1b

Dynamic Synchronous
Generator Model

A first step towards studying power system dynamics

%l’ Arizona State
University



Generator Power Balance

Synchronous
Generator

Fm

d
Bn=F + E Wiinetic + Pfriction

(Ignore machine losses, except for mechanical friction)



Generator Power Balance

P Synchronous Fe
Generator
—) d
B = Fe |t E Wiinetic + Pfriction

(Ignore machine losses, except for mechanical friction)



Generator Modeling Assumptions

1. Balanced three-phase positive-sequence operation

o '




Generator Modeling Assumptions

1. Balanced three-phase positive-sequence operation
2. Constant machine excitation

S

dc




Generator Modeling Assumptions

1. Balanced three-phase positive-sequence operation

2. Constant machine excitation
3. Ignore saturation and saliency (so, round rotor, constant

airgap)




Wn e

Generator Modeling Assumptions

Balanced three-phase positive-sequence operation
Constant machine excitation
lgnore saturation and saliency (so, round rotor, constant

airgap)
The turbine-generator has a very large moment of inertia



Simplified Generator Electrical Model

Constant internal voltage

J Xa (Assumption 2)
) \\ 1V,
) E|V.
Ezo Ve 20 P,=3 " siné
Xq

{

er phase equivalent
P P 1 Assumption 3

(Assumption 1)



Simplified Generator Electrical Model
JXa

E|(V
_ L Il

ino
X, sin

Ezo V.20° Pe

Phase angle of phase “a” internal voltage



Rotor Position During Transients

O(t) = w,,t + 0,
\ J
|

Smooth rotation




Rotor Position During Transients

O(t) = w,t + 6y + AB(t)
f

|
Transient rotor angle




Rotor Position Relation to Electrical Angle

O(t) = w,t + 6y + AB(t)

JIA
o +A0(t) — -

y

When rotor angle is 90 deg,
maximum coupling to phase “a”

5(t)

Assuming equal number of rotor and stator poles



Generator Power Balance

P Synchronous Fe
Generator
rd N
Bn =F + E Wiinetic| + Pfriction
\ J

(Ignore machine losses, except for mechanical friction)



Rotor Speed and Acceleration
— 1 )2
Wkinetic — E]Q

O(t) = w,t+ 0, + A6(t)

d@(t)— +dA9t
dt — Um Ty (t)




Rotor Speed and Acceleration

O(t) = w,t + 6y + AB(t)

0

d d
EQ(t) = Wy, +9—Q,A/H(t) X Wy,

Speed of transient rotor angle small
relative to shaft speed due to large
Inertia (Assumption 4)




Rotor Speed and Acceleration

O(t) = w,t + 6y + AB(t)

d d
Eg(t) = Wy +aA9(t) X Wm

d? d?
Ee(t) = @Ae(t)




Kinetic Energy Variation

1 -
Wiinetic = E]H

d .. .
aWkinetic =J00 = Jwn,0
=]wm5
— \

Angular momentum of rotor Rotor acceleration



The Per Unit Inertia Constant, H

Steady-state rotor energy

0 2
H = Wiinetic _ Jwm |s] Typ. 1-10 seconds
Sbase 2Sbase

/"
MVA rating of generator

d

dt Winetic H . .
=——90=Mo

Sbase T[f‘m

N

Rotor speed in Hz




Friction Losses

Prriction = k0% = kw2, + 2kw;,6

/

Static term, not critical — can be subtracted from input mech power

Pfriction ~ 2ka)mg

Define D =



The “Swing Equation”

|E||V¢]
Xd

P, =3

sind + 2kw,, 6 +Jw,,6

5= —sind + D8 +Mé
Xd
base

Non-linear differential equation describing “swings” in
power angle during transients



Example: Increase in Mechanical Power
(Not practical, prime mover dynamics on order of seconds, but insightful)

A

Pe

Pm2

V \_,




Example: Increase in Mechanical Power

(Not practical, prime mover dynamics on order of seconds, but insightful)

Pm2

Pm1

A

Pe

\

/2

Assume negligible friction
fm = 60Hz

Per unit quantities:

H=5
xg = 0.2
e =1.2
v=1

pml — 06, pmz — 18

How does 6 evolve?



Determine Initial Conditions

5(07) = §(0%) = &,
6=0

Dm1 = i—Zsin 5, = 8, = 0.2527 rad.
— 14.5°

Assume negligible friction
fm = 60HZz

Per unit quantities:
H=5x;=05e=1.2
V = 1, pml — 06, pmz — 18

A

p/\
Pm2

NV
V )




Check Final Condition

5(07) = §(0%) = &,
6=0

Dm1 = i—Zsin 5, = 8, = 0.2527 rad.
— 14.5°

We know the final condition too:

0., = 0.848 rad. = 48.6°

Assume negligible friction
fm = 60HZz

Per unit quantities:
H=5x;=05e=1.2
V = 1, pml — 06, pmz — 18

A

p/\
Pm2

NV
V )




Define Governing Equation

Governing equation' Assume negligible friction
| £, = 60Hz

Pm = Pemax SING + D& +M§

Per unit quantities:
H=5x;=05¢e=1.2

. v=1,09,1 =0.6,p,, = 1.8

X1 = 5, Xy = 6 A

. Pe
Pm?2

. Pm— Dx; — Pemax SIN X4 / \
Xy = Y,
pml-'/
"5

Must solve numerically /2 T

Split into two first order equations:




Oscillates Around 6., Variation with D

Pe

Pm2

Pm1 _/

/2

o [rad]

181

161

121

0.8 r

0.6

14t [\
|

04t/

94.5°

D
D

D

=0
=0.02| |
=1 .'Il

0.2




Oscillates Around 4., Variation with H

18 r

Pe

H=5
H=7.5

/ N =
A- AN \\
1 4 I :".J/ \\ .\\\\.

\ \ .

A

o0 [rad]

.-"l \

pm 1 06 L f \\\\

04

> 02 | , | N

time (s)

N
-
I




The “Equal-Area Criterion”

Pm2

Pe

* In our example, these areas are equal
* Physical meaning

Pm1 /

/2

\



Pm2

Pm1

The “Equal-Area Criterion”

Pe * In our example, these areas are equal

* Physical meaning

— (Generator output > input
Rotor decelerates

Rotor accelerates

single machine

\ A useful way to check stability of a
)

>
/2 T (extendable to two-machine system)



Pm

Example: Generator Fault

Three-phase to ground bolted short on generator terminals

Pe

/2

Assume negligible friction
fm = 60Hz

Per unit quantities:
H=5
xqg = 0.5
e =1.2
v=1.0
Pm = 1.0

How does 8§ evolve?



Condition for Instability

Accelerating energy cannot be removed, shaft speed increases, lose synchronism

Pe

A

Pe

In this example, 6 ;4 = 91.7°

If reconnected here,
guaranteed instability



o [rad]

3.5

251

151

05 ¢

Solution is Monotonic!

d =

Pm
2M

—t%+ 65

0.05

0.1

0.15

0.2 0.25
time (s)

0.3

0.35

0.4

Worst-case example with no
damping, but:

we’re on the clock

If fault cleared too late,
generator loses synchronism

Higher inertia, more time to
respond



Conclusions

* Synchronous generator dynamic model derived from
power balance

* Nonlinear swing equation defines rotor angle evolution
« System is stable when

* Higher inertia systems evolve more slowly



Module 1c

Multimachine
Freguency Dynamics

A model for studying disturbances in the power system

%l’ Arizona State
University



Classical Model Used for
“First Swing Analysis”

« Simplest model used In stabllity studies
* Limited to relatively short time-scales (order of seconds)

60

Frequency
(Hz)

Event
Occurs

>

\
\\
I \

Contingency

Spinning Reserves

Regulating Res.

Frequency Responsive

y o /
“
)

N—— Reserves
: t } : ] —>
Os 10s 30s 5m 10m 30m 1hr
Time (approx.)

J. L. Jorgenson and P. L. Denholm, “Modeling Primary Frequency Response for Grid Studies,” NREL/TP-6A20-72355, 1489895, Jan. 2019. doi: 10.2172/1489895.



https://doi.org/10.2172/1489895

Traditional Primary Control

* Primary frequency control: first 30 seconds

Fuel —

Boiler

AP

\\ Af

Speed control

Pl

Valve

Tuine

Synchronous
Generator

We

—

Electrical
Power



Secondary and Tertiary Control

« Secondary frequency control, 30s to 10s of minutes

Controller

Speed control
|
Fuel — Boiler g » Turbine
Valve

Synchronous
Generator

We  Electrical

- Power

« Tertiary: After ~15 mins, adapt generator and load set points



Rate of Change of Frequency

Inertia Response

Arresting Period
« ROCOF |
' Rebound Period
1 b d
i

— Inversely proportional to 0 -

system inertia

¢ PrOVideS time for T Setting Frequency I.

| —
primary frequency
control to adjust prime |
mover output . |

'-I-—f =% = :C;:ZOF
coan + Primary Response Period

Seconds

B.-M. S. Hodge et al., “Addressing technical challenges in 100% variable inverter-based renewable energy power systems,” WIREs Energy and Environment, vol. 9, no. 5, p. €376, 2020, doi: 10.1002/wene.376.



https://doi.org/10.1002/wene.376

Power System Classical Model

JXa1

4 )

— +

Iy
E1451 + ,81 Va14ﬁ1

den

Transmission
Network

E, 26, + B, Vo 2P,

IL1

|_




Power System Classical Model

E1246;, + By

* Constant p,,;
« D=0

ETLL(STL + ﬁ?’l

JXa1

4 )

— +

I
Va14,81

den

Transmission
Network

Van£Pn

IL1

|_




Power System Classical Model

JXa1

4 )

— +
Iy

Transmission
Network

IL1

|_

E1451 + ,81 Va14ﬁ1

o

o

[ )

den
— +
In

E, 26, + B, Vo 2P,

Iim

|_

ZLl

 Constant

Impedance
loads

ZLZ




Power System Classical Model

Internal machine node

\ JXa1

——
I
E 26, + B4

~ PY
Reference node :

den
—p

ETLL(STL + ﬁ'l’l

Generator bus

Va14,81

4 )

/ Load bus

T

Van£PBn

Transmission
Network

E—
I;4

1

ZLl

e

Iim




Obtain a System of Swing Equations

M;5; = Pmi — Dei

* p.; for each generator depends on network, loads, and actions of all
other generators

pei = Rele;i;}

* Must solve network equation:

Y.
YnTs Yss [vJ [ln]



Mathematical Network Description

JXa1 Va1401 / \
—p
L — 1
E1261 + B4 AR
° Transmission | _yl_
. Network o
o

den VanL,Bn
—p

I
Ens8y + P " \_




Mathematical Network Description

JXa1
> —p
I, Describes network I11 L
E1201 + p4 AR
. l o T
— °
® I —_— Yb V )
us
o /
JXan
. Vector
- of all Vector of bus |
E, .8, + By " currents voltages




Mathematical Network Description

Describes network, load, and
generator impedances

Vector of
generator
currents

Vector of internal
generator voltages




Admittance Matrix Definition

For n generators

P AN

 |Guu+JjB1yy - GintjBm n
Y = : : I; = Z YikEx
Gn1 tJBn1 - Gpn + By, k=1



Generator Power a Bit More Involved

For n generators

~ |G11 +jByy -+ Gin+jBin n
Y = : : I; = Z YikEx
Gn1 +jBn1 R C +jBnn k=1

n
S, =Vili = ) Vi
k=1

n
p, = 2 |E¢|Ex|[Gixe cos(8; — &;) + By sin(8; — 6,)]
k=1



Multimachine Swing Equation

n
M;0; = Dmi — z le;lex|| Gir cos(8; — 8x) + by sin(6; — ;)]
k=1

\

Now, multivariable definition:

Xl' — 61'.
Xitn = O;

|
Pei

Xi =0; = Xiyn

Pmi — Pei

eg.n=2
Xy
X2
X = X
| X4 |




Multimachine Fault Analysis

Determine pre-fault initial
bus voltages, currents,

Internal voltages and
generator powers




Multimachine Fault Analysis

Determine pre-fault initial
bus voltages, currents,

Apply fault by
modifying

admittance
matrix Y

Internal voltages and
generator powers




Multimachine Fault Analysis

Determine pre-fault initial
bus voltages, currents,
Internal voltages and
generator powers

Apply fault by
modifying
admittance

matrix Y

Solve
multimachine _
swing equation for
fault duration




Multimachine Fault Analysis

Determine pre-fault initial Apply fault by
bus voltages, currents, modifying
Internal voltages and admittance
generator powers matrix Y

Solve
multimachine
swing equation for
fault duration

Apply post-fault
conditions by
modifying Y




Multimachine Fault Analysis

Determine pre-fault initial Apply fault by
bus voltages, currents, modifying
Internal voltages and admittance
generator powers matrix Y

Solve
multimachine
swing equation for
new steady state

Solve
multimachine
swing equation for
fault duration

Apply post-fault
conditions by
modifying Y




d [deg]

Example Solution for 7 Bus, 3 Generator system

21

Ga s

time (s)

001 002 003 004 005 006 007 008 009 0.1

o [deg]

12

10

&

Oa4

21| |

1.5 2 2.5

3.5



Example Solution for 7 Bus, 3 Generator system

60.7

60.6

9.9

0

001 002 003 004 005 006 007 008 0.09 0.1

time (s)

60.7

60.6

899

0.5 1 1.5 2 2.5
time (s)




Conclusion

* Multimachine frequency dynamics are a straightforward
conceptual extension of single-machine dynamics

« Classical model enables “first swing analysis” to determine inertial
response of electromechanical system. Inertia buys us time.

« Looking ahead... we wouldn’'t need so much inertia if we could
respond more quickly!



Conclusion

* Multimachine frequency dynamics are a straightforward
conceptual extension of single-machine dynamics

« Classical model enables “first swing analysis” to determine inertial
response of electromechanical system. Inertia buys us time.

« Looking ahead... we wouldn’'t need so much inertia if we could
respond more quickly

« Much higher detail can be added (damper circuits, rotor and stator
circuits, detalled flux linkages, higher level control) by extensions
of the classical model principle



Example Solution for 7 Bus, 3 Generator system

60.7

60.6

9.9

0

001 002 003 004 005 006 007 008 0.09 0.1

time (s)

60.7

60.6

899

0.5 1 1.5 2 2.5
time (s)




Multimachine Fault Analysis

Determine pre-fault initial
bus voltages, currents,
Internal voltages and
generator powers

1.022 —3.55° j0.18

T

0.992 —7.5°

0.65 + j0.2

—

I

Ey26, + B



Multimachine Fault Analysis

Determine pre-fault
initial bus voltages,

Apply fault by
modifying
admittance
matrix Y

Determine pre-
currents, internal fault admittance =
voltages and generator matrix

Solve
multimachine Apply post-fault
swing equation by modifying Y
until fault cleared

Solve
multimachine
swing equation



Example of Applying Fault

Pe1 = le1|*G11 + leqlle; :§12 cos(8; — 8,) + by, sin(8; — 52):
Pe2 = 1€> 2ﬁzz T [eqllé :!?21 cos(6, — &) Ez1 sin(6, — 51):

Now, multivariable definition:

"X (01 C— S —
s X; = 0j = Xi4n
X = Y2l _ |72
N x3 B 61
| X4 | _5’2_

. Pmi — Pei




Network Component Descriptions

o |l = [

11 €17 U1
L = e — va —
_in_ —eTL— _vm_
generator currents Generator internal voltages Bus voltages

(non-generator)



Obtain a System of Swing Equations

M;5; = Pmi — Dei

* p.; for each generator depends on network, loads, and actions of all
other generators

pei = Rele;i;}

* Must solve network equation:

Y.
YnTs Yss [vJ [ln]



Proceeds as Before

V,.20° M;8; = Dmi — Dei

* p,; for each generator depends on network, loads, and actions of all
other generators

Yo
YnTS YSS [vJ [ln]



Obtain a System of Swing Equations

M;5; = Pmi — Dei

* p.; for each generator depends on network, loads, and actions of all
other generators

pei = Rele;i;}

* Must solve network equation:

Y.
YnTs Yss [vJ [ln]



Obtain a System of Swing Equations

M;5; = Pmi — Dei

* p.; for each generator depends on network, loads, and actions of all
other generators

pei = Rele;i;}

* Must solve network equation:

vy
Yz YZ [’Z“] - [?]




Network Component Descriptions

_Y12 Yoo

[y

M vector of generator currents

and internal voltages

RS

€m.-

Assume N system busses and
M internal machine buses

| Un .

N vector of bus voltages



Admittance Matrix, Y,

N system busses and M internal machine buses

vy
YE YZ [Z] - m

\4

MxM diagonal matrix

of reciprocal — Yy =

generator reactances

Yllv —+ lee — O
Yszv ~+ Yzze — i

1 O 7]
I Xa1
1
I X o
0 1

IXanm



Network Component Descriptions

Y11 Y12 [va] [()] Assume N system busses and
T — | M internal machine buses
Yy, Yy|le l
ll 61- vl
Il = e = : va =
[, e Uy,

M vector of generator currents

_ N vector of bus voltages
and internal voltages



Mathematical Network Description

E, 26, + B,

de1 Va14,81

—l
I

®
o
[ )

j an Van L,Bn
——

Describes network and loads

|

y I — YbusV\

Vector of bus
voltages

Vector of
generator
currents



Admittance Matrix, Y,

N system busses and M internal machine buses

vy
YE YZ [Z] - m

\4

Diagonal matrix of

reciprocal generator ——— Y, =

reactances

Yllv —+ lee — O
Yszv ~+ Yzze — i

1 O 7]
I Xa1
1
I X o
0 1

IXanm



Network Component Descriptions

NXxN

Relates \

Y, Yo
_Y17; Yoo




Network Component Descriptions

Y- Y-
el = [0

1, 1€n L Vand

generator currents Generator internal voltages Bus voltages



Obtain a System of Swing Equations

M;5; = Pmi — Dei

* p.; for each generator depends on network, loads, and actions of all
other generators
* Network Is defined by admittance matrix

Admittance between the i;; bus and the k;y,
n
L= ) Yali
k=1

i = Vgi Pei = Rele;i;’}



Power System Classical Model

« Start with generator model, assume D=0

JXai

E;20; + B




Exercises



Grid Frequency Set by Generator

Rotational Speed

*

we = kw,y,

e.g. rotate at 3600 RPM to
° produce 60Hz




Determine Initial Conditions

Assume negligible friction

5(0_) = 5(O+) — 50 fm = 60Hz
O =20 Per unit quantities:
H=5x;=05e=1.2
v=1p, =10

D1 = i—Zsin 5, = 8, = 0.4298rad. A
— 24‘60 De

T

1 >
/2 m O




Define Governing Equation

Governing equation' Assume negligible friction
| £, = 60Hz

Pm = Pemax SING + D& +M§

Per unit quantities:
H=5x;=05¢e=1.2

. v=1,09,1 =0.6,p,, = 1.8

X1 = 5, Xy = 6 A

. Pe
Pm?2

. Pm— Dx; — Pemax SIN X4 / \
Xy = Y,
pml-'/
"5

Must solve numerically /2 T

Split into two first order equations:




Example: Increase in Mechanical Power

Governing equation: Assume negligible friction
fm = 60HZz
2.4sin§ +0.02656 = 1.8 Per unit quantities:

H=5x;=05¢=12

Split into two first order equations: v=1pn =0.6,py,, =18

6 = w(t)

Pe
w(t) =67.92—-90.57siné /\
Pm?2

Use MATLAB to solve / \
pml-'/
> 5

/2 T

A




Example: Increase in Mechanical Power

A

Pm2

Pe

Assume negligible friction
Per unit quantities:
H=5
xg = 0.2
e =1.2
v=1

\

/2



Example: Increase in Mechanical Power

A

Pe

Pm2

Y

/2

\,

Assume negligible friction
Per unit quantities:
H=5
xg = 0.2
e =1.2
v=1



Example: Generator Terminal Fault
Xa

Assume negligible
Py : & 6(0) = 01
Es6 1) Shase 96 +Mo 5(0) =0




Example: Generator Terminal Fault
Xa

Assume negligible

Pm ' N 5(0) =46
Ezd oV Shoce — 9/5 +M5 5(0) _ 01

21waase

) t? + 6,

Know what the angle will be the moment the fault is
cleared. But is this angle acceptable?



Example: Generator Terminal Fault

Xq
N 5(0) = 6§,
Pm . . oo . B
EzZd oV Spoc — 9/5 +M5 5(0)=0

ctM _D P

§=——e M- ~ t+oc,
D DSbase

5= 6, MP, _D, MP, : MP, .




Goal: Understand Transient
Stability in the Power System

* Transient stability: maintaining system frequency
(“synchronism”) after a disturbance

* The swing equation — describes “swing” in power angle
during transients

 Linearizing the swing egn? Not important
» Solving nonlinear swing egn
* Equal-area stabllity crtierion



Explore This Behaviour in a Single Generator

Mechanical ®m |Synchronous | We Electrical

—_— —_—

power Generator Power

dw,,

Prech — Pelec = ITwm

w,, = 3600 RPM = 377 rad/s



Electrical Model of a Synchronous
Machine

« State and provide intuition on the electrical model
 Emphasize the simplifications we are making

* Discuss P = f(delta), so there’s an inherent connection
between the mechanical state and the output power

» \We’'ll ride this curve as faults happen



Dynamics of a Synchronous Machine

* Derive the dynamic equation of an SM
 In doing so, emphasize the assumptions we are making

 Highlight what the behavior is during a fault and how
Inertia provides damping




High Inertia Generators are “Stiff”

 Emphasizing the modeling benefits we can derive from
the generators having high inertia



Equal Area Criterion?

* Worth covering?



Wind and Solar do Not Provide
Inertia

 NO Inertia in solar

* There’'s a spinning turbine in wind... is that useful inertia?
No. We'll explain later

* In general, we’'ll discuss more in the next module



The Instability of a 100%
Renewable Grid

* First, must have storage to ensure dispatchability
* No system inertia, what happens?



Conclusions

* Energy stored In rotating inertias is fundamental to how
the power system handles transients

* Wind, solar, and battery sources do not provide system
Inertia

* This greatly hampers system stability, unless we do
something about it.

* Looking ahead: power electronics can respond to
disturbances quickly...
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