



## **Understanding Terms**

- Firm capacity, non-firm capacity
- Fully dispatchable, semi-dispatchable, non-dispatchable
- Intermittent, variable, stochastic, uncertain
- Predictable, forecast
- Deterministic, probabilistic

## Conventional Power Plans versus Renewable Resources

| Conventional Bulk                                      | Renewables                                                                                 |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Firm capacity                                          | Non-firm or semi-firm                                                                      |
| Fully dispatchable, controllable                       | Non-dispatchable to semi-dispatchable                                                      |
| Inertia                                                | Inertia-less                                                                               |
| Unlikely discrete failures taking entire plant out     | Frequent minor – moderate changes                                                          |
| Unlikely correlation with other outages and conditions | Weather dependent with correlation with<br>other weather dependent resources and<br>demand |
| Single, large plant                                    | Many smaller units (e.g., wind turbines or solar panels in a "farm")                       |











#### The duck curve shows steep ramping needs and overgeneration risk

(from the California Independent System Operator)

## Challenges Due to Renewable Resources

## CAISO's Duck Curve

The duck curve shows steep ramping needs and overgeneration risk



I am guessing you have all heard of this – we are going to hear about more challenges than just the Duck Curve



## Massive Ramping Required California - 2020



Such ramping requirements alone are a challenge, let alone the locational requirements

### California: April 9, 2019 Net Imports: Providing Most of the Flexibility













MISO

# Challenges Due to Renewable Resources: MISO Forecast Error



Challenges Due to Renewable Resources: MISO Wind Events

- July 29, 2018: 1MW renewable power produce for one operational state
- July 28, 2018: 128MW renewable power produce over an hour
- 2018 MISO renewable capacity: **18GW!**
- MISO, "MISO 2018 Summer Assessment Report," pp. 4, Sept. 2018. Online. Available: <u>https://cdn.misoenergy.org/2018%20Summer</u> <u>%20Assessment%20Report283263.pdf</u>







# Ireland and the World

#### A closer look at 70% in Ireland





15 min time period

2030 wind was estimated by multiplying 2018 wind availability by 2.1612 to achieve an energy balance of 70% wind.



#### Wind and Solar in Synchronous AC Power Systems as a Percent of Instantaneous Power and Annual Energy



System Size (GW)







# Reserves

## CAISO Operating Reserve Rule

- Let's evaluate how CAISO ensures sufficient reserve (from before their high renewable production days)
- Consider the following operating reserve rule from CAISO (for N-1 contingencies and net load deviations)
- Operating Reserve: >= 5% of Load met by Hydro + 7% of Load met by non-Hydro

+ 100% interruptible imports (or largest contingency)

https://www.caiso.com/Documents/SpinningReserveandNonSpinningReserve.pdf

• Question: What does this signify?

## CAISO Operating Reserve Rule

• Operating Reserve: >=

5% of Load met by Hydro

+ 7% of Load met by non-Hydro

+ 100% interruptible imports (or largest contingency)

https://www.caiso.com/Documents/SpinningReserveandNonSpinningReserve.pdf

- Question: What does this signify?
- Hydro is more likely to deliver as expected?
- Question: what about other resources or individual hydro units?
- Good question
- Question: where does 5% and 7% come from?
- I have no idea (and how do we know these are the right numbers?)
- I previously spoke to CAISO... this exists from long ago... and was roughly chosen
- We need to expand our understanding of and ability to quantify, in a transparent manner, asset performance risk
- Room for improvement... even for conventional assets and N-1







# Opportunities

## Opportunities...

Flexible Solar Reduces Curtailment – An Illustration (2,400 MW Solar)



Solar Provides No Regulation Reserves



#### Flexible Solar: Provides regulation reserves

First Solar Study

Source: E3,TECO, First Solar Report "Investigating the Economic Value of Flexible Solar Power Plant Operation", <u>https://www.ethree.com/wp-content/uploads/2018/10/Investigating-the-Economic-Value-of-Flexible-Solar-Power-Plant-Operation.pdf</u>

15

# Must transition to flexible renewables: mindset must change



## From First Solar

### Key Messages







 Utility-scale Solar is now able to provide grid flexibility & essential reliability services

- Leveraging this innovative resource leads to a more efficient power system with *lower* system costs and reduced emissions
- However, Grid Management Innovations are needed to leverage solar flexibility given its inherent variability and uncertainty

# What can we already learn?

- Renewables have distinct characteristics
- Existing paradigm designed for resources with different characteristics... itself is far from perfect for conventional resources
  - To this day, we still do not optimize over all N-1 and yet N-1 reliability has existed for how long? ... the same for AC nonlinearities...
- There are challenges... ... and opportunities