Understanding Challenges: Intermittent Resources

Prior Studies and Real-World Examples

Both Real Challenges and Mental Challenges

CAISO's Duck Curve

The duck curve shows steep ramping needs and overgeneration risk

(from the California Independent System Operator)

Massive Ramping Required Predicted in California - 2020

Such ramping requirements alone are a challenge, let alone the locational requirements

California: April 9, 2019 Net Imports: Providing Most of the Flexibility

Changing resource mix leads to new needs for market products -- already seen in CAISO's net demand (Source: "ISO Today" iPhone App, 3/24/2016)

A closer look at 70% in Ireland

15 min time period

2030 wind was estimated by multiplying 2018 wind availability by 2.1612 to achieve an energy balance of 70% wind.

NREL Report: The Western Wind and Solar Integration Study (20%)

NREL Report: The Western Wind and Solar Integration Study (30%)

Understanding Challenges: Intermittent Resources

NREL Report: The Western Wind and Solar Integration Study (30%)

Figure 6.47 Study Area Dispatch – Week of April 10th – 30% R Case

Wind Production at Tehachapi Pass, CA

Tehachapi Wind Generation in April – 2005

Variability versus Uncertainty

- Variability: indicates to what degree the resource is changing (but this does not *necessarily* describe the uncertainty associated to the resource)
- Uncertainty: describes that the resource is not fully known

Prior NREL report assumes perfect foresight of renewable production

Challenges Due to Renewable Resources: MISO Forecast Error

Challenges Due to Renewable Resources: MISO Wind Events

- July 29, 2018: 1MW renewable power produce for one operational state
- July 28, 2018: 128MW renewable power produce over an hour
- 2018 MISO renewable capacity: **18GW!**
- MISO, "MISO 2018 Summer Assessment Report," pp. 4, Sept. 2018. Online. Available: <u>https://cdn.misoenergy.org/2018%20Summer</u> <u>%20Assessment%20Report283263.pdf</u>

One of the Grid Operators in the Northwest: Bonneville Power Administration (BPA)

- Grand Coulee Dam should have the following reserves due to the wind in Eastern Washington:
 - 850MW of up, 1050MW of down reserves
 - Substantially restricts their operating region
- Too much outflow at times, interfering with fish management
- Have been required to sell power for \$0/MWh at times
 - 50,000MWh of energy released for free
- This is due to the *uncertainty* of wind, not knowing if it will drop off or spike in production
- http://integrating-renewables.org/integrating-renewables-case-studybonneville-power-administration/

How can we address these challenges?

- Better forecasting
- More infrastructure (more fast backup generation, more transmission but very expensive)
- Energy storage
- Demand response
 - Demand response has existed for decades but only recently are we moving towards really integrating demand response into all functions of our operations

Optimization

- Make better use of existing resources to reduce the cost of integrating intermittent resources
- Better deterministic reserve policies
- Stochastic optimization
- Harness flexible transmission (enhance deliverability)... grid enhancing tech as referenced in DE-FOA-0002740

How can geographical diversity of renewable resources help?

- Improves the chances the wind is blowing somewhere
- But deliverability of the resources and locational limitations are still a challenge (voltage, power quality, transmission limitations)
- What if traffic patterns were (more) random?
 - With transportation systems, you are late to work
 - With electric power, the result is a blackout