A Convex Design in Structural Deep Neural Network for Controlling Renewables

Yang Weng Arizona State University 4/24/2024

PSERC Webinar

Energy Grid Transformation

1. Generation Power Electronics **Changes** 3. Network 2. Loads **Charging Station Density** Ű. Microgrids Challenges:

- Intermittency and Variability
- Voltage Fluctuations
- Capacity Limits and Grid Congestion
- Grid Stability and Reliability
- Reverse Power Flow
- Cyber Attacks

Important Solution:

• Data-Driven Operation with Guarantees

Research Questions: Reliable and Secured Operation?

- Optimal Voltage Control
 - Now: Input Convex Neural Network for Optimality
 - Future: Generalizability Design
- Operate with Limited System Information
 - Deep Learning Twin for Physical Consistency
- Operate Through Compromise
 - Inject False Data without System Information
 - Defense Strategy and its Optimal Control
- Conclusion

Problem Definition for Voltage Regulation and Past Work

Power flow equations

With System Information:

Linearization of Nonlinear Power Flow Constraints [Chamana 18] [Changfu 19] Convexification

- Semi-Definite Programming (SDP) [Wang 17]
- Penalty Technique [Lin 22]

Without System Info: Learning-based Methods

- Generative Learning
 - Power Flow-based Learning [Zhang et al 24] [Du 21]
 - Prior Knowledge like Radial Networks and X/R Ratios [Xu 19]
- Discriminative Learning
 - Machine Learning Model-based [Ayyagari 19] [Hong 23]

Limited or No System Information: How to Do Optimal Control?

 $\rightarrow f_{Convex \, NN}\big((\boldsymbol{p}; \boldsymbol{q}) | \boldsymbol{\Omega}\big) = \big| \boldsymbol{V} - \boldsymbol{V}_{ref} \big|$

One possible solution to approximate $|V - V_{ref}|$ with $f_{ICNN}((p; q)|\Omega)$ [B. Amos et al, 2017].

Proposition [Input *Convexity* of Neural Networks]

A neural network is convex w.r.t input x, given that all weights in $W_{1:k-1}$ are non-negative, and all activation functions $\sigma(\cdot)$ are convex and non-decreasing (e.g. ReLU).

 f_{ICNN} is convex in(p; q) \rightarrow Guarantee *convexity* in data-driven model for *control* target

Proof: Convexity is maintained in all feed-forward steps

Improvement?

The Problem of Redundancy Design

While ensuring convexity with $|V - V_{ref}| = f_{ICNN} \left(\left((p; q); (-p; -q) \right) | \Omega \right) [Y. Chen et al, 2019; 2020].$

	Model Variation	System Size (Input Dimension)	Error (MAPE)	R2 Score		
1	ICNN with Expanded Inputs $[(p; q); (-p; -q)]$ [Y. Chen et al, 2019; 2020]	20	0.26	0.97		
		30	0.24	0.96	Expanded Inputs Unnecessary	
		50	0.04	0.86		
2	ICNN' with Regular Inputs (p , q)	20	0.24↓	0.98 1	≥18% less computation time ≥25% less memory occupied	
		30	0.23 🗸	0.97 1		
		50	0.03 🗸	0.88 1	ightarrow Better for grid edge computing	
2	ICNN' with Regular Inputs (\pmb{p}, \pmb{q})	20 30 50	0.24↓ 0.23↓ 0.03↓	0.98↑ 0.97↑ 0.88↑	 ≥18% less computation time ≥25% less memory occupied → Better for grid edge computin 	

New Operation Points: with More Fluctuation on DER Generations

Calling \rightarrow Generalizability

10

Redesigned ICNN with Generalizability

Redesigned ICNN with Generalizability

Regularization on Physics Consistency

$$\min_{\Omega,\Phi} \sum \left[\boldsymbol{V} - f_{ICNN'\Omega}(\boldsymbol{p};\boldsymbol{q}) \right]^2 + \lambda [(\boldsymbol{p};\boldsymbol{q}) - g_{\Phi}(\boldsymbol{V})]^2$$

$$\min_{\Omega,\Phi} \sum \left[\boldsymbol{V} - f_{ICNN'\Omega}(\boldsymbol{p};\boldsymbol{q}) \right]^2 + \lambda \left[\boldsymbol{V} - f_{ICNN'\Omega}(g_{\Phi}(\boldsymbol{V})) \right]^2$$

$$\min_{\Omega,\Phi} \sum \left[\boldsymbol{V} - f_{ICNN'\Omega}(\boldsymbol{p};\boldsymbol{q}) \right]^2 + \lambda \left[(\boldsymbol{p};\boldsymbol{q}) - g_{\Phi}(f_{ICNN'\Omega}(\boldsymbol{p};\boldsymbol{q})) \right]^2$$

GICNN: Cyclic Structure of Bidirectional Mapping

$$\min_{\Omega,\Phi} \sum \left[\boldsymbol{V} - f_{GICNN'}(\boldsymbol{p};\boldsymbol{q}) \right]^2 + \lambda \left[(\boldsymbol{p};\boldsymbol{q}) - g_{\Phi}(f_{GICNN'}(\boldsymbol{p};\boldsymbol{q})) \right]^2 + \lambda' \left[\boldsymbol{V} - f_{GICNN}(g_{\Phi}(\boldsymbol{V})) \right]^2$$

Theorem 1. For the objective $|V - V_{ref}| \coloneqq f(p, q)$ and arbitrary $\varepsilon > 0$, there exist a GICNN network $f_{GICNN_{\Omega}}(p, q)$ such that

$$\sup_{\boldsymbol{p},\boldsymbol{q}} \left\| f_{GICNN_{\Omega}}(\boldsymbol{p},\boldsymbol{q}) - f(\boldsymbol{p},\boldsymbol{q}) \right\| < \varepsilon$$

Proof: $\exists K > 0$, and K affine functions L_1, \dots, L_k , such that the maximum of these affine functions can approximate f with accuracy ε , i.e., $\sup |f(\mathbf{p}, \mathbf{q}) - \max\{L_1, L_2, \dots, L_K\}| \le \varepsilon$.

Definition 2. [Generalizability Gap] To quantify the generalization capability of a model f, the generalization gap is defined as $\epsilon(f) = \mathbb{E}_{(x,y)\sim \mathfrak{D}}[f(x) - y]^2 - \frac{1}{n}\sum_{i=1}^n [f(x_i) - y_i]^2$ Error on training set Error on training set + unseen data Theorem 3. [GICNN *Generalizability* Improvement] Suppose L is the number of hidden layers, P is the number of parameters, and n is the size of training set. The ICNN' model $\min_{\Omega} \left[V - f_{ICNN_{\Omega}}(p) \right]^2$ has generalization gap bounded as $\epsilon \left(f_{ICNN_{\Omega}} \right) \le O\left(\sqrt{LP/n} \right)$ [Imaizumi 22]. The **GICNN** model $\lim_{\Omega \to \Phi} \left[V - f_{GICNN}(p) \right]^2 + \lambda \left[p - g_{\Phi}(f_{GICNN}(p)) \right]^2 + \lambda' \left[V - f_{GICNN}(g_{\Phi}(V)) \right]^2$ has generalization gap bounded as $\epsilon(f_{GICNN_{\Omega}}) \leq O(\sqrt{L^{1-2L}\log P/n}) \leq \epsilon(f_{ICNN_{\Omega}})$ [Taheri 22]. handle f^{-1} ? constraint \rightarrow penalty? Idea: $\min_{\Omega} [V - f_{\Omega}(p)]^{2}$ s. t. f^{-1} is mpoly(2) dual $\min_{\Omega} [V - f_{\Omega}(p)]^{2}$ s. t. f(g) is identity cyclic leverage structure topology 15 information second-degree multivariate polynomial

Generalizability Successful: Physics Helps for the Future

Basic ICNN

Better

GICNN

Grey: Variable relationship according to physics

Comparison

Convex relaxation with large errors

ICNN

GICNN, Generalizability. and global optimal.

Grey: Variable relationship according to physics

- Optimal Voltage Control
 - Now: Input Convex Neural Network for Optimality
 - Future: Generalizability Design
- Operate with Limited System Information
 - Deep Learning Twin for Physical Consistency
- Operate Through Compromise
 - Inject False Data without System Information
 - Defense Strategy and its Optimal Control
- Conclusion

Learn the Power Flow Equation in Distribution Grids

Why Today?

- Given: Sensor Data Voltage power (v, p) \checkmark, \checkmark \checkmark, χ \checkmark, χ \checkmark, χ \checkmark, χ \checkmark, χ
- Find: the Topology, Parameter, and Virtual Nodes for Power Flow Equation

Past Methods

New Idea: Series to Parallel \rightarrow Enable Flexibility

Mathematical Modeling

Power Flow Equation

 $p \in \mathbb{R}^T$: power injection at bus *i* up to time *T*, $V = (v_k^{(t)}) \in \mathbb{R}^{T \times N}$: voltage magnitude at *N* buses up to time *T*, $\Theta = (\theta_{ik}^{(t)}) \in \mathbb{R}^{T \times N}$: voltage angle difference between bus *i* and other buses up to time *T*, and $T \in \mathbb{N}$: No. of historical samples.

Separate the Physically Recoverable Part and the Virtual Parts

Twin Neural Network Model and the Objective

 $[\boldsymbol{v}, \boldsymbol{\theta}]$

$$\min \frac{\boldsymbol{\varepsilon}_{\boldsymbol{p}}^{2}}{\boldsymbol{\varepsilon}_{\boldsymbol{p}}^{T}} = \min \frac{1}{T} ||\boldsymbol{p} - f(\boldsymbol{V}, \boldsymbol{\Theta})||_{2}^{2}$$
$$= \min_{\boldsymbol{\beta}, W_{\boldsymbol{v}}} \frac{1}{T} \sum_{t=1}^{T} ||\boldsymbol{p}_{t} - h_{\boldsymbol{p}} (\boldsymbol{\phi}(\boldsymbol{v}_{t}, \boldsymbol{\theta}_{t})) - h_{\boldsymbol{v}}(\boldsymbol{v}_{t}, \boldsymbol{\theta}_{t})||_{2}^{2}$$

Condition for the universal approximation: there exists a function f(.,.) to perfectly fit the data.

Theorem. Our proposed method can accurately recover the physical parameters ($\mathbb{E}[\varepsilon_{\beta}] \rightarrow 0$) and restrict the error of predicting power, given sufficient data samples and training capacity. The power estimation error is upper bounded as $\mathbb{E}[\varepsilon_{p}^{2}] \leq 2 \cdot [Var(p_{v}) - Var[E(p_{v}|v)], where p_{v}$ denotes unobserved virtual power and v denotes observed voltage data.

Numerical Result: Proposed Collaboration is Better

- Optimal Voltage Control
 - Now: Input Convex Neural Network for Optimality
 - Future: Generalizability Design
- Operate with Limited System Information
 - Deep Learning Twin for Physical Consistency
- Operate Through Compromise
 - Inject False Data without System Information
 - Defense Strategy and its Optimal Control
- Conclusion

Outline	Normal Conditions	AI-Enhanced Optimal Control	
	Good:	Now, Future	
 Optimal Voltage Control Now: Input Convex Neural Network for Future: Generalizability Design 	or Optimality		
 Operate with Limited System Information Deep Learning Twin for Physical Consi 	istency		
 Operate Through Compromise Inject False Data without System Infor Defense Strategy and its Optimal Con- 	rmation 🔞 Attacks trol		Sensor
 Conclusion 			
			29

Past Work on False Data Injection Attack (FIDA)

Reduce Info for Security?

Attacks without System Information

Let \boldsymbol{p} represents all the measurements

Minimize Reconstruction Error Autoencoder \rightarrow Similar

Autoencoder → Chi-Square Test (Physics)

Let \boldsymbol{p} represents all the measurements

General Framework to Generate False Data

Step 1. [Create a test measure] Train a "virtual" Chi-square test using an Autoencoder and historical measurements $\{p_t\}_t^T$.

Step 2. [Sample high-quality fake data] Train a GAN to approximate the distribution of historical data $\{p_t\}_t^T$.

Step 3. [Create false data] Create false data based on the sampled data from GAN. The false data should pass AE.

 \mathbb{P}_r : distribution of real power data, \mathbb{P}_q : distribution of generated power data, w: penalty term, $d(\cdot, \cdot)$: distance measure.

Numerical Results and Defense Strategies

IT/OT Detection Algorithms

Collaborative Inverter-based Control when Some Fails

Moving from Normal Operation to Operation through Compromise

Improvement by Using GICNN without Attacked Sensors & Controllers

Voltage Regulation with GICNN

- 1. Machine Guarantees Learning for DER Integration
- 2. Distributed Control Algorithms with Performance Guarantees
- 3. Guarantees for Power System Security

