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We are replacing the foundation of today’s grid

fuel

& synchronous machines

– emissions & centralized

+ fully controllable generation

+ interoperable physics (& controls)

+ large fault current & FRT well
understood

– slow physics & actuation

renewables

& power electronics

+ sustainable & decentralized

– intermittent & limited generation

– heterogeneous & fragile controls

– low overcurrent & FRT poorly
understood

+ fast actuation & flexible control
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Grid-following vs. Grid-forming control



Grid-following control: renewables & maximum power point tracking

P

P

PDC

v
HVDC

DC

Basic assumptions
▶ assumption: AC power system is an infinite AC bus
▶ converter model: AC current source feeding into an infinite AC bus

Control objectives
▶ PV & Wind: stabilize renewable source & track maximum power point
▶ HVDC: stabilize DC voltage & track power reference

Constraint handling through control of grid current
▶ converter limits: clip reference currents, momentary cessation, …
▶ power source limits: control of power injection
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Grid-forming (GFM) control: the cornerstone of future grids?

P

P

P, Q PDC

θ,V v
HVDC

DC

Droop control [1]

ωk − ω0 = mp (p⋆
k − pac,k)

pac,k ≈
∑

j
bkj(θk − θj)

Basic assumptions
▶ assumption: DC terminal is an infinite DC bus
▶ converter model: AC voltage source feeding network (no current limits)

Control objectives
▶ nominal operation: sync. at (p⋆,q⋆,V⋆,ω0) prescribed by operator
▶ autonomous disturbance response: stabilize frequency & voltage

Constraint handling through control of grid current
▶ many heuristics for current limiting under faults
▶ few works on dc voltage, modulation, & power source constraints
▶ interaction of device-level protection and system-level protection?

[1] Chandorkar, Divan, Adapa: Control of Parallel Connected Inverters in Standalone AC Supply Systems, IEEE TIA, 1993 3/32
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Standard GFM control architecture for two-level VSCs

VSC
+

−
vsw

+

−
v

+

−
vg

grid-form.
control

voltage
control

current
limit

current
control

+

−
vdc

∆/
if io

P ,Q

− v?i?f−

idc isw

DC volt.
control

i?dc

vdc

Cascaded dual-loop vector control & assumptions
▶ outer GFM control provides voltage reference ∠v⋆ = θ, ∥v⋆∥ = V
▶ inner current and voltage control used to track GFM voltage reference
▶ DC bus controlled through DC source

Functions of inner control loops
▶ stiff control of ac capacitor voltage phase angle & magnitude
▶ damping of filter resonance & enforcing timescale separation
▶ explicit current control & current limiting
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Simple example: loss of synchronization

GFM & standard current limiting
▶ set of voltages I for which ∥if∥ ≤ Imax

▶ normal operation:
• GFM control points inside I
• current limit never active

▶ voltage sag:
• nominal operating point not in I
• GFM trajectory points outside I
• current limiter drives voltage to I
• loss of tracking & GFM synchronization

VSC

PCC
Ssc

Zl Zg

Zsc

∞

−0.1 0 0.1 0.2
0.4

0.6

0.8

1

I
v?(t)

v?q

v
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Current limiting ̸= fault ride through

Transient stability
resynchronization
no overvoltage

system protection

Harmonic stability
current harmonics
voltage harmonics

Constraints:
AC current
DC voltage
modulation

FRT
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GFM control architectures revisited

inner control (required)

▶ reuse GFL architecture
▶ industry standard (?)
▶ loss of synchronization

inner
control
(optional)

▶ well-studied in academia
▶ virt. impedance heuristics
▶ largely avoids loss of sync.

inner
control
(optional) ▶ very early stage

▶ no loss of sync.
▶ harmonic stability?
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GFM control architecture with parallel limiter

inner
control
(optional)

Cascaded dual-loop vector control (optional)
▶ outer GFM control provides voltage reference ∠v⋆ = θ, ∥v⋆∥ = V
▶ inner current and voltage control used to track GFM voltage reference
▶ damping of filter resonance & harmonic stability
▶ no explicit current limiting in inner loops

Threshold virtual impedance
▶ emulates increasing filter impedance as current approaches limit
▶ retains self-sync. voltage source dynamics behind variable impedance
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GFM control architecture with outer limiter

θ ,V

θ ,V

θ ,V

V

Active damping for harmonic stability (optional)
▶ ”modifies” circuit to compensate filter/grid resonance & harmonics

Inner GFM oscillator
▶ GFM voltage reference ∠v⋆ = θ, ∥v⋆∥ = V always tracked by VSC

Outer loops: self-synchronization & constraints
▶ synchronization of GFM oscillator states (e.g., P − f droop)
▶ control of terminal voltage magnitude (e.g., Q − V droop)
▶ constraint handling functions (e.g., current, modulation, dc voltage)
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Unbalanced fault ride through

▶ standard grid-forming control aims to impose
balanced voltage

▶ does not allow full control of current in
unbalanced system

▶ grid-forming control of symmetric components?
phase voltages?

Reference current limiting (A-g
fault)
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Coordinate frames for GFM control

Generalized GFM control leverages flexibility of VSCs
▶ pos./neg. sequence: intuitive for protection but VSC limits are per phase
▶ per-phase: straightforward handling of VSC limits
▶ per-phase can be abc or Clarke coordinates (e.g., αβ)
▶ requires estimation of ”phasors” for pos./neg. sequence or abc
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Outline for the presentation

(some) results from S-95
▶ unbalanced fault ride-through
▶ interaction with system-level protection

recent results on constrained GFM
▶ architecture with outer constraint handling
▶ preliminary results for the balanced case
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S-95: Reliable fault ride-through and
protection of converter-dominated
power systems under unbalanced
conditions



Generalized three-phase grid-forming control

▶ estimation and grid-forming control for every phase (DC midpoint grounded)
▶ phase-balancing feedback between single-phase grid-forming controls
▶ dual-loop current and voltage control
▶ current reference limiting or threshold virtual impedance for every phase

13/32



Generalized three-phase grid-forming control

▶ single-phase droop for every phase p ∈ {a, b, c} & phase-balancing

d
dtδ

gfm
p = ω0 + mP(P⋆

p − Pp)−
∑

l∈P\p

kP(δ
gfm
p − δgfml )

τ d
dt Vgfm

δ,p = −Vgfm
δ,p + mQ(Q⋆

p − Qp)−
∑

l∈P\p

kQ(Vgfm
δ,p − Vgfm

δ,l )

▶ phase-balancing gains kP ∈ R≥0 and kQ ∈ R≥0 control voltage unbalance
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GFM control of symmetrical components

∆ω+ = m+
p (P+⋆ − P+) (1)

∆ω− = m−
p (P−⋆ − P−) (2)

∆V+ = m+
q (Q+⋆ − Q+) (3)

∆V− = m−
q (Q−⋆ − Q−) (4)

▶ intuitive from protection point of view (?)
▶ complex limiting due to nonlinear relationship with VSC phase current
limits

▶ does not control neg. sequence current during fault or improve
unbalanced FRT

▶ droop on neg. sequence current allows to control neg. sequence
current few tangible benefits over phase control approach
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Converter protection

16/32



Interaction with system protection: Transmission
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Distribution System with the Inverse Time Relay
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Cold Start of an Unbalanced Distribution System
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Take-home messages from S-95

Three-phase GFM fully leverages controllability of three-phase VSCs
▶ Standard controls and current limiting applied to each phase to control
phase current / voltage

▶ Phase-balancing trades off voltage / power unbalance / sharing of
unbalanced load

Benchmark systems to study interaction with system protection
▶ Transmission benchmark with distance relays
▶ Distribution benchmark with inverse time relays, UFLS/UVLS, induction
machines, GFL, etc.

▶ Tuning guidelines for protective relays in converter-dominated systems
Improved FRT performance for short-circuit faults
▶ Tuning methods for virtual impedance
▶ Hybrid threshold virtual impedance

Distributed cold-start methods for unbalanced distribution feeders using
GFM converters
▶ Cold-start mechanisms that do not rely on centralized coordination
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Towards constrained GFM control



Inner loops become outer loops

θ ,V

θ ,V

θ ,V

V

▶ GFM voltage oscillator never ”cut off”
▶ synchronization slowly changes GFM oscillator phase angle
▶ voltage magnitude control at terminal
▶ fast control of GFM oscillator to satisfy constraints
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Models, objectives & constraints for grid-connected PV

0.9 0.95 1 1.05 1.1 1.15 1.2

0.5

1

𝑣DC [p.u.]

𝑃
PV

[p
.u

.]

pv

θ ,

, ,

V θ ,V θ ,V

▶ dc-link dynamics

vdc(t + 1) = vdc(t) + τ
Cdcv⋆dc

(Ppv(t)− Psw(t))

▶ Quasi-steady-state circuit model

• PV: ipv(t + 1) = iph − I0(e
qvdc(t+1)

αKT −1)− vdc(t+1)
Rsh

• power injection: Psw(t) = bswbg
bsw+beq (θsw(t)− θg(t)), Qg = bg(Vf(t)− Vg(t))

• filter voltage: Vf =
bswVsw(t)+bgVg

bf+bsw+bg
• current: isw(t) = Zeq(vsw(t)− vg(t))
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Models, objectives & constraints for grid-connected PV
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pv
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min
θsw(t),Vsw(t)

(ωsw(t)−ω0)
2+mdc(vdc(t + 1)−v⋆dc)2+ 1

τv
(Vf(t)−V⋆

f )
2+

mq
τv

(Qg(t)− Q⋆
g(t))

s.t. (circuit model, PV model,dc dynamics)
vmpp ≤ vdc(t + 1)
vmax ≥ vdc(t + 1)

Vsw(t) ≤
γ

2 vdc(t)

ipv(t + 1) ≥ 0
∥isw(t)∥ ≤ imax
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Objectives and insights from PD-GFM

Power systems standards distinguish nominal and fault response
▶ nominal: well-understood GFM controls & small-signal dynamics
▶ constrained: track GFM as close as possible under constraints

x

0

∞

VSC

Lessons learned from PD-GFM
▶ integral of constraint violation crucial for robustness
▶ quasi-steady-state model insufficient during faults
▶ primal-dual gradient descent not converging fast enough
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EMT simulation results

▶ VSC at bus 3 uses constrained GFM control
▶ VSC at bus 2 uses dual-port GFM control & energy storage
▶ various loads and perturbations at bus 3
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Simulation results: high impedance fault
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Simulation results: DC voltage limit
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Simulation results: reactive load
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Simulation results: reverse PV current
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Conceptual implementation

P

θ

ω t

ac
★ ,Qac

★
sw

gfm

xgfmxproj

0

GFM 
Control 

Park
Transform

GFM volt.
projection

i

i

dq

i dq

v dq

v dq

v dq

max

Vgfm

High-level approach
▶ ”outer” GFM control provides small-signal reference
▶ compute set of VSC voltages that do not violate constraints

• one-step set: dynamic model of filter circuit
• steady-state set: using quasi-steady-state model

▶ reset GFM control state to within constraints
• restrict GFM control states to one-step set
• minimize integral of one-step and steady-state constraint violation
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Simple example: loss of synchronization

Ideal response?
▶ execute GFM control
▶ compute integral of constraint
violation

▶ compute nearest voltage in I that
minimizes integral of constraint
violation

▶ reset GFM control state
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Simulation results
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