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Basic tools for data-driven resilience
OUTAGE DATA
EVENTS
PROCESSES

METRICS



Detailed outage data

Distribution system

« Data include outage and restore times of lines and other
components to the nearest minute, customers disconnected,

cause codes

« Data logged by Outage Management System. We process
~32000 outages from 5 years of data into 6650 events

Transmission system

 TADS data include outage and restore times of lines and
transformers to the nearest minute, cause codes

* North American utilities report TADS data to NERC.
We use 6 years of forced (automatic) outages across North
America. We process ~62,000 outages and select 352 events

with at least 10 outages. Most events are weather-related.
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Key point 1s to have algorithms to automatically extract events from data



Events and Performance curves

Resilience events happen when outages bunch up and accumulate

Performance curves P(t) track number of unrestored outages:
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Performance curve tracks in an event the
unrestored outages over time
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Decompose Performance curve into Outage and Restore processes

Outage process

. ~ [ Outage process
= cumulative 10l Il_l
outages : Restore process

Restore process
= cumulative
restores
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//v slope gives outage rate
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Transmission system events
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Resilience metrics for large transmission events

J _— - . . Fitted
Proces Event Statistics Mean |Std Dev | Minimum | Maximum | Median [95th Pctl| .. . .
distribution
* Event size (# outages) 44.9 50.0 20| 352 27 143[No good fit
& |Miles affected 1175 1173 233 6461 850 3638|Lognormal
8 MVA affected 17165| 18514 4223 120064| 10769 55323|Lognormal
8 [TADS elem affected 38.6 42.5 11 295 25 117|No good fit
g," Outage process 6.3 5.3 0.9 35.2 4.7 15.0
8 |duration Hrs ) ) ) ' ) ""|No good fit
8 Outage rate (elem/Hr)| 7.46 3.76 3.4 26.7 6.4 14.5|Lognormal
Outage rate (MVA/Hr)| 3008 2765 997 22260] 2220  6343|Lognormal
Restore Process
Duration Days 14.5 33.1 0.11 246.0 4.6 58.8|Lognormal
Time to First Restore
v |Minutes 46 51 0| 208 31 169|Exponential
§ Time to restore 95%
s |outages Days 3.9 5.4 0.05 38.2 2.3 12.4|Lognormal
@ [Time torestore 95%
.g MVA Days 4.2 6.3 0.05 39.8 2.2 17.1| Lognormal
K % Event Duration to
Restore 95%outages 58% 31% 3% 100% 63% 100%|No good fit
% Event Duration to
Restore 95% MVA 58% 33% 1% 100% 61% 100% |No good fit
9 EventDuration Days 14.6 33.1 0.13 246 4.6 58.8| Lognormal
& ﬁ Max Elemements Out | 26.72| 28.19 7 181 17 69| Lognormal
§ § Max MVA Out 9724 10721 1870| 60133 6283| 32406| Lognormal
‘E 2 |Element-Days Lost 59 104 0.34 558 18.7| 336.9| Lognormal
o MVA-Days Lost 21394| 39499 73 241730 5535 105772( Lognormal

Metrics for Outage process OR Restore process OR Performance curve
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Components

10

Tracking components in a
distribution system resilience event

Easily get event metrics
such as
number of outages,
duration,

Outage O()

Restore R(t)

[ outage rate,

L o restore rate
1 Resilience Curve C(f) f ’
Lﬁi J—L [ area under curve
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Distribution system events
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Customers

100!

150!

Tracking customers in a
distribution system event

Outage O°“*!(f) | ,_,—'—I

;

arca

T

Restore R““*(t)

arca =

customer
I
1'—'_#'_' hours

Resilience Curve CCUS!(t)

1111111

.....................

Time (hours)



Real events do not look like idealized performance trapezoid
where outage process stops before restore process starts:

outage restore

n_

Elements
o

n

Time

Processes not phases in time!



Emerging outcomes for data-driven resilience

EVENT STATISTICS

START ON RISK ANALYSIS

POISSON PROCESS MODELS

QUANTIFY RESILIENCE INVEST

ENTS
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Hurricane Ida

225 Outages, Eastern Interconnection

28-Aug 2-Sep 7-Sep 12-Sep 17-Sep
250
— Look at
200 Aug 30, 2021, 225 o
Sep 17, 2021, 95% SpeClﬁC events:
150 a start on
100 further detailed
50 engineering analysis
0
-50
-100
-150
from NERC
-200 . ey
Aug 30,2021,-171 State of Reliability
— Qutage Count —— Restore Count Performance Curve RGpOI’t 2022
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North American transmission statistics

TABLE III. AVERAGE METRICS BY WEATHER TYPE
Average Statistics Hurricane | Fire | Thunderstorm, wind |Tornado | Winter weather
Event Size 92.7| 36.5 34.6 38.4 33.6
Outage Process Duration (Hrs) 10.7) 7.2 4.8 7.3 5.3
MaxElemOut 57.3| 23.0 21.7 25.6 15.9
Timeto95%elemRestored (Hrs) 135.4|472.1 68.4 153.7 47.0
Element-Days Lost 148.4( 116.9 45.6 52.8 19.7
TABLE IV. RESILIENCE METRICS BY SEASON
Average by Season
Number Restoration | Time to 95% | Time to 95%
Season Event Element-| MVA-
of Events| _. Process elements MVA Davs Lost | Davs Lost
Size Duration Hrs | Restored Hrs | Restored Hrs ¥ ¥

Winter 11 31 120 85 73 28 9977

Spring 25 36 486 80 125 48( 19799

Summer 17 55 335 134 103 73 21768

Fall 16 58 307 81 81 84 31337
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North American transmission resilience
for events >10 outages

Most are weather related; largest are hurricanes

Outages increase linearly

Restores according to lognormal 1s most common;
exponential restore 1s a noticeably worse fit

Duration metrics are statistically variable:
Straightforward duration very bad

(also last few restores usually not relevant)

Time to 95% restoration 1s better

Geometric mean = median of restore times 1s best
Automatic extraction of events and processes and metrics

supports further engineering analysis of specific events.
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Heavy tailed distribution of event size
... a start on Risk Analysis

0.500/
0.100L ) This data from distribution system
0.0505 * Need to track events of all sizes
£ ’ note log-log scale
% .,
S 0010} .
O 0.005" .
_ o0 © °
0.001 oo .
5.x 107"
1 5 10 50 100 500

Event size (number of outages in the event)

Probability of event goes down as size increases, but slowly.
Cost of event increases as size increases
Event Risk = Probability x Cost
How do small and large events compare in risk?
Future work: get better cost information, especially for large events
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Poisson Process

Poisson process rate A(t) means that
probability of a point occurring in a small interval (t,t+h) is A(t)h

Suppose 50 points of a Poisson process on an interval with uniform rate.
Then the points are 50 samples from a uniform distribution on the interval:

grayscale shows the probability density

Suppose 50 points of a Poisson process with lognormal rate.
Then the points are 50 samples from a lognormal distribution:

21



Poisson models of outage and
restore for transmission systems

n = number of outages
outage rate = n x uniform distribution over the outage duration
restore rate = n x lognormal distribution after first restore

outage process(t) = integrate outage rate to time t
... Increases linearly
restore process(t) = integrate restore rate to time t
... Increases as n x lognormal CDF

22



Outage process O(t) with uniform rate A,

Outage process O(t)
(step function)
1s cumulative number of
outages at time t

Average outage process O(t)

number of outages
O =~ N W dH O O N

is dotted line of slope A,

Averaged model: O(t) = E[O(t)] = Ao(t — 01) for 0, <t < o,
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Restore process R(t) with rate Ag(t) proportional to
lognormal

Restore process R(t)
| (step function) is
cumulative number of
restores at time t

-
-
-
-
-
-

Average restore proces's R(t)
1s dotted line with slope
proportional to lognormal

number of restores
O =~ N WO b O O N o

r1 | Ig
time
Ar(t) =nfuo(t —r1) =n x lognormalPDF[u, o]

ln(t—rl)—,u,
o

t
Averaged model: R(t) = E[R(t)] = / Ar(T)dT = nq)[ ] for t > ry
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Typical North American transmission event
with averaged processes

15 outage process O(t)

restore process R(t)
10

(9]

o

number of outages

R performance curve P(t)

- area Z
=8 \ /
V

=10, 7 . : ' ' ; . i ) X : 7 : 7 . '
0 20 40 60 80
time (hour)
n = total number of components out
A = n(mean restore time — mean outage time)

A = n(mean component repair time)

for distribution systems, n. = total number of customers out

A = n.(mean customer out time) with assumption
25



Quantify resilience investments
in a distribution system

Key idea:
Quantify the impact the investment would have had
if it was made in the past

A new way to make the case for resilience investments to
customers, stakeholders, regulators

First process historical data to get resilience metrics.
Then “rerun history” with overall resilience mitigation to get
the change in metrics

We will look at impacts of hardening with respect to wind
and of faster restoration in a distribution system
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Geographic location of outages in distribution system
and their nearest NOAA weather station giving hourly wind speed
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mean outage rate as a
function of wind speed

Outage and wind data mms)
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Mean Outage Rate F (outages/hour)
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Hardening for wind shifts curve to the right and
reduces outage rates

-®- Original Curve
= Shifted by x mph
J Reduction in outage rate

154 —» X mph shift
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Wind Speed v (mph)
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Hardening =mmm) Reduced outage rate

Implement reduced outage rate by
sampling reduced number of outages

Historical outages » Base case metrics
Hardening m)pReduced outages m) Improved metrics

Hardening » Change in resilience metrics

2 B 4 2 r 3\ f )

B Shift Area Sample from Evaluate
T Outage Rate outages as improved
rr]r; F:gev;’]'iﬂd Curve by x per reduced Resilience
J mph outage rates Metrics
. J \ J . J . J




Wind hardening results
10% reduced outage rate = 0.22 mph hardening

Base Case Events

Change with Hardening

Resilience Metric small medium  large small medium large
number of outages 1.25 4.75 62.48 -10.0% -10.0% -10.0%
outage hours 2.71 15.28 1142 -10.0% -10.0% -10.0%
event duration 2.39 7.51 37.67 -8.8% -4.5% -1.3%
time to first restore 2.10 2.66 2.56 -7.4% 1.6% 3.0%
restore duration 0.28 4.85 35.11 -19.0% -10.8% -2.9%
customers out 50.74 242.98 4084 -10.0% -10.1% -10.0%
customer hours 85.51 547.28 58700 -10.0% -10.0% -10.1%

all time quantities in hours

small events have 1 or 2 outages
medium events have 3-15 outages

large events have >15 outages



Faster Restore results

faster restore rate (times 0.95) that gives

10% reduction in outage hours for large events

Base Case Events

Change with Faster Restore

Resilience Metric small medium  large small medium large
number of outages 1.25 4.75 62.48 0% 0% 0%
outage hours 2.71 15.28 1142  -0.5% -4.6% -10.0%
event duration 2.39 7.51 37.67 -0.6% -3.1% -4.0%
time to first restore  2.10 2.66 2.56 0% 0% 0%
restore duration 0.28 4.85 3511 -48% -4.8% -4.3%
customers out 50.74 242 .98 4084 0% 0% 0%
customer hours 85.51 547.28 58700 -0.3% -4.7% -9.0%

all time quantities in hours

small events have 1 or 2 outages
medium events have 3-15 outages
large events have >15 outages



DATA-DRIVEN ANALYSIS OF OVERALL RESILIENCE INVESTMENTS

* Can quantify probability of small, medium, large
resilience events from historical outage data

* We have historical outage data metrics such as customer hours.
What if we had invested in resilience and got a 10% reduction in outages?
What would have been the reduction in customer hours?

We can find out by sampling 10% fewer outages.

This quantifies the effect that investment in resilience would have had

* New way to quantify benefits of resilience to stakeholders
because it relates to the lived experience of customers

However, data-driven only evaluates an overall change 1n resilience
(e.g. x mph wind hardening, 10% faster restoration)
Need modeling to find and optimize detailed engineering
to realize the overall changes



Conclusion: Key ideas and opportunities for data-driven resilience

Transmission utilities and many distribution utilities already collect the necessary
detailed outage data. The data processing is tractable and practical.

Data-driven resilience quantification is driven by extracting events of all sizes

Analyze events with outage and restore processes, performance curves and
their corresponding metrics. Event processes not phases!

For transmission systems, duration metrics are variable, so use 95% restoration
or median/geometric mean of restoration time

System-level and statistical analyses complement and support detailed
engineering analysis of each event.

New Poisson process models of outage and restore processes driven by data
are promising typical models for transmission systems resilience. Nice simple
formulas for area under performance curves.

Quantify and communicate effect of investments: Can “rerun history” to get the
change in resilience metrics when the overall effect of investments reduces or
changes the outages. Promising, much simpler than model-based alternatives.
Resilience analysis can engage with events, processes, transients, extremes,
and heavy tails at systems level... complements traditional reliability which
focusses on steady state of individual components averaged over the year,
models with exponential tails, and excluding extreme events.

Any further questions?: email dobson@iastate.edu
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