

Miniaturizing and Advancing Power Electronics by Targeting Magnetics

PSERC Webinar April 19, 2023 Mike K. Ranjram (Mike.Ranjram@asu.edu)

Why Is It Important To Advance Power Converters?

Virtually All Our Elec. Systems and Devices Rely on Power Converters

Virtually All Our Elec. Systems and Devices Rely on Power Converters

By Making Power Converters "Better" We Make These Systems Better

System Improvements Derived from Advanced Power Converters

System Improvements Derived from Advanced Power Converters

Increased Efficiency

Increased Capability

System Improvements Derived from Advanced Power Converters

Increased Efficiency

Increased Capability

Miniaturization

https://www.eleappower.com/products

Our Goal: Miniaturization

Increased Efficiency

Increased Capability

Miniaturization

Make systems smaller, and more efficient, while enabling them to do more

https://www.eleappower.com/products

What's Getting in the Way of Miniaturization Today?

These and Many Applications are Bottlenecked by Passives

Our Focus: Magnetics, a Dominant Source of Weight, Loss, and Size

Magnetics Perform Many Kinds of Functions

- The magnetics in the previous slide accomplish very different functions!
- Techniques to improve them are highly dependent on how they are used.

A Classic Architecture: EMI + PFC + Isolated dc/dc

- A "staple" power converter, ac to controlled dc with isolation
- Contains many common magnetic functions innovation is required "across the board"!

Inductors: energy storage, dc filtering, ac filtering

Transformers: impedance transformation, energy storage

• For example, consider Texas Instruments reference design PMP30763 for avionics

4:1 step-down transformer 1500Vac isolation (Used in HB LLC) "Impedance Transformer" + "Energy Storage"

4:1 step-down transformer 1500Vac isolation (Used in HB LLC) "Impedance Transformer" + "Energy Storage"

> LLC Resonant Inductor "Harmonic Selection"

Boost inductors "Energy Storage" + voltage sensing windings (two-phase construction)

4:1 step-down transformer 1500Vac isolation (Used in HB LLC) "Impedance Transformer" + "Energy Storage"

> LLC Resonant Inductor "Harmonic Selection"

Boost inductors "Energy Storage" + voltage sensing windings

Common-mode chokes "dc filtering"

Differential-mode choke "dc filtering"

4:1 step-down transformer 1500Vac isolation (Used in HB LLC) "Impedance Transformer" + "Energy Storage"

> LLC Resonant Inductor "Harmonic Selection"

Our example converters use many magnetics

Avionics

Data Centers

Automotive & EVs

Green = filtering (harmonic elimination) Yellow = dc/dc conversion (energy storage) Red = isolated dc/dc conversion (impedance transformation and/or energy storage)

Solar

Energy Storage

Lighting

Enterprise

Consumer

Medical

Focus on High Step-Down, High Output Current Conversion

- "Miniaturizing magnetics" is too broad an objective.
- We must target a specific magnetic function under a specific operating regime

Data Centers

Open Compute Project Server

Consumer

Electric Vehicles

Bottleneck: High Step-Down Transformer

Data Centers

Consumer

Electric Vehicles 16:1

https://www.ti.com/tool/PMP20289 https://www.ti.com/tool/TIDA-01623 https://www.ti.com/tool/TIDM-02002

What are Our Approaches to Miniaturize Transformers?

- Today's active areas of research (component-level)
 - High frequency switching (MHz+)
 - High performance magnetic materials at high frequencies
 - Leverage planar magnetics
 - Novel winding techniques

High Performance Materials at High Frequencies

R. Bayliss, "Design, Implementation, and Evaluation of High-Efficiency High-Power Radio-Frequency Inductors," Master's Thesis, MIT, 2021

Increasing frequency yields smaller L, C for same impedance

$$Z = j\omega L$$

Transformer benefit: leverage (small) leakage for harmonic selection

Employing Planar Magnetics

Windings of inductors/transformers implemented as copper traces on printed circuit boards (PCBs)

Planar Magnetics: Cost-Effective, Easy to Build, with Good Thermals

- Low profile (minimize box volume)
- Good thermal characteristics (high surface area to volume)
- Ease of manufacturability
- Highly repeatable
- Lower cost than wire-wound alternatives

Conventional Magnetic Core

Aluminum Plate

Temperature[C]

Planar Magnetics Difficult w/ High Step-Down, High Current

Large penalty for many turns on a layer

Develop 1MHz Planar Transformer at 16:1 Turns Ratio

- Let's miniaturize this 16:1 transformer using these approaches:
 - Switch at 1MHz target high performance ML91S material
 - Use planar magnetics

Develop 1MHz Planar Transformer at 16:1 Turns Ratio

- Create the lowest loss design in a 10cc volume
- Can we do better? Play with turns implementation?

Minimizing Turns Count is Greatly Advantageous

A Fractional Turn Would Help...

A Fractional Turn as Defined this Way Is Not Practical

A Fractional Turn as Defined this Way Is Not Practical

Taking a Step Back

We can reduce this design into these three key elements
Creating Magnetic Components

Inductors and transformers

- Today's active areas of research
 - High frequency switching (MHz+)
 - New magnetic materials
 - New winding techniques
 - Planar magnetics
- "Physical domain"

Leveraging Magnetic Components

Can We Explore Something More Fundamental?

Can we create something different by treating these elements more fundamentally?

A Fractional-Turn Transformer Using a New Kind of Structure

Assume Physical Symmetry About Center of the Core

Side View

Assume symmetry

Orthographic View

Excite the Primary Winding, Flux Flows Symmetrically

Assume symmetry

Orthographic View

Side View

Top View

Symmetry and Magnetic Core Enforce Equal Currents

Assume symmetry

Side View Top View Orthographic View n

 $\oint H.\,dl = 8i_p - i_1 = 8i_p - i_2 \qquad \Longrightarrow \qquad i_1 = i_2 \text{ by <u>symmetry</u>}$

Symmetrically Distribute Two Full Bridge Rectifiers Around the Core

The Structure Behaves Like a Fractional Turn Transformer

Free to treat conductors as independent elements

.

T7

Connections yield:

$$2V_o = \frac{V_p}{N_p}$$

$$\frac{V_o}{V_p} = \frac{1/2}{N_p}$$

A fractional turn transformer

1 /7

The CEMS Concept: A tighter integration of these elements

View and design these as one coupled system We call this a "Coupled Electronic and Magnetic System" (CEMS)

VIRT: An Example of a Coupled Electronic and Magnetic System

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in *IEEE Transactions on Power Electronics*, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

How Turns Implementation Affects Losses

Copper loss
$$\propto i^2 R \longrightarrow \propto N^2$$

Core loss $\propto \left(\frac{V}{N}\right)^{\beta} \longrightarrow \propto \left(\frac{1}{N}\right)^3$

Turns Implementation	Relative Cu loss	Relative Core Loss
32:2	4	1/8
16:1	1	1

How Turns Implementation Affects Losses

Copper loss
$$\propto i^2 R \longrightarrow \propto N^2$$

Core loss $\propto \left(\frac{V}{N}\right)^{\beta} \longrightarrow \propto \left(\frac{1}{N}\right)^3$

Turns Implementation	Relative Cu loss	Relative Core Loss
32:2	4	1/8
16:1	1	1
8:0.5	1/4	8

Follows the right trend

Correct Trade-off: Exponential Rebalancing

What about the Transistors?

- Twice as many switches, but each carries half the current for the same output power and voltage
- For same transistor area, identical transistor loss
- An advantage at high output currents, easier terminations without direct parallelization.

What about the Transistors?

Variability Comparison

Variable Inverter/Rectifier Transformer

- **Variability for:**
 - Accommodating wide voltage variations

Variable Inverter/Rectifier Transformer

- Variability for:
 - Accommodating wide voltage variations

Fractional turns for:

- High current carrying capability
- Reducing the number of primary turns in high step-down transformers (adv. for planar magnetics)

Variable Inverter/Rectifier Transformer

- Variability for:
 - Accommodating wide voltage variations

Fractional turns for:

- High current carrying capability
- Reducing the number of primary turns in high step-down transformers (adv. for planar magnetics)

We used these properties for high efficiency wide voltage range chargers

M. K. Ranjram, I. Moon, and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6509–6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

Variable Inverter/Rectifier Transformer

- Variability for:
 - Accommodating wide voltage variations

Fractional turns for:

- High current carrying capability
- Reducing the number of primary turns in high step-down transformers (adv. for planar magnetics)

This feature is more widely applicable, and is what we'll focus on

What About Winding Techniques?

- Today's active areas of research
 - High frequency switching (MHz+)
 - New magnetic materials
 - Planar magnetics
 - Novel winding techniques

The magnetic component's ability to carry current is strongly dependent on how it's wound, especially at high frequencies.

Copper Loss Reduction by Paralleled Windings

- A common method for improving current-handling is to employ parallelization
- Planar magnetics make it simple to control winding stack-up

Copper Loss Reduction by Parallelizing Windings With Interleaving

Non-interleaved

Resistance vs. Capacitance Trade-off of Interleaving

Resistance vs. Capacitance Trade-off of Interleaving

With Realistic Terminations, Loss is 2.5x Higher Than Expected

Ideal, perfectly terminated

Practically terminated

M. K. Ranjram, P. Acosta, and D. J. Perreault, "Design Considerations for Planar Magnetic Terminations," in 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Jun. 2019, pp. 1–8. doi: 10.1109/COMPEL.2019.8769642.

With Realistic Terminations, Loss is 2.5x Higher Than Expected

If we want to carry high current in a planar magnetic, complex vertical stack-ups are problematic

If we want to carry high current in a planar magnetic, complex vertical stack-ups are problematic

A better choice: transformer parallelization

legs

If we want to carry high current in a planar magnetic, complex vertical stack-ups are problematic

A better choice: transformer parallelization

Wound such that equal and

opposite flux flows on outer

Combine cores for volume reduction

If we want to carry high current in a planar magnetic, complex vertical stack-ups are problematic

A better choice:

- Parallel "horizontally" rather than "vertically"
- Matrix transformer" concept applies here

These Techniques Offer Distinct Loss Trade-offs

What we've been doing

"Gear Shifting" Transformer Core and Copper Loss

M. K. Ranjram and D. J. Perreault, "Leveraging Multi-Phase and Fractional-Turn Integrated Planar Transformers for Miniaturization in Data Center Applications," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265752.

Transformer loss "Gear Shifting" Is Beneficial

Using iGSE and Dowell's equation

Core loss Copper loss

K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," in *Proc. IEEE Workshop Comput. Power Electron*,2002, pp. 36–41 P. L. Dowell, "Effects of eddy currents in transformer windings," in *Proc. Inst. Elect. Engineers*, vol. 113, no. 8, pp. 1387–1394, 1966 **71**

Transformer loss "Gear Shifting" Is Beneficial

K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," in *Proc. IEEE Workshop Comput. Power Electron*, 2002, pp. 36–41 P. L. Dowell, "Effects of eddy currents in transformer windings," in *Proc. Inst. Elect. Engineers*, vol. 113, no. 8, pp. 1387–1394, 1966 72
SPHTV Prototype

4 layer, non-interleaved SPP, 3/2/3oz

M. K. Ranjram and D. J. Perreault, "A 380-12 V, 1-kW, 1-MHz Converter Using a Miniaturized Split-Phase, Fractional-Turn Planar Transformer," *IEEE Transactions on Power Electronics*, vol. 37, no. 2, pp. 1666–1681, Feb. 2022, doi: 10.1109/TPEL.2021.3103434.

Losses and Thermal Performance Well Predicted

Fig. 12: Estimated loss breakdown at full load, not including hotel power (2.7W) and fan power (1.44W).

Thermal performance

Fig. 7: ANSYS Icepak thermal simulation of the transformer.

Fig. 11: Thermal image of secondary-side under full-load (obtained after 15 minutes of continuous operation, 22°C room temperature). The fan is located to the right of the PCB.

Inverter ZVS achieved

Inverter ZVS achieved

All half-bridges are operated identically, experience slightly different deadtime transitions owing to local decoupling loops

Inverter ZVS achieved

All half-bridges are operated identically, experience slightly different deadtime transitions owing to local decoupling loops

Near-resonant current in primary tank

Prototype is Extremely Efficient

SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

[6] M. Mu and F. C. Lee, "Design and optimization of a 380–12 v high frequency, high-current llc converter with gan devices and planar matrix transformers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854–862, 2016.

[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu, "Quarter-turn transformer design and optimization for high power density 1-mhz llc resonant converter," IEEE Transactions on Industrial Electronics. vol. 67, no. 2, pp. 1580–1591, 2020.

SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

 $\sim P_{cu}/16$, $\sim 2^{2\beta}P_{corr}$

380-12V, 1kW

	This work	MT [6]	QTT [11]
Stack-up	S/_/P/P	S/P/P/S	S/G/P/P/G/S ^a
Peak power	97.7%	-	97.0%
stage efficiency			
Peak efficiency	97.3%	97.1%	-
including hotel			
power			
Full load loss	29.9	34.4	41
(power stage			
only) [W]			
Transformer loss	10.8	16.3	13.2
at full load [W]			
Transformer	1536	2200	2500
footprint [mm ²]			
Height [mm]	9.23	7.3	8.9
Transformer box	14.2	16.1	22.3
volume [cm ³]			

^a 'G' is a secondary layer tied directly to secondary ground

[6] M. Mu and F. C. Lee, "Design and optimization of a 380–12 v high frequency, high-current llc converter with gan devices and planar matrix transformers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 854–862, 2016.

[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu, "Quarter-turn transformer design and optimization for high power density 1-mhz llc resonant converter," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1580–1591, 2020.

M. K. Ranjram, I. Moon and D. J. Pereault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in IEEE Transactions 81 on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

Summary of the Half-Turn VIRT

- Coupled Electronic and Magnetic System (CEMS) paradigm enables the VIRT concept
- Fractional and variable turns ratios unachievable in conventional design
- Used to build much smaller and much more efficient datacenter supply

Coupled Electronic and Magnetic Systems Paradigm

Variable and Fractional Turn Transformers New CEMS to Eliminate Passive Bottleneck

Future Applications for Variable + Fractional Turn Transformers

200-500V to 10-15V

1-5kW

48V, 3kW+

48V to 1V, 0.5-1kW

Miniaturized and Advanced Power Electronics Laboratory

Advance the size, efficiency, and capability of power electronics

Planar Magnetics for Renewable Energy Systems

- Improved cost modeling
- Study insulation properties
- Designing to minimize detriment of poor fill factor
- Better assessments of magnetic core loss

U.S. DEPARTMENT OF

S. Mukherjee et al., "A High-Frequency Planar Transformer with Medium-Voltage Isolation," in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, Jun. 2021, pp. 2065–2070. doi: 10.1109/APEC42165.2021.9487061

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Leveraging Saturation w/ Modern Materials

Leveraging **low permeability, high frequency** materials as "magnetic amplifiers" to create a dummy load system for plasmas.

SATURATE

OUTPUT

Paul Mali, "Magnetic Amplifiers: Principles and Applications", John F. Rider Publisher, Inc., New York, 1960

Miniaturized and Advanced Power Electronics Laboratory

- Magnetics bottleneck the efficiency, size, and weight of many power electronic converters
- Our group (MAPEL@ASU) works to miniaturize power converters by:
 - Novel circuit architectures centered on the magnetics
 - High-frequency operation of power converters •
 - Maximizing the capability of planar magnetic constructions •
 - Improving core loss measurement techniques •

