Convergence of Al, Physics, Computing, and
Control for Intelligent Power System Control

Qiuhua Huang
Associate Professor

Colorado School of Mines
(giuhuahuang@mines.edu)

PSERC Webinar
February 15, 2023

COLORADOSCHOOLOFMINES MINES.EDU



Acknowledgement

Collaborators

 PNNL (including former colleagues). Yousu Chen, Renke
HuancT:]_,_ Tianzhixi (Tim) Yin, Sohom Datta, Xueqing Sun, Bruce Palmer,
Yuan Liu, Z. Jason Hou, Long Vu, Sayak Mukherjee, Kaveri Mahapatra,
)I_(Ilnda Ke, Shaobu Wang, Xinya Li, Yan Du, Yujiao Chen, Ramij Raja
ossain

V&R Energy: Mariana Vaiman, Michael Vaiman

 Google: Jie Tan, Wenhao Yu

 EPRI: Adrian Kelly

 RTE-France: Antoine Marot, Benjamin Donnot, Karim Chao

« Son Wan%(now with PGE, previously with PacifiCorp), Rui Fan (DU),
Wel Qiao (UNL), Jochen Cremer (DTU),

Funding support: ARPA-E OPEN 2018 Program, DOE OE AGM, PNNL
DeepScience LDRD

COLORADOSCHOOLOFMINES MINES.EDU

) EARTH ENERGY ENVIRONMENT



Presentation QOutline

Motivation and background

Introduction to deep reinforcement learning

Convergence of Al, physics, computing and control for intelligent
power system control

o Integrated framework

o Open-source environments for DRL-based grid control

o Advanced DRL algorithms for grid control

o Test results, demo and applications

Future Work and Potential Applications
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Increasing Renewables and Rapidly
Changing Operation Conditions

California ISO net load “duck curve”

EIA projects renewables share of U.S. electricity generation mix
will double by 2050

U.5. electricity generation, AEQ2021 Reference case (2010-2050)
trillion kilowatthours

6 2020
history projection -
5
renewables
4 . 42%
wind in 2050
3 solar -
2 natural gas
1 coal
0 nuclear =
2010 2020 2030 2040 2050 cla

Sources: EIA
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Power System Stability Risks Are
Becoming A Global Issue

Voltage and Angle Stability Risks

Local Regional Systemwide
e Electrical distances are limited. e Significant power imports and e A system has high power transfers
* Interface collapse and system separations exports with dynamic constraints are across ac transmission interfaces, for
are remote concerns. an occasional factor. which voltage instability and angular
¢ Local voltage support issues are possible. e Separation tends to be a high-impact, separation are a primary concern and
low-frequency event. often impose operating constraints.

Control Stability Risks

Local Regional Systemwide
¢ There are some locations (e.g., individual e There are entire regions of very ¢ An entire system has extended
nodes and small areas) with low system high IBR penetration and little or periods of very low or even
strength and a risk of control interactions. no synchronous generation with ac zero synchronous short circuit
transmission to other stronger areas. contribution.

CE: Central Europe; TX: Texas; GB: Great Britain; AU: Australia; IR: Ireland; HI: Hawaii.

Source: J. Matevosyan, et al. “A future with inverter-based resources”, IEEE Power and Energy Magazine, Nov/dec, 2021

COLORADO MINES

EARTH ENERGY ENVIRONMENT




Power System Stability Control and
Operation for Keeping the Lights On

rear
System &  fed Generator
Coupling

*
|
|

= < Controller

Imagine credit: ERCOT

System control and operation (primarily by

Local control Wide-area control[1]
human operators today)

Regional System-level

[1] Cai, G.; Yang, D.; Liu, C. Adaptive Wide-Area Damping Control Scheme for Smart Grids with Consideration of Signal Time Delay. Energies 2013, 6, 4841-4858.

COLORADO MINES MINES.EDU

EARTH ENERGY ENVIRONMENT




Event Interval (sec)

Big Challenges in Grid Operation and Control

September 8, 2011 Pacific
Southwest Blackout in U.S. [1

multiple events

< 5 sintervals

59.8

59.7
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Frequency (Hz)

594

59.3

59.2

9 10 11 12 13 14 15 16 17

Sequence of Events

Texas was “seconds and minutes” away from
catastrophic months long blackouts[2]

10 mins

Entered EEA 3 1,000 MW Load-shed Ordered

with . W
=

Additional 2,000 MW
Load-Shed Ordered

{ ]
1,418 MW Generation Outages — e (Total 10 500 MW) /“.
| 1:26am - 1:42am "6
35,343 MW Generation 1 P&iow 59.4 Hz for 4m 23s / /
Capacity Outas of 1:23am 248 MW Generation Outages Yiore Gen Units would have tripped
\ if below 59.4 for 9m or more 594 MW Generation
329 MW Generation Outages > PY Outages
Additional 1,000 MW 7 [
Load-Shed Ordered 606 MW V\ 843 MW Generation Outages
(Total 2,000 MW) Generation 841 MW Generation Outages

Outages

688 MW Generation Outages —.\ Additional 3,500 MW

" Load-Shed Ordered

511 MW Generation Outages ——————@,
. \ (Total 8,500 MW)
N | § '3 o

Additional 3,000 MW /’\-——.'7 Min Frequency 59.302 Hz
Load-Shed Ordered
(Total 5,000 MW)

1:23 1:33 1:43 1:53 203
. Source: ERCOTI[3
Local time 3]

[1] https://www.nerc.com/pa/rrm/ea/Pages/September-2011-Southwest-Blackout-Event.aspx#:~:text=0n%20the%20afternoon%200f%20September,%2C%20and%20Baja%20California%2C%20Mexico.

[2] https://www.texastribune.org/2021/02/18/texas-power-outages-ercot/

[3] http://www.ercot.com/content/wcm/key_documents_lists/225373/Urgent_Board_of Directors_Meeting_2-24-2021.pdf
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Two Types of System-level Control for
Dealing with Contingencies

* Preventive control (prior to contingency)
« Minimize the chance of emergencies

« Often used conservatively to ensure sufficient security margin against
creditable contingency events (e.g., N-1) all the time

* Typical methods: generation redispatch, var compensation, demand
response/load curtaillment

« Emerging methods: transmission switching

« Emergency control (post-contingency/disturbance)
« Minimize impacts of large disturbances; serve as a safety net for the system
« Usually used against severe or low probability-high impact contingencies

 Typical control methods: load shedding, generator tripping, controlled
Islanding

« Emerging methods: emergent demand response, HVDC redispatch

Focus of the talk

today
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The Grand Challenge of Achieving
Intelligent Emergency Control

 Power system post-event emergency control has strong requirements:

» Scalability: >20,000 buses (with 1000s of control devices now = millions in the near future)
» Solution time: < 5 seconds
» Security and adaptability (to fast-changing conditions)

* Existing control methods and their issues:
» Rule-based control (not adaptive, time-consuming to develop and update them)
» Model-predictive control (scalability and solution time issues)
» Learning-based (or data-driven) control (scalability, security and adaptability issues)
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Can We Transfer Al Successes in Games and
Robotics to Complex Grid Control?

At last — a co 1|)\IIL p
can beat a ch la

ALLS 3 TEMS GO

. httns://www.WeEé:org/enubs/
CrEdIt. OpenAI StateOfThelnterconnection/
Pages/Western-Interconnection.aspx
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https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx
https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx

Introduction to Deep Reinforcement
Learning




Reinforcement Learning vs Other ML Methods

IMaChme Reinforcement Supervised Unsupervised
€arning learnin EEl '
categories . g 9 learning
P observations | £nviro — }targst
v N nment [ N I
In Out : In Out
In Qut

Typeofdata | Data for training include Data for training include pairs | Data for training do not include

observations and rewards from | of input and the desired desired outputs

the environment. output (Needsalargeamount

Theyareusuallynot predefined. | of dataandlabels)

Datais generated on-the-fly by

interacting with the environment.
Example *Q-Learning *Neural networks *K-mean clustering
methods *Deep reinforcementlearning *Decision trees *Autoencoders
Specific *Control *Classification *Discover clusters
tasks *Scheduling *Regression (prediction) |dentify factors/structures

*Sequential decision-making
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Reinforcement Learning in a Nutshell

(Why) Reinforcement learning (RL) is designed for

solving sequential decision-making problems in a

stochastic environment.

(What) The goal is to learn a control policy to

maximizes expected accumulative reward over time.

(How) The agent learns a control policy iteratively

through interacting with the environment via trial-

and-errors guided by the reward signal.

Deep reinforcement learning = deep learning +

reinforcement learning

* Not just deep neural network, but more about

deep learning techniques and ecosystem.
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Agent (policy) is represented by deep
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Key Challenges in DRL for Grid Control
| Challenge | Note

Scalability large system (observation space), large number of control points (action space) and
scenarios (exploration space)

Adaptability Adapt to changing operation conditions and network topology

Security High security requirement (Insecure or outage is almost prohibitive)
Trustworthiness Control actions or decisions should be trusted by operators and engineers
Training and test * Grid environments are essential for DRL training and test; should be OpenAl
environments gym-compatible

e Grid simulator # environment for DRL training and test

Reproducibility * The complexity of DRL for grid control makes them hard to reproduce
* Open-source is a proven, good practice for reproducibility

A single domain breakthrough is unlikely to address these challenges! = Need holistic solutions

COLORADO MINES
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Convergence of Al, physics,
computing and control for intelligent
power system control




A Holistic Approach to Intelligent Grid
Control

An Integrated

Framework

for achieving convergence
of key techniques

Advanced DRL Open Source
Algorithms Environments

for large-scale power grid

for developing, testing and
control

benchmarking solutions
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How to achieve

Four Technology Pillars technology

convergence to
maximize

impacts?

Intelligent Grid Control for
enabling grid transformation

4 ) 4 ) 4
N J \ J N J
Physics Control Al Computing
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An Integrated Framework for Technology
Convergence Data-driven control

Principle, objective

Al

Grid (e.g. DMRL: Deep Meta-
Control DMRL, Reinforcement Learning
(e.g., load surrogate

shedding)

(Power system
models,
performance
requirements)

8 S|I9PON

Computing
(e.g. HPC &
Grid Simulator

HPC: High performance computing

MINES MINES.EDU
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RLGC: A Lightweight, Open-source Environment
for RL for Grid Dynamic Control

» The first open-source grid environment for developing, testing and benchmarking RL
algorithms for grid dynamic control[1]

« Applications: load shedding for voltage control, generator tripping, dynamic breaking,
controlled islanding (to be released), T&D coordination (to be released)

“ In-program data exchange &0 T el i o)

5 “Bridge” between Python RL;EEU?;;?;:“C
and Java programs

i . Open-sourced on GitHub:
Power em ! Power em InterP55 |1
OpenAl dynamic s?::.tllation : | I simulz:'is;n (Power i httDS.//glthUb.COm/RLGC-PrOleCt/RLGC

Gym environment for RL function system
(PowerDynSimEvn) wrapper simulator)

The Architecture of RLGC platform

[1] Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, Z. Huang. “Adaptive Power System Emergency Control Using Deep Reinforcement Learning,” IEEE Transactionson Smart
Grid, vol. 11, no. 2, pp. 1171-1182, March 2020

COLORADO MINES MINES.EDU

EARTH ENERGY ENVIRONMENT


https://github.com/RLGC-Project/RLGC

An HPC-based Grid Environment

* Scalable from laptop to HPC clusters/clouds with DRL
the RAY platform [1]. algorithms Al Grideack

(ARS, M50}

HPC cluster/Cloud

Architecture of the platform for training

» GridPACK: HPC-based advanced grid dynamic
simulator [2]

* The environment and DRL algorithms are open-
sourced: https://github.com/pnnl/HADREC/

Execution Module
Real-time Monitoring, Operation & Control

Learning Module

: 1

1
! 1

1
E Off-line Massive Parallel Training, Interactions between : : ) STIPACK Validated : and testi ng
| Learning Algorithm and Power Grid Simulator i 1 Real-Time P Controls :
: Observations and Rewards | o . | Emergency validation ' 1
I 3 i1 Controls !
| Smart Sampled Power [ ; ¥ 1 :
del — N > _ e r = . .
| 1o olsf It:sm a'::l: Seacarios | 7| Power Grid & Deep Meta 'l Emergency | : ﬁEPW?’;ﬁ”q: ! [1] https://www.ray.io/
ROROEaS; = Reinforcement .. W TEC g | . e .
e GridPACK | | 2 Learning Control Decision- |~ vk e | [2] https://www.gridpack.org/wiki/index.php/Main_Page
fnartSampie L\ | sj = . 1 Making Module e TR -

: Contingencies and B Simulator % Algorithms I : ing - e vl :
: Extreme Events 1 > | : : |
I 3 | Emergency Control 11 EMS '
| Actions o Real-Time Situation i
I ' Measurements
! Massive HPC-based Parallel Training Procedures '! Awareness Measure :
| : 1 & States ments 1
1 1

HPC-based learning and execution modules for
intelligent grid control
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https://github.com/pnnl/HADREC/

An Example: Load Shedding for
Emergency Voltage Control

0,: Observations
Dynamic simulation engine 154 bus voltage magnitudes and 46 bus load levels

O

Inpast. Inger Hiweleben Tperrrs Cngpart Inyer

| O ‘I‘I —=Al|u s allP [||—H T (for training)

(for illustration
only)

| A Neural Network for representing agent’s policy
| a,: Actions
o 46 load substations could shed load.

IEEE 300-bus system model o Each area, for each training time step, the load could be shed
between 0% and 20% .

o The action space is 46.

R. Huang, Y. Chen, T.Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactionson Power Systems, 2022
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We Need Scalable RL Methods

 Training a RL agent for IEEE 39-bus system using the DON algorithm
on a laptop took about 2 days [1]

« Existing methods are very difficult, if not impossible, to scale up for controlling
large power systems (e.d., >2000 buses)

 Rich Sutton: “The biggest lesson that can be read from 70 ){_ears of Al
research is that general methods that leverage computation are
ultimately the most effective, and by a large margin” [2]

« We target at real-world large systems—-> Scalable RL methods

IEEE 300-bus ‘
test system Synthetic WECC system
(] 3000-bus (>20,000 buses)

Texas system

[1] Q. Huang, et al "Adaptive Power System Emergency Control using Deep Reinforcement Learning," in IEEE Transactions on Smart Grid. 2019
[2] http://incompleteideas.net/Incldeas/BitterLesson.html

COLORADOSCHOOLOFMINES
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Three Types of RL Methods

Model-based RL Model-free RL Derivative-free RL

e PPO
e PILCO e DDPG * ARS
e Dyna e DQN * B
least Scalability most

R. Huang, Y. Chen, T.Yin, X. Li, A. Li,J. Tan, W. Yu, Y. Liu, Q. Huang. “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” in IEEE
Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022
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Parallel Augmented Random Search
AlgOrIth m [ ]47 Evaluate different

perturbation direction:
« Based on evolutionary strategy Return rewards 0 + v0;
i+
« Unique features/advantages K \
« Easy to scale and parallel (via workers)
_ Select top ~opulatic
« Easy to tune (only 5 main hyper- directions
parameters vs 20+ in existing DRL :
algorithms)

* More robust for training (much less
sensitive to random seeds and hyper-

parameters) Update policy -
« Support larger learning rates to achieve er =00t o ) (ruse = 7i-)8
faster training \ ARS algorifhm /

R. Huang, Y. Chen, T. Yin, X. Li, A. Li,J. Tan, W. Yu, Y. Liu, Q. Huang. “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” in IEEE
Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022

COLORADO MINES MINES.EDU
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Parallel ARS Algorithm Test Results

* Emergency voltage control on the IEEE 300-bus system

150 B: 300-Bus led A led B
0.1 0.1
—03 —0.3]
125 -0.5, -0.5,
0.7 07
100 = 0.9/ = 0.9
: 1.1 S -1.1
= 75 By By oo
i & 1. &L
g F-1.7 1.7 PrO
2 50 3-1.9 2-1.9
z <21 <21
23 -2.3
| —— ARS
25 -2.5- —2.5;
by PPO | 57
0 \ - ' \ - -2.9. - ' - \ ' -2.9 , \ - ,
0 200 400 600 800 1000 1200 0 5 10 15 20 25 0 1 2 3 4 5
# of Cores Training Time (hr) Training Time (hr)

PPO: Proximal Policy Optimization
High scalability of Parallel ARS Much faster and more robust training with larger average rewards using
Parallel ARS

R. Huang, Y. Chen, T. Yin, X. Li, A. Li, J. Tan, W. Yu, Y. Liu, Q. Huang. “Accelerated Derivative-Free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage
Control,” in IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 14-25, Jan. 2022, doi: 10.1109/TPWRS.2021.3095179.
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Learning a Context to Enhance Control
Adaptiveness and Effectiveness

« We can enhance the control adaptiveness and effectiveness if =
we could efficiently construct a context for the control agent. b

Net load - March 31

Megawa
g

« !1Challenge: What should be the proper information for -

representing the context for different grid controls? “| Fast-changing conditions
+ Learn the context automatically from data and learning T oo
experiences via meta-learning Learn the context
« Mathematical formulation:
Observed
07, c(€)" = arg juax Ecepm,) [ (c(€),0)] statss tg;vcj;‘:re:;‘f;i fatent

representation
6 — neural network weights for control policy
&—one training environment control policy
c(g) — context representation for environment ¢
P(E.) — a distribution of training environments

Contro*actions
COLORADO MINES MINES.EDU
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Realization of Deep Meta-
Reinforcement Learnina

0%, c(€)" = arg max Eecpi,y [/ (c(€),0)] (1)

» Reformulate (1) as (2) and (3) and 0,0(8)
solve them in an iterative manner —
(similar to the coordinate descent Ort1 = argmaxBeepm,) [J (c(E)r, )] (2)
method): ~
« RL: Learn the control policy 6 while 5 ¢(E)k+1 = argmax J (¢, 0r) ,VE € P(E;)  (3)

leveraging the latest context c(¢) by solving
equation (2)

Latent

~

* Meta-RL: Learn the low dimensional latent / Context
context ¢ using Bayesian Optimization to 2, c,

solve (3) E 2 /" | Observation S;, Reward r, \’ Power flow base

- Fast adaptation by only solving (3) > | _/_M/
- Action & ~~ ++ Dynamic models

Environment

LN

\_ Inner loop (RL — PARS) - | Contingencies

/
\ Outer loop (Meta RL — MSO) < /

R. Huang, Y. Chen, T.Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactions

o.n Powerl‘S'stemsI, .2022’ . " o
COLORADOSCHOOLOFMINES
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Our DMRL Algorithm Fits Well into Power System
Operation Time Frames and Procedures

5
g
E.
< Hour Ahead |
Day Ahead | .
y (Intra-hour) | Real Time
' (minutes ahead to now)

Bepresentative |
— | Forecasted states
gystem states for .O' | for adaptation _

meta-training O..O i \F\@ i :‘fmssm‘"""‘““ﬁsﬁ

Uncertainty — 3 ! : P
bguﬂda_r:\r .O. : :_"_"_"_"""E : e
¥ | ¥ ¥
Sampled ! |
ena:.n'i.rljonmeuts Power flow Dynamic | | Contin | Target } '.[est. IBS?
baze cases modelz | Eencias environment || contingency || environment
Creditable l ! i Universal ' Adapted _¥ v
contingencies : “““_‘T‘J] 'control Deploy the adapted
Perform meta- : policy Perform adaptation | {ST2Y°EY control strategy
Camin —p)  fraining using - ™ sing BO algorithm || »  and test it on the
gencies DMRL algorithm | | S : real time system
! | state
Meta-training stage i Adaptation stage i Deployment stage
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IEEE 300-Bus Power Flow Conditions
for Training and Test

We use this small
system to compare

our algorithms with
existing solutions that
are difficult to scale

TABLE 1

POWER FLOW CONDITIONS FOR TRAINING

Training power flow case

Generation

Load

1 Total 22929.5 MW (100%) | Total 22570.2 MW (100%)
2 120% for all generators 120% for all loads
3 135% for all generators 135% for all loads
4 115% for all generators 150% for loads in Zone |

TABLE I

POWER FLOW CONDITIONS FOR ADAPTATION AND TESTING

Adaptation/testing power flow case

Adaptation

Testing

Generation

Load

Generation

Load

1 90% for all generators 90% for all loads 92.4% for all generators 92.4% for all loads
2 110% for all generators 110% for all loads 107.7% for all generators 107.7% for all loads
3 115% for all generators 115% for all loads 117.2% for all generators 117.2% for all loads
4 125% for all generators 125% for all loads 122.5% for all generators 122.5% for all loads
5 140% for all generators 140% for all loads 142.1% for all generators 142.1% for all loads
6 95% for all generators 82.8% for loads in Zone 1 97.1% for all generators 85.32% for loads in Zone 1
7 107% for all generators | 124.4% for loads in Zone 1 104.6% for all generators | 121.5% for loads in Zone 1
8 110% for all generators | 134.3% for loads in Zone 1 | 112.3% for all generators | 137.2% for loads in Zone 1
9 119% for all generators | 159.7% for loads in Zone 1 | 121.1% for all generators | 162.6% for loads in Zone 1

R. Huang, Y. Chen, T.Yin, Q. Huang, J. Tan, W

Power Systems, accepted, 2022
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Deep Meta-Reinforcement Learning
Test Results

400 - . .
| DwRL -ﬂ_ L peee e
200 * Improved control
n
Training 11.6 hours 9.5 hours e L effectiveness .
=]
Adaptation 5.3 mins N/A N/A v
50
Solution 0.7 sec 0.7 sec 63.3 sec
: 0l , , | ‘ . .
time o -20000 -15000 -10000 -5000 0 5000 10000 15000 20000
*MPC: Model-predictive control DMRL Reward - PARS Reward
1.0
2000
All test scenarios 0.8 : s
. I s
are unseen during 3 ! <1500
. 0.6 ! 3
training e i 5
g Il -—-- Voltage Envelope s 1000
0.4 I| £
s i No Shedding 2
oa il —— PARS £ s00 — PARS
' il — DMRL = — DMRL
i —— MPC —— MPC
0.0 u 0
0 i 2 3 a 5 o 1 2 3 4 5
Time (sec) Time (sec)

R. Huang, Y. Chen, T.Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactionson Power Systems, 2022
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Physics-informed DMRL Enhances Training
Efficiency and Control Robustness

« Power system community have developed vast amount of domain knowledge in forms of
physics laws, standards, rules, and performance requirements.

» Physics-informed DMRL: we incorporated system performance requirements as a trainable
action mask (TAM) into the agent and significantly improved its sampling efficiency and

""""""""'"""'""""""""'""""""'"""""""""""""I 0.0 led
Check local bus voltage Action mask ! _05] N m— et S
against performance ' 3 i
requirement Valid [o, 1,___,0]§ c-10 Method Average test reward | No. of failed cases
action ! ; _15 ARS 1.27 x 10% 72
vector o Guided ES 5.6 x 103 17
€ —20 Guided meta ES 4.3 x 103 12
© T -
5 o5 Guided meta ES + mask 2.8 x 103 8
—————————————————————————————————————————————————————————————————————————————— ) — Guided ES Guided meta ES + TAM 1.89 x 107 3
§ -3.0 —— Guided meta ES MPC 1.82 % 10° 3
: ) =4 35 —— Guided meta ES + mask
Time series Control ' Guided meta ES + TAM
observations actions -4.0 --- Reward threshold
0 10 20 30 40 50
Iterations (x10)
Incorporate prior knowledge into the agent with Training results Test results

a fixed action mask [1]

[1] Y. Du, Q. Huang, R. Huang; T.Yin;J. Tan; W.Yu; X. Li, "Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery," in IEEE Transactions onPower Systems, 2021
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A Summary of Our Algorithms

* Parallel Augmented Random R Our goal
Search (PARS) algorithm[1], Scalabilit
* High performance power (# of buses) ™" = Woarohere
system simulation platform
GridPACK 2o
200
* Physics-informed PARS [2]: ~ R dapta:imy
incorporate physics
knowledge through a trainable ey /S « Deep meta-reinforcement learning (meta-
action mask learning + PARS)[4]: realize fast adaptation
* Safe PARS [3]: control barrier (~5 mins) of control policies to changing
function + PARS grid conditions

[1] R. Huang, et al “Accelerated Derivative-free Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control,” IEEE Trans. on Power Systems, 2021
[2] D. Yan, et al “Physics-informed Evolutionary Strategy based Control for Mitigating Delayed Voltage Recovery”, IEEE Trans. on Power Systems, 2022

[3] T. Vu, etal. "Safe Reinforcement Learning for Emergency Load Shedding of Power Systems." In Proc of IEEE PES General Meeting 2021

[4] R. Huang, et al, “Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning, IEEE Trans. on Power Systems, 2022
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Test Results and Demo on Large Systems




A Synthetic 3000-bus Texas System
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Source: https://electricgrids.engrtamu.edu/electric-grid-test-cases/activsg2000/
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https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/

Texas 3000-bus System Dataset for
Training and Testing

1440 power tlow cases

Smart sampling [1] (2 months) \‘ Smart sampling
100 power flow 200 power flow
cases
14,000
scenarios

cases
140 fault buses, 280 fault buses,

1 fault duration 4 fault durations

(0.15) — e Smart <[0.08, 0.4] —

samplin
sampling Ping

—_—

56,000

scenarios

Training data set 2000 buses Test data set

[1] X. Sun et al., "Smart Sampling for Reduced and Representative Power System Scenario Selection,” in IEEE Open Access Journal of Power and
Energy, vol. 8, pp. 293-302, 2021,
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Texas 3000-bus System Off-line
Training Results

10t ~2 days
o | ‘

. . ; T
« Action: load shedding fractions at 258 load g,
buses, continuous, range [-0.2, O] s 3
. . § -4
» Observation: 726 bus voltage magnitudes < 5

+ 258 substation load demand 6 ” " o o 100

.. . Training Time (Hqurs) .. .

Training curve (running avg. rewards vs training time)

- 3000
100 power flow R 2500
cases

1500

1000

2 500

14,000 -l
scenarios
99.74%
140 fault buses, 100

50

1 fault duration | |
(O . 1 S) MSO Reward - UVLS Reward

Obijective value (total reward) differences (positive is better)
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Off-line Testing Results

26% reduction
on average

200 power flow

=20 o 20 40 60
cases Percentage of Load M50 Shed Less than UVLS

Histogram of % reduced load shedding compared with ruled-

56,000 based UVLS (positive is better)

scenarios

15000

12500

Better in
99.7%
scenarios  _

10000

280 fault buses, 7500

5000

4 fault durations 2500
€[0.08, 0.4] §

250

A\Y

200

150
100

50
0 23000 7/ /-av00 ~2000 [ 2000 2000’/ az000

MSO Reward - UVLS Reward

Objective value (total reward) differences (positive is better)
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Demo on a Real Large System

* In the ARPA-E HADREC project, the platform and DMRL
algorithm are integrated with V&R'’s real-time situational

awareness tool (ROSE)

* Trained and tested on a large system based on real-world EMS
snapshots provided by PacifiCorp

* We considered three emergency controls:
» Load shedding for voltage control
» Generator tripping for transient stability (next slide)
« Controlled islanding for avoiding system-wide instability
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Case study of a PacifiCorp system

arpa-e HADREC DEMO

MSO Control Action Messages:
Meta Strategy Optimization

TOPOLOGY

3.1s, Gen 18 ID1 tripped, 302.98MW

- — Gen 0
~— Gen 1
Gen 2
\ o 3
Gen 4
Y‘ ‘_’ Total generation tripped: 302.98MW

10 Out of Step Gen 7 |0OOS Control Action Messages:

Gen 8
jé Gen9 13.7s,Gen 9 ID1 tripped, 95.4MW
e = oo |375,Gen 101D1 tripped, 106.58MW
é— = con 12 | 3.75,Gen 11 1D1 tripped, 164.63MW
- —~ \ Gen 13 | 3.7s, Gen 12 ID1 tripped, 248.66MW
; | = =
[

"= 1 3.7s, Gen 18 D1 tripped, 302.98MW
V: ‘: 3.8s, Gen 20 D1 tripped, 44.11MW

Gen 17 | 3.85, Gen 20 D2 tripped, 44.11MW
Gen 18 | 3.8s, Gen 25 |D1 tripped, 47.37MW

sen 20 | Total generation tripped: 1053.84MW
BN <1 | oystem Faults:
122

Gen 23 | , et . N
1.0s, Initial line trip
Gen 24

* HADREC: 1 generator tripped, 300MW total * ~20% improvement in responding time and 70%
« Out of Step (OOS): 8 generators tripped, 1 GW total reduction in tripped generator output
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Other Applications




Improve DFIG Performance in Grid
Fault Scenarios

* Reduce the DFIG rotor over-current and DC-link over-voltage under different
V I ver-v I
— 4 r 1
s <
3 2
Lo 08F _Z3r No Supp. Ctrl 1
= = I, Feedback Ctl
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S 3
o
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g .
7 Iy Feedback Ctrl & ol . Gear vﬂ?b{, e Qe
= 02 GSES-Based Ctrl S ﬁ Box " &
° ok : 4 ¢ 1t | P Grid
Tl
9.5 10 10.5 11 9.5 10 10.5 11 £
Time (s) Time (s) o, Qg
Pitch [+—
4F T ] .1 I I _' control [—
- 3 g :
o w6 —D-
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o 1 = |_ Feedback Ctrl
x o s
o 2F GSES-Based Cirl
0 | 1 1 ]
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Time (s) Time (s)

Gao, W, Fan, R, Huang, R, Huang, Q, Du, Y., Qiao, W, Wang, S., Gao, D.W.: Improving DFIG performance under fault scenarios through evolutionary
reinforcement learning based control. IET Gener. Transm. Distrib. 16, 3825— 3836 (2022).
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Improve Inter-area Damping Control
through HVYDC and FACTS

<104 (a) Machine 7-23 speed difference
« 107 (a) Machine 2-21 Speed Difference FACTS R . T
HVDC if | | ' ' ﬁ g n
= =
= 2
20 £
> No Ctrl }
Conv. Cirl
At ARS Ctrl . |
0 5 10 15 20 25 5 10 15 20 25
. . . (b) Frequency difference at tie line terminals
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1 ; : - - bos
= 0.02
< N
20 e T
)
o -0.02
1 0.04
0 5 10 15 20 25 5 . 10 ; th%:’_ \ 20 25
c ower flow on the tie line
(c) HVDC Transferred Power on DC Lines : T
2960 T T - - !l = oFon |
Conv.-TCSC POD
2055 =29 RL-TCSC POD
= -
= =28 R N ——
= 2950 S 4 =
* ne
2945

10 15 20 25 0 5 10 Second(s) 15 20 25

Test results on the MinniWECC system from [1] Test results on the MinniWECC system from [2]

[1] W. Gao, R. Fan, R. Huang, Q. Huang, W. Gao, L. Du. “Augmented random search based inter-area oscillation damping using high voltage DC transmission. Electric Power Systems Research,
216,109063,2023

[2] R. Huang, W. Gao, R. Fan, Q. Huang. “Damping inter-area oscillation using reinforcement learning controlled TCSC.” IET Gener. Transm. Distrib. 16, 22652275 (2022).
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Key takeaways

* The latest Al show “generalist” capabilities — the same (very
similar) NN model and DRL algorithm can be applied to different
domains and applications

 This helps reduce extensive work in special designs based on
strong domain expertise.
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Future Work and Perspectives




Trustworthy DRL for Grid Control

 Human-Al collaboration for intelligent grid control 100% | ’

* How to make DRL agent more trustworthy?

« Good performance

« Know its know limitations and alert human operators in
advance

* “Learning to run power network with trust”
formulation and competition [1]

« Research directions —
* Reinforcement learning from human feedback (RLHF) L

i i ; : : 0 S50% 90% 100%
coc];];]tllrgle ég{?gggcement learning from historical human Obiraibna Betloninancs fite

« Explainable reinforcement learning (XRL)

Trusted

s
o
52
#
E

- -
L]

6000 ..............................'\ ........................
.

Predictive Failure rate

[1] Marot, Antoine, Benjamin Donnot, Karim Chaouache, Adrian Kelly, Qiuhua Huang, Ramij-Raja Hossain, and Jochen L. Cremer. "Learning to run a power
network with trust." Electric Power Systems Research 212 (2022): 108487.
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Distributed Control with Edge Al and
Coordination with Centralized Control

 Distributed control with edge computing and Al helps manage millions of DERSs.

« Coordinating centralized and distributed control as well as computing is critical for
large-scale clean energy integration and FERC 2222 compliance.

1
HPC + Al 100 to 1000
Z)I::tAlnIEgl-vlv:[;I;ISEléCh as Utilities/Distribution System Utilities/Distribution System
i Operators/ Substations eee Operators/ Substations
1,000,000 / Federated Iearning\ /=ederated Iearnin’g\‘
. DERs/EVs | _ | DERs/EVs/ DERS/EVs | < —>| DERs/EVs
Edge Computing +Al | /G5 |~ ,,e | MGs /MGs cos /MGs
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Other Potential Applications

 Al-Copilot for system operators

* Next-generation decision support tools for preventive control
and network optimization
« Optimal transmission switching [1]

« Mitigation plan for N-1-1 and N-2 contingencies during planning

 Al-bot for dispatcher(Operator) training system (DTS/OTS)
« Generate training scenarios and optimal control actions

[1] Yoon, Deunsol, et al. "Winning the 12rpn challenge: Power grid management via semi-markov afterstate
actor-critic." International Conference on Learning Representations. 2021.
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A Summary

* Intelligent power system control is key to safeguard the grid
while enabling grid transformation and modernization.

 Solving such a grand challenge requires the convergence of
Physics, Al, Control and Computing.

 We developed an integrated framework, open-sourced
environments and advanced DRL algorithms.

* We showed promising results on large systems.

 Trustworthy Al, human-Al collaboration and Al-enhanced T&D
coordination are important future research directions.
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Questions?

Qiuhua Huang
giuhuahuang@mines.edu
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Reward Function Design: An Example

* RL agents try to maximize the accumulative rewards

* Opposite to the objective function of optimal control

* |n general, no convexity requirement = more flexibility in design
 The reward function is usually application-specific

oodl Voltage criteria Load shedding Invalid actions
0.9
3 os I/
% 0.7 6> AV, —¢, > AP (PU) ~ Cl g Large-penalty for
> i 5 Reward =J | i non-acceptable
§ :353 - —10000, if V;(t) < 0.95, ¢>T,; +4 performance
| I -,é : | | m?n{vi (t) _0'7’0}' If Tpost_fault <t <Tpost_fault +033 Meet the
0-20 1 2 3 4 5 6 AV (t) _ m{M (t) _0'8’ 0}1 if Tpost_fault +0.33<t< Tpost_fault +0.5 minimum

Time (Seonds)

min{V; (t) - 0.9, 0}, if Ty gy +0.5 <t <Tpq g +1.5 performance
Bus voltage performance requirement min{V, (t) - 0.95,0}, if T +15<t requirement

post _ fault

Reward Function

R. Huang, Y. Chen, T.Yin, Q. Huang, J. Tan, W. Yu, X. Li, A. Li, Y. Du, “Learning and Fast Adaptationfor Grid Emergency Control via Deep Meta Reinforcement Learning,” IEEE Transactionson
Power Systems, 2022
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Two-level Parallelism of PARS

Update Poli(:}r)
ARS Leaner
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Parallel Augmented Random Search
(ARS) Algorithm

Highly scalable when combined with high
performance computing and grid simulator
[1] (see results in the next slide)

Guided search by exploiting estimated

gradients [2]
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Basic idea: Estimate the gradient using random search
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Physics-inspired training
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Physics: the voltage stability
problem in power systems are
mostly local issues

3. Solutions: divided training and then

1. Areas are loosely coupled for voltage
problems

2. Yet, actions in two or three of the

regions are required for faults near or
at the boundary of the regions.

coordinative training

MINES.EDU




